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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)

UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted

to metric (SI) units as follows:

Multiply by To obtain

inches 25.4 millimeters
2.54 centimeters

square inches
cubic inches

6.452
16.39

square centimeters
cubic centimeters

feet 30.48 centimeters
0.3048 meters

square feet
cubic feet

0.0929
0.0283

square meters
cubic meters

yards
square yards
cubic yards

0.9144
0.836
0.7646

meters
square meters
cubic meters

miles 1.6093 kilometers

square miles 259.0 hectares

knots 1.852 kilometers per hour

acres 0.4047 hectares

foot-pounds 1.3558 newton meters

millibars 1.0197 x 10
-3 kilograms per square centimeter

ounces 28.35 grams

pounds 453.6
0.4536

grams
kilograms

ton, long 1.0160 metric tons

ton, short 0.9072 metric tons

degrees (angle) 0.01745 radians

Fahrenheit degrees 5/9 Celsius degrees or Kelvins 1

xTo obtain Celsius (C) temperature readings from Fahrenheit (F) readings,

use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.



SYMBOLS AND DEFINITIONS

cu undrained shear strength

D pile diameter

d water depth

E modulus of elasticity

e lever arm of lateral load above firm soil

Fj factor of safety

F+ lateral mooring-line load (tension)

f depth of maximum bending

g acceleration of gravity

Ft- incident wave height

H, transmitted wave height

I moment of inertia of pile cross section

Kp coefficient of passive Earth pressure

K, transmission coefficient; H^/H^

L incident wavelength

£ embedment length of short -pile anchor

I, total required length of pile anchor

^vield yi^ding moment of pile section

n constant of horizontal subgrade reaction
h

P design lateral load on pile

q length of pile below maximum moment point

T wave period

W breakwater width measured in the direction of wave travel

W, weight of concrete anchor

w unit weight of concrete

wg unit weight of soil

w unit weight of water

n short -pile coefficient

p coefficient of static friction

d> internal friction angle
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DETERMINATION OF MOORING LOAD AND

TRANSMITTED WAVE HEIGHT FOR A FLOATING TIRE BREAKWATER

hy
Michael L. Giles and James W. Eckevt

I . INTRODUCTION

This report presents methods for predicting the transmitted wave

height and required anchor capacity for a floating tire breakwater (FTB)

using the FTB module concept proposed by the Goodyear Tire and Rubber Co.

(Candle and Fischer, 1977). The methods are based on prototype-scale
wave tank tests of the Goodyear module FTB (Giles and Sorensen, 1978).

Because of the ease of module construction and availability of used
tires, this type of FTB provides an alternative means for sheltering
shorelines, docks, and boats from both storm and normal wave conditions.

In comparison to other types of floating or fixed breakwater structures,

the proposed module design has a relatively low cost. Because floating

breakwaters are most effective for short -period waves, this type of FTB

may best be used as protection for harbors of refuge and for shorelines

in which the waves are limited by fetch or water depths such as in large

coves, estuaries, and reservoirs.

The FTB is assembled using individual 18-tire modules (Fig. 1)

measuring approximately 6.5 by 7.0 by 2.5 feet (2.0 by 2.2 by 0.8 meters).

The modules are constructed by stacking the tires in a 3-2-3-2-3-2-3

combination and threading tying lines through the tires as they are

stacked. An evaluation of various types of tying materials for both
freshwater and saltwater environments (Davis, 1977) has found that con-

veyor belting and unwelded open-link chain were the optimum choices for

corrosional resistance. Typically, the FTB has flotation material added

to the crown of each tire and two 2-inch-diameter (5 centimeters) holes
are punched in the bottom of each tire. The use of flotation material,
such as rigid urethane or polystyrene, will maintain uniform flotation
of the breakwater and will permit the use of severely damaged tires which
otherwise could not be used. The holes are to reduce the amount of sand
and debris which may accumulate in the tires. Additional details on the
construction of the individual modules and assembly of the modules to

form a complete breakwater are presented by Candle and Fischer (1977) and
by Kowalski and Ross (1975)

.

The data and design curves presented are applicable for wave heights
up to about 4.5 feet (1.4 meters), wavelengths between 30 and 165 feet

(9.5 and 50 meters), and water depths between 6.5 and 13 feet (2 and 4

meters). If design conditions are significantly different, then care and

engineering judgment should be used in applying these design procedures.

II. DETERMINATION OF BREAKWATER WIDTH

For specific site conditions, given the design incident significant
wave height, H. , wave period, T, water depth, d, and transmitted



.Corner tires are

Direction

of wave
approach

h u Note: Each individual

/ module is 2 by 2.2 by

0.8 m.

Figure 1. Section of assembled breakwater composed of individual

modules

.
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wave height, H^; the wavelength, L, and transmission coefficient,

K+, can be determined. The wavelength, L, can be determined for a

given wave period, T, and water depth, d, by use of Figure 2 or the

equation -

-£*«*(¥)• (1)

The transmission coefficient, K^, can be determined using the following

relationship:

Knowing the wavelength, L, and the transmission coefficient, K^,

the required breakwater width can be determined from Figure 3. Since the

overall efficiency of the breakwater decreases as the breakwater width

increases, the width determined from Figure 3 may be too small if the

indicated breakwater width is much greater than the maximum tested length

of 42 feet (12.8 meters).

III. DETERMINATION OF MOORING LOADS

Giles and Sorensen (1978) found that the mooring-line load for the

FTB system is essentially a function of the incident wave height. Figure

4 provides a procedure for determining the mooring-line load for a given

incident wave height.

Since the design curve is based on limited data, care and engineer-

ing judgment should be used in extrapolating the curve for wave heights

greater than 4.5 feet. Also, if the breakwater width to wavelength ratio

is greater than 1.4 the actual load on the anchor may be slightly higher

due to additional modules being added.

Figure 4 is applicable to mooring lines placed on a slope of 1 on 7.

If steeper mooring-line slopes are used, then the loads would be slightly

higher and proportional to the change in the tangent of the slope.

The rear mooring system should be designed for the largest force

determined by either the force of the largest wave coming from the shore-

ward direction or 20 percent of the seaward force, whichever is greater.

IV. SELECTION OF A MOORING SYSTEM

1. Selection of the Mooring Line and Hardware .

To minimize the vertical load on the anchor,
<
the mooring line should

have a minimum length of approximately eight times the maximum expected

water depth and the anchor should be positioned seven times the maximum
water depth from the breakwater. The anchor holding capacity must exceed
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the maximum force expected to occur. Since the forces are cyclic, all
the connections between the breakwater and anchor should be as flexible
and free-moving as possible. Therefore, it is suggested that either
galvanized steel or wrought-iron chain be used. Wire cable has been
used, but the cable is subject to both axial fatigue and corrosion
weakening. All connections should also be oversized to allow for cor-
rosion and wear. Secondary methods of connection, such as cotter pins
and extra nuts, should be used to prevent disconnection.

2 . Selection of the Anchor .

The selection of the type of anchor depends on the maximum mooring
force, bottom conditions (i.e., mud, sand, or rock bottom), and the var-
ious available methods for placing the anchor. The four basic anchor
types normally used with floating breakwaters are deadweight anchors,
embedment anchors, screw anchors, and pile anchors.

The most commonly used anchor is the concrete block deadweight anchor
which is usually cast at the site. The design anchor weight (VL.) of
these anchors can be determined by the following relationship based on a

static analysis:

F+FtrS

(-£)
(3)

where

y = the coefficient of static friction

W. = the total weight of concrete anchor in air

w^ = the unit of weight in water

w = the unit weight of concrete

F^ = the lateral mooring-line load

Fa = the factor of safety

The embedment anchor is often used by small-boat operators. The
holding capacity of embedment anchors vary with the type or marine soil
and embedment anchor design. This is discussed by Taylor and Lee (1972)
and Berteaux (1976)

.

Vesic (1971) and Jenkins (1976) describe methods for determining the
holding capacity of the screw anchor in various soil types. They indi-
cate that the maximum holding capacity is equivalent to the capacity
developed by a short pile of equal length. Disadvantages of the screw
anchor are that they usually have a short length and are difficult to
install in firm marine soils.

13



When the available equipment and materials suggest a pile anchor

system be used to hold the floating breakwater, the required design

may be accomplished by one of the methods described below. Anchor piles

are designed by finding the ultimate lateral resistance of the pile-soil
system and increasing the lateral mooring load, F^, by a safety factor,
F Q , to find the design lateral load on the pile, P; i.e.,

F+ Ft
rS (4)

The ultimate lateral resistance of the anchor pile is reached when either
the passive strength of the surrounding soil is exceeded or when the
yielding moment of the pile section is reached.

Simple design methods, as described in Broms (1964a, 1964b), are
divided according to the soil characteristics (cohesionless or cohesive)

and by the pile characteristics (short-rigid piles or long-flexible
piles) . Only the cohesionless and cohesive short-rigid pile cases are

included here because these will normally suffice for anchor piles for

floating breakwaters

.

In considering cohesionless soils (i.e., sands), the definition of

long versus short piles depends on the calculation of the dimensionless
term, x\l , where:

m 1/5

(5)

and I is the pile length. This term includes the pile section stiffness

(EI) and the constant of horizontal subgrade reaction, n^, which is a

function of the soil only. Values of n^ are given in the Table; when
r\l is less than 2.0 the pile is considered short and rigid and when r\i

is greater than 4.0 the pile is long and flexible.

Table. Values of n^ (from Terzaghi, 1955)

Embedded soil condition
Relative density

(tons/ft 3
)

Loose Medium Dense

Above water table

Below water table

7

4

21

14

56

34

The short-rigid pile is assumed not to bend when laterally loaded
but will rotate about a point approximately 1/3 to 1/4 its length above
the pile tip. The soil reaction increases with depth below the firm
bottom as shown in Figure 5.

14
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3Wp
(a) deflections (b)soil reactions

mox

(c) BENDING MOMENT

Figure 5. Failure modes for a short-rigid pile in
cohesionless soil (after Broms, 1964b).

Because anchor piles are designed for the soil's ultimate lateral
resistance rather than deflection of the pile head as in structural piles,
the design is predicated on sufficiently large deflection to develop the
full passive resistance. This is defined, based on comparison with test
data, as three times the Rankine passive Earth pressure from the ground
surface to the center of rotation (Broms, 1964b). The resulting equation
for ultimate lateral resistance is:

w D £ 3 Kns P
2(e + I)

(6)

where

P

D

s

e and £

b

= design lateral load (P = F^Fg,, eq. 4)

= characteristic width of pile (the diameter for pipe pile)

= unit weight of soil

defined in Figure 5

= Rankine's coefficient of passive Earth pressure;

1 + sin d>

K
P "

j sin 4>

<f>
= angle of internal friction of sand

Equation (6) may be solved by iteration as shown in the example,

(7)



When e, the lever arm of the load applied above the firm bottom, is

zero the equation may be solved directly for required pile length as:

I =

U dkJ
1/2

(8)

This method of analysis has been predicated on the maximum bending
moment in the loaded pile not exceeding the piling sections maximum yield
moment. This is considered a safe assumption for the typical short anchor
pile problem.

When the foundation soils at the breakwater site are clay, the method
in Broms (1964a) is used for determining the ultimate lateral resistance
of a rigid-pile anchor under lateral load. As before, the pile is assumed
to rotate without bending around a point in the lower half of the pile
(see Fig. 6). The length of pile required is

e+1.5D+f+q (9)

(See Fig. 6 for definition of terms.) The maximum moment occurs at

(f + 1.5D) below the firm soil level where

f =
(10)

9 cu
D

The term c is the undrained cohesive strength of the clay. Care
should be taken in the determination of the value of c to reflect the
dynamic nature of the lateral load. The length, q, is the length of

Figure 6. Failure mode for a short-rigid pile in

cohesive soil (after Broms 1964a).
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pile needed below the point of maximum .moment to achieve the ultimate

lateral resistance, and may be calculated as

RCe .+ 1.5D + 0.5f) 1/2

* = ^5 "
(11 >

and the required pile length 1+ may be calculated directly from equation

(9).

The choice of anchor type should be based on the design loading, the
soil conditions, and the available method of placement. No one anchor
type is universally suited for all conditions, and each type (or other
types not mentioned) should be considered for a particular application
and location.

************* V. EXAMPLE PROBLEM **************

GIVEN : The typical significant wave height and wave period observed at

a site during summer storm conditions are 3.0 feet and 3.0 seconds,
respectively, in 6.5 feet of freshwater.

FIND :

(1) The width of the Goodyear module FTB that reduces the
3.0-foot incident wave height to a 1.0-foot transmitted wave height;

(2) the expected mooring load (mooring lines are placed on
a 1 on 7 slope)

;

(3) the required weight and volume of a mass concrete anchor;
and

(4) the required length of an anchor pile.

SOLUTION :

(1) Find the width of a breakwater that reduces the incident
wave height to a 1.0-foot transmitted height.

(a) Compute the allowable transmission coefficient,
K+, using equation (2)

:

* H^ 3.0 ft

(b) Determine the incident wavelength, L, using
equation (1) or Figure 2. From Figure 2 for T = 3.0 seconds
and d = 6.5 feet,

L = 37 ft .

17
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(c) Determine the W/L ratio for the required K^

and compute the breakwater width. From Figure 3, where

Ky. = 0.33, W/L = 1.38. Thus, the required breakwater width,

W = (W/L)(L) = (1.38) (37 feet) = 51 feet.

(d) Determine the number of modules required which is

equal to W (module width) or 51 feet per 7.0 feet per

module =7.3 modules required. Thus, the breakwater would

have to be at least eight modules wide to obtain the desired
wave height reduction.

(2) Determine the mooring load. Using Figure 4 and an incident

wave height equal to 3.0 feet, the design load is 77 pounds per lineal

foot of breakwater parallel to the wave crest between the anchor lines.

Assuming an anchor spacing of 50 feet, the total mooring-line load

per anchor is

:

Ft
= 77 lb/ ft x 50 ft = 3,850 lb .

NOTE. --The mooring-line load from Figure 4 is used as the lateral

mooring-line load because they are essentially equal for the 1 on 7

slope specified.

(3) Design of a mass concrete anchor. Since the bottom is

assumed to be level firm sand, the coefficient of static friction,

u, is assumed to be 0.4. Also, the assumed unit weight of concrete

in air, w , is 150 pounds per cubic foot and the unit weight of

freshwater, Wy, is 62.4 pounds per cubic foot. Substituting the

equation (3) and solving for the total mass weight of the anchor, W^,

W
t

Vs

Thus, using F = 1.5 and F^Fg = 3,850 x 1.5 = 5,875 lb (or 6,000 lb)

6,000 lb
v

(0.4) (1 - 0.416)

W, = 25,685 lb (12.8 tons) for each 50-foot section

The volume is

25,685 lb _ yj\.2 ft 3 (approximately 5-foot 7-inch cube)

150 lb/ft 3

18



(4) Design length of a pile anchor. For bottom firm sand

(medium relative density), n-, = 14 tons per cubic foot (see the Table)

solve for K„ using <)> which .must be known from soil sampling or be
estimated (here assume

<f>
= 30°).

v - l * sin t - I
+ °- 5 - 7 n

J? ~
1 - sin <j>

=
1 - 0.5

= 3 '° '

Select a 16-inch (1.33 foot) steel pipe pile with a 0.1-foot wall
thickness

.

E for steel = 2.16 x 10 6 tons/ft 2

I of cross section = 0.094 ft (from American Institute of
Steel Construction, 1973) .

Assume solid bottom is 2.0 feet below anchor line attachment point:

e = 2 ft .

Solving for the characteristic length:

f^.1
1/5

= / 14 tons/ft 3
\
1/5

n
LEI J \(2.16 x 10 6 ton/ft 2

) (9.4 x lO^ft 4
)/

n = 0.147 y- .

Because by definition r\l < 2.0 for the rigid-pile case, try first

values of I < 13.6 feet and use the rigid-pile analysis for cohesion-

less material to find actual I using equation (6) and rewriting as

2P I 3

w
s

DK
p

(e + I) •

Substituting the known values and assuming w = 60 pounds per cubic

foot for submerged unit weight of sand:

I 3 2 x 6,000 lb
= 50.12 .

(2 + «,) / lb U1.33 ft) (3)« (*£)«!

Then, by substituting for £ as follows:

Assume Calculate Compare to
£(ft) l 3 /{2 * gQ required value

7 38.111 < 50.12

8 51.20 > 50.12 by small amount

9 66.27 > 50.12

19



Note that Z = 8 feet is less than 13.6 feet (upper limit for rigid-

pile analysis). Therefore, use 1 = 8 feet and add e = 2 feet to

obtain the total pile length l^ = 10 feet. If scour is expected,

the pile should be driven to the design depth below the maximum pre-

dicted scour elevation.

VI . SUMMARY

Methods for determining the transmitted wave height and required
anchor holding capacity for a floating tire breakwater using the proposed
Goodyear FTB module design were presented. Application of these methods
is intended to give conservative results.

The discussion on various types of anchors was included to provide
general guidance on anchor types as well as references for further infor-
mation on anchor design.

As a practical guide for the design of an FTB mooring system, an

assumed harbor of refuge breakwater is considered as a design example.

20
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