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1. Introduction 
 
With ever increase in demand for larger capacity steam turbines and more efficient rotary compressors, 
blade vibrations and the resulting fatigue have become more and more an important subject in the design 
of turbomachinaries. Fatigue failure of turbomachine blades is one of the most vexing problems of the 
turbomachine manufactures. Aflobi [1] gave reasons for failure of blades and concluded that resonance of 
blade vibration frequency with nozzle excitation frequency is the major cause of blade failure. Cranch [2] 
making use of bending mode determined the first three modes of vibration of rotating beam by the use of 
Rayleigh energy approach. Carneige [3] derived a theoretical expression for the work done due to 
centrifugal effects for small vibrations of rotating cantilever beams and established an equation for the 
fundamental frequency of vibration by the use of Rayleigh-Ritz method. Sisto [4] solved the equation of 
motion of a pretwisted cantilever blade using Ritz principle. Roastard [5] calculated the first five frequencies 
of twisted cantilever beam using Galkerine finite element method and concluded that the effect of twist is 
proportional to the width to thickness ratio. Klein [6] studied the free vibration of elastic beams with non-
uniform characteristics by a new method that comprised the advantages of both finite element method and 
Rayleigh-Ritz analysis. Lag [7] worked on vibration characteristics of non-uniform blades and determined 
the natural frequency using Galkerin finite element method. Lee [8] studied vibration characteristics of a 
tapered beam and obtained formula for fundamental frequency. He further concluded that a decrease of 
cross sectional dimension in thickness with constant breadth increases the fundamental bending frequency 
whereas decreases higher modes of bending frequencies. Rao [9] concluded that a decrease of cross 
sectional dimension in breadth with constant thickness increase the fundamental bending frequency as well 
as the higher modes of bending frequencies. Downs [10] worked upon transverse vibration of cantilever 
beams of unequal breadth and taper. He obtained results by dynamic discretization technique and 
concluded that by increasing mode order the vibration becomes concentrated towards the tip. Dhar [11] 
studied the effect of non-linearities in material properties and stiffness on natural frequencies of turbine 
blade using non-linear finite element method and concluded that at transient stage there was a remarkable 
change in blade frequency. 

Thomas [12] developed a model using finite element method for Timoshenko beams and concluded 
that the disc radius has predominant effect on flapwise mode of vibration. The frequency increases with 
increase in disc radius. Murthy [13] used Integration Matrix method to study the vibration characteristics 
with the effect of asymmetry of cross section and concluded that bending frequencies decrease with 
asymmetry and torsional frequencies increase with asymmetry. Shran [14] studied the free vibration of 
turbine blades with the temperature effect using finite element method and concluded that as the material is 
heated the frequencies start decreasing because the value of modulus of elasticity of material decreases. 

The continuum approach for a freestanding blade requires a lot of analytical work before a numerical 
procedure can be adopted to perform frequency analysis. Discretizing the blade and using appropriate 
element relations is simpler than the analytical work that goes with continuum methods and thus several 
research workers favour the discrete methods. 
 
1.1. Discrete Analysis of Blades 
 
Other distinct advantages of discrete methods are their compatibility to complicated methods like laced and 
pocketed blades and the availability of well tested finite element programs to model any complicated blade 
group. The discrete analysis techniques can be broadly classified into the following methods as applied to 
turbine blade problems using beam theories. 
 
1.1.1. Holzer method 
 
Holzer method has been developed for torsional vibration calculations of a given system. The given system 
is discretized into several rigid inertials connected by massless elastic torsional shaft. The dynamic 
properties are transferred from station to station using field and point dynamic properties. The boundary 
conditions are used to set up a criterion and determine whether an assumed frequency satisfies this criterion 
for a natural frequency. The application of Holzer method to bending vibration problem is tedious as the 
bending problem involves four state quantities compared with only two state quantities in torsional 
problem. 
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1.1.2. Myklestad/Prohl method 
 
To determine natural frequency of beams Myklestad/Prohl method is used. The beam is discretized into 
several masses connected by massless beam elements having the original flexural rigidity of the beam 
between the stations. Depending on the boundary conditions a suitable criterion can be set up and the 
natural frequency is determined by trial and error root search technique. 
 
1.1.3. Matrix method 
 
The matrix is a means of numerically integrating a function that is expressed in terms of the values of the 
function at equal increments of the independent variable. They can be derived by expressing a function as a 
polynomial in the form of Newton’s forward interpolation formula. The integration matrix has been 
applied to obtain the natural frequency of a propeller blade for cross-coupled bending modes. 
 
1.1.4. Finite difference method 
 
The Finite difference method uses a series of regularly spaced grid points and approximates the partial 
differential equation at each point. The resulting algebraic equations are than solved at each grid point by 
applying boundary conditions. Rapid solutions are possible because the algebraic equations are usually 
linear and simple. Thus Finite difference methods are relatively inexpensive but they do not readily cope 
with complex problems unless a large number of grid points are used. 
 
1.1.5. Finite element method 
 
The Finite element method has become very popular in recent years. It can be used to determine the 
combined bending and torsional vibration modes taking into account the effect of root flexibility. The 
Finite element method seeks to approximate the solution of partial differential equation integrated over a 
series of arbitrarily shaped finite elements. The result is a system of simultaneous linear equations, which 
usually do not have regular structure. Therefore their solutions are more expensive and time consuming. 
However the number of nodes required in finite element method is usually much less than the number of 
grid points in finite difference method for comparable accuracy. Finite element method is advantageous for 
complex problems. 
 

A survey of the available literature shows that a lot work has been carried out on the analysis of 
vibration characteristics of turbomachine blades using different methods. In the present work an attempt 
has been made to calculate the frequencies of turbomachine blades using finite element method, to analyze 
the different aerofoil sections having different chord length, length and thickness. The details of 
formulation are discussed below. 
 

2. Finite Element Formulation 
 
The geometry of the blade is essentially an aerofoil section, which is axisymmetric and has same taper along 
its length. This blade can be modelled by three-dimensional solid modelling method. The discretization of 
the blade is done with 8 noded isoparametric hexagonal solid elements in which each node of the element 
has three degrees of freedom i.e. displacements u, v and w in the x, y and z directions respectively. For an 
eight node hexagonal element we have considered the mapping onto a cube of 2-unit side placed 
symmetrically with r, s and t coordinates as shown in Fig. 1. 

On the master cube element the Lagrange shape function is applied, which can be written as: 

    
1

1 1 1
8

i i i iN rr s s t t
 

    
 

 (1) 

where i=1 to 8, and r, s, and t represent the coordinates of the nodes i. 
The element nodal displacements are represented by the vector 

 
 1 2 3 24, , , ,

T
q q q q q

 (2) 
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With the use of the shape function Ni, the displacements at any point inside the element in terms of its 
nodal values can be defined as: 

 

1 1 2 2 8 22

1 2 2 5 8 23

1 3 2 6 8 24

u N q N q N q

v N q N q N q

w N q N q N q

   


   
      

or 

     
T

u

U v N q

w

 
 

 
 
  

 (3) 

where  N is the shape function matrix;  q is the nodal displacement vector. 

Also the coordinate mapping is done with the same shape functions as given below: 

 

1 1 2 2 8 8

1 1 2 2 8 8

1 1 2 2 8 8

x N x N x N x

y N y N y N y

z N z N z N z

   


   
    

 (4) 

 
Fig. 1. Eight node hexagonal element. 
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The components of strains for a three dimensional stress element can be expressed as: 

 

x

y

z
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   

   
      
          
    
   

        
   
         

 (5) 

In order to find the derivatives of the displacements in global coordinates, we have to first obtain the 
derivatives of the displacements in natural coordinates. Differentiating Eq. (5) with respect to coordinates r, 
s and t, we get 

 

i i i i i i

i i i i i i

i i i i i i

N u N v N wu v w

r r rr r r

N u N v N wu v w

s s s s s s

u v w N u N v N w

t t t t t t

       
       
  
         
       
  

       
          

 (6) 

Now using Jacobian inverse, we get 

 

* * *

11 12 13

* * *

21 22 23

* * *

31 32 33

u v w u v w
J J J

r r r r r r
u v w u v w

J J J
s s s s s s
u v w u v w

J J J
t t t t t t

        
             
                   
                      

 (7) 

Expanding the above equations and substituting the values of u, v and w in that from Eq. (3), we get a 
sub matrix of strain displacement matrix. 

  1

0 0

0 0
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0

0

0

i

i
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 
 
 

 
 


 
 
 

 
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 
  

  
 

  
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 
  

 (8) 
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Similar to Eq. (8), we can obtain eleven sub matrices of size 6×3. Using these sub matrices we can 
formulate strain displacement matrix as given below: 

        1 2 3 11B B B B B  (9) 

Thus the strain-displacement takes the form 

   
T

B q   (10) 

The element characteristics matrix i.e. stiffness matrix of 8 node isoparametric hexahedral element can 
be obtained by performing numerical interaction of the following equation by Gauss quadrature 2×2×2 
method. 

       
33 33

det
T

K B D B J drdsdt


   (11) 

where [D] is element property matrix defined as 

 

1 0 0 0

1 0 0 0

1 0 0 0

(1 )(1 2 )
0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5

E

  

  

  

 






 
 


 
 
 

   
 
 

 
  

 (12) 

where E is the elastic modulus;  is the Poisson’s ratio. 
 

3. Elemental Mass/Inertia Matrix 
 
The kinetic energy of the blade is given by 

 
1

2

T

v
T u u dv   (13) 

where  is the density of the blade material and u is the velocity vector of point at x. Substituting the value 
of U in Eq. (13), the kinetic energy expression can be written as 

  1

2

T T

v
T q N Ndv q   (14) 

where the bracketed expression is termed as element mass matrix. 

   T

v
m N Ndv   

In the discretized natural coordinates, the expression of element mass matrix can be written as: 

   detTm N N J drdsdt   (15) 

The mass matrix of the 8 node hexahedral element can be computed by integrating Eq. (15) using Gauss 
quadrature 2×2×2 method. 
 

4. Vibration Analysis 
 
For performing the vibration analysis of a continuum, it is necessary that continuum system is discretized 
into small elements so that the stiffness and mass/inertia matrices of individual elements can be computed 
easily as described above. The assembled matrix of these elements represents properties of complete 
continuum. Thus the original equation of the motion of the continuum is discretized into a system of 
governing equations of motion for nodal displacement. 

The general equation of motion for a discretized damped vibration structure is given by: 

         
2

2

d x dx
M C K x F

dt dt

   
     

  
 (16) 
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where [M], [C] and [K] represent overall mass matrix, damping coefficient matrix and stiffness matrix 

respectively.  x , 
dx

dt

 
 
 

and 
2

2

d x

dt

 
 
 

 are displacements, velocity and acceleration vectors of the assemblage 

respectively. [F] is external excitation force vector. 
In mechanical systems such as turbine blade, the damping contributed by the system is negligible, 

though material of the blade produces some amount of hysteresis losses. Neglecting damping and 
considering it as a free vibration problem, the equation of motion for discretized system is expressed as: 

     
2

2
0

d x
M K x

dt

 
  

 
 (17) 

The vibration analysis of the blade requires the solution of above differential equation of motion for 
natural frequencies the eigenvalue analysis i.e. determination of natural frequency of freely vibrating blade is 
essentially a characteristic or eigenvalue problem. The equation of motion of blade/wing is given by: 

       0K M     (18) 

When a blade/wing is discretized by finite element method, it yield symmetric, positive, definite and 
banded mass and stiffness matrices. In order to be able to solve above equation in most economical and 
efficient manner, it is desirable that related Eigen value routine does not destroy these properties in 
subsequent computation. 

Ideally, an efficient eigenvalue estimation algorithm is expected to possess the following necessary 
features: 

(1) The algorithm should be able to compute a few desired roots. 
(2) It should exploit matrix sparsity. 
(3) It should be numerically stable so that it yields a reliable and accurate solution. 
In the present studies inverse iteration technique as discussed in the next section is used for finding the 

eigenvalues and eigenvectors. 
 
4.1. Inverse Iteration Method 
 
The inverse iteration technique is effectively used to calculate an eigenvector and at the same time the 
corresponding eigenvalue can also be evaluated. We assume that stiffness matrix K is positive definite, 
whereas mass matrix M is a symmetric banded mass matrix. 

In this method the basic relation considered is 

 K M   (19) 

in which we have to calculate the smallest eigenvalues 1, 2,…,p and corresponding eigenvectors 1, 2,…, 

p by satisfying Eq. (19) by directly operating on it. We assume a vector for , say, x1 and assume a value 

for =1. We can then evaluate the right hand side of Eq. (19). Hence we may calculate 

  1 11R Mx  (20) 

Since x1 is an arbitrarily assumed vector, we do not have, in general Kx1 = R1. If Kx1 were equal to R1 then 
x1 would be an eigenvector except for trivial cases and our assumptions would have been very lucky. 
Instead, we have an equilibrium equation as: 

 2 1 2 1,Kx R x x   (21) 

where x2  is the displacement solution corresponding to the applied forces R1. Since we know that we have 
to use iteration to solve for an eigenvector we may assume that x2 may be a better approximation to an 
eigenvector than x1 was. By repeating the cycle we obtain an increasingly better approximation to an 
eigenvector. This procedure is the basis of inverse iteration technique. 

In the following we first consider the basic equations used in inverse iteration and then present a more 
effective form of the technique. In the solution we assume a starting iteration vector x1 and then evaluate in 
each iteration step k = 1, 2, …. 

 1k kKx Mx   (22) 

and 

 

 
1

1 0.5

1 1

k
k

T

k k

x
x

x Mx




 

  (23) 
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provided that x1 is not M-orthogonal to 1; hence, x1TM10 and xk+1 1 as k ∞ 
The basic step in the iteration is the solution of the equation in Eq. (22) in which we evaluate a vector 

xk+1 with a direction closer to an eigenvector than had the previous iteration vector xk. The calculation in 
Eq. (23) merely ensures that the M-weight length of the new iteration vector xk+1 is unity. That is we want 
xk+1 to satisfy the mass orthonormality relation i.e. 

 1 1 1T

k kx Mx    (24) 

Substituting for xk+1 from Eq. (23) into Eq. (24) we find that Eq. (24) is indeed satisfied. If the scaling 
in Eq. (23) is not included in the iteration, the elements of the iteration vectors grow or decrease in each 

step and the iteration vectors do not converge to 1 but to a multiple of it. 
The relation in Eq. (22) and Eq. (23) state the basic inverse iteration algorithm. 

 
 

5. Problem Description 
 
In the present study an aerofoil section blade of a turbine is chosen for frequency analysis. The blade is of 
uniform configuration along its length. It is held fixed to one end and hangs freely at the other. The blade is 
solid and material properties are constant and isotropic. The following data are used: 

1. Blade material : Nickel alloy 
2. Modulus of elasticity : 2.11x1011 N/m2 
3. Density : 7850 Kg/m3 
4. Poission’s ratio : 0.3 
5. Length of blade : 300 mm 
6. Chord length : 25 mm 
7. Aerofoil sections employed : (a) NACA-006 

(b) NACA-0010 
(c) NACA-16-021 
(d) NACA-0018 
(e) NACA-65-015 

The aerofoil section blade is treated as a cantilever beam, therefore constraints are applied to all the 
nodes which are fixed to the base of the rotor. The displacements at all the fixed nodes are put to zero. 
Further the number of frequencies to be extracted is defined. In this study first five modes of frequency are 
extracted. 
 

6. Frequency Analysis of Various Aerofoil Sections 
 
The solution methodology developed in previous section is applied to various types of aerofoil sections. In 
the present study the geometry of different aerofoil sections has been taken from the research data of 
National Advisory Committee for Aeronautics (NACA). The NACA has classified different aerofoil 
sections and designated by NACA code [15]. Though hundreds of different sections have been developed, 
in the present study only six different types of sections have been chosen to determine the natural 
frequencies of vibration. The natural frequencies of these types of aerofoil sections are listed in Table 1 and 
variation is shown is Fig. 2. 
 
6.1. Effect of Thickness of Aerofoil Section 
 
The effect of thickness of the aerofoil section on the natural frequencies of five modes of vibration could 
easily be seen from the Table 1. If we move from NACA 006 to NACA 16-021 we find that with increase 
in thickness frequency first decreases and after some value of thickness it starts increasing (Fig. 3).  It is 
interesting to note that there is some optimal value of thickness (NACA 65-015) for which the natural 
frequency in all the modes is minimum. The reason attributable for this phenomenon is from here onwards 
the blade starts behaving like a plate with cross-coupled mode shape. 
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Table 1. Natural frequency of various aerofoil sections. 

Aerofoil Section 
Natural Frequency (Hz) 

Modes 

 I II III IV V 

NACA 006 76.596 177.982 489.479 607.47 1118 
NACA 66-009 62.603 170.263 400.212 638.65 1070.88 
NACA 0010 49.992 167.022 319.94 624.615 935.05 
NACA 65-015 41.44 157.766 264.622 772.36 823.32 
NACA 0018 44.406 166.156 284.38 832.303 907.059 
NACA 16-021 42.473 164.154 272.222 798.48 1033.8 
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Fig. 2. Variation of vibration frequency with vibration modes. 
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Fig. 3. Variation of vibration frequency with blade profile. 
 
 
6.2. Effect of Aspect Ratio 
 
The ratio of chord length to the length of blade is commonly referred as aspect ratio. In the present study 
the effect of aspect ratio on the natural frequency characteristics of various aerofoil sections has also been 
studied. The study is restricted to first two modes only as the turbine is expected to run in these frequency 
ranges. For this purpose the chord length has been fixed to 25 mm and the length has been taken as 100, 
200, 300 and 400 mm. 

The variation of natural frequency in fundamental mode for the different aspect ratios is listed in Table 
2. 
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Table 2. Effect of aspect ratio natural frequency of fundamental mode. 

Aerofoil Section 
Frequency (Hz) in Fundamental Mode 

Aspect Ratio 

 0.0625 0.0835 0.125 0.25 

NACA 0006 57.12 76.596 116.1 246.83 
NACA 66-009 46.66 62.603 97.86 231.22 
NACA 0010 36.663 49.992 80.564 211.433 

NACA 65-015 28.82 41.423 74.46 206.232 
NACA 0018 29.22 44.406 83.231 286.32 
NACA 16-021 26.332 42.473 88.333 336.321 

 
 

 
 

Close look to the Fig.4 reveals that the natural frequency in fundamental mode of aerofoil section is 
increased to approximately 5 times when aspect ratio is increased from 0.0625 to 0.25. This is due to the 
fact that when aspect ratio increases, aerofoil section becomes stiffer; thereby increase in frequency is 
observed. However in NACA 16-021 and other blades the natural frequency in fundamental mode raises to 
more than 10 times. This sounds that NACA 16-021 blade is behaving like a plate.  
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Fig. 4. Variation of vibration frequency in fundamental mode with aspect ratio. 
 

The effect of aspect ratio on the natural frequency of second mode for various blade sections is listed 
in Table 3. 
 
Table 3. Effect of aspect ratio natural frequency of second mode. 

Aerofoil Section 
Frequency (Hz) in Second Mode 

Aspect Ratio 

 0.0625 0.0835 0.125 0.25 

NACA 006 107.12 177.982 378.76 1434.96 
NACA 66-009 100.663 170.233 367.53 1408.54 
NACA 0010 96.83 167.022 366.232 1351.23 
NACA 65-015 90 157.726 348.52 1340.3 
NACA 0018 95.43 166.156 368.53 1434.26 
NACA 16-021 93 164.154 366.633 1685.633 

 
It is observed from Fig. 5 that the natural frequencies of practically all types of blade sections are 

increased ten to twenty folds with increasing aspect ratio, which clearly shows that behaviour of blade is like 
a plate instead of a beam. Therefore from the present study it can be safely concluded that for NACA-006, 
NACA-0010 and a few other types of blade sections the beam modelling approach is good approximation 
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for determining fundamental frequency however, when turbine operate at high speed i.e. near the second 
resonance condition, the blades starts behaving a plate which needs different modelling methodology. 
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Fig. 5. Variation of vibration frequency in second mode with aspect ratio. 
 
 

7. Conclusions and Future Work 
 
7.1. Conclusions 
 
Based upon the studies conducted and reported in previous chapters, following major conclusions can be 
drawn: 

(1) It is observed that by increasing the value of aspect ratio, the natural frequency in all the modes is 
increased. 

(2) At higher values of aspect ratio some of the blade sections such as NACA-16-021 start behaving 
like a plate instead of a beam as the stiffness in cross coupled mode of vibration is found to be 
increased. 

(3) It is also concluded that, there is some optimum value of thickness at which the natural frequencies 
in fundamental and second mode of vibration are minimum.  

 
7.2. Future Work  
 

(1) In the present study vibration behaviour of a single blade has been studied. It can be extended for 
a group of blades. 

(2) As observed from the present study that at some stage, aerofoil section blade starts behaving like a 
plate instead of a beam, therefore this requires developing a hybrid element, which can incorporate 
both types of behaviours of the blade. 
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