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Abstract
Stress concentration factors (SCFs) at weld toes and weld roots as required for the effective notch stress concept (see [1, 2]) 
are usually computed using finite element analysis (FEA) which requires a certain amount of effort for model generation, 
the solving process, and postprocessing. Regression functions of many FEAs within given parameter bounds provide the 
possibility of a fast prediction of SCFs. This paper provides new and accurate regression formulae for the estimation of 
notch stresses at idealized weld geometries on the basis of multiple linear-elastic FEAs for the transverse stiffener (non-load 
carrying T-joint) under tension and bending of the load carrying slab. Regression of sampled finite element results has been 
performed using (a) second-order polynomial regression with coupling terms (PRC) and (b) artificial neural networks (ANN). 
The presented formulae are compared with several existing estimations of stress concentration factors. The new methods 
appear to show a higher quality of prognosis as well as apply to significant larger ranges of the geometrical parameters of 
the weld joint. The formulae presented here for the transverse stiffener add another welded joint to a series of similar sur-
rogate models presented from Munich University of Applied Sciences in earlier publications and made available for use by 
the web-based tool SCF-Predictor.

IIW-Thesaurus keywords Elastic analysis · Finite element analysis · Surrogate models · Sampling · Notches · Transverse 
stiffeners

Nomenclature

Symbols, abbreviations
ANN [-]  Artificial neural network
α [°]  Flank angle
bi [-]  Bias vectors for artificial neural 

networks
ck [-]  Scalar multiplication parameter for 

the PRC method
d [mm]  Total model depth
E [MPa]  Modulus of elasticity
errrel [%]  Relative error
FEA [-]  Finite element analysis

F [N]  Force
fa [-]  Ratio of weld seam width to sheet 

thickness
fk [-]  Value of geometric multiplication 

parameter for the PRC method
g [-]  Input vector for the ANN method
Kf [-]  Fatigue notch factor
Kt [-]  Stress concentration factor
Kt, EST [-]  Stress concentration factor, estimated
Kt, FEM [-]  Stress concentration factor, calcu-

lated by FEM
kt [-]  Stress concentration output vector 

of the ANN method
Kt, ANN [-]  Stress concentration factor of the 

ANN method
Kt, PRC [-]  Stress concentration factor of the 

PRC method
Kt, TSUJ [-]  Stress concentration factor of 

Tsuji’s method
Kt, MONA/BREN/HELL [-]  Stress concentration factor of 

Monahan’s or Brennan's or 
Hellier’s method
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Kw [-]  Ratio of notch stress to structural 
stress

Kw, min [-]  Minimum ratio of notch stress to 
structural stress

L [mm]  Length of sheet
M [N/mm]  Moment
ν [-]  Poisson ratio
Φi [-]  Artificial neural network layer 

potential
PRC [-]  Polynomial regression with cou-

pling terms
ρ [mm]  Notch radius
Sb [MPa]  Nominal bending stress
St [MPa]  Nominal tension stress
σn [MPa]  Notch stress
σs [MPa]  Structural stress
t1, t2 [mm]  Sheet thicknesses
Wi [-]  Weight matrices of artificial neural 

networks
xi,gain [-]  Gain input vector for artificial neu-

ral networks
xi,offset [-]  Offset input vector for artificial 

neural networks
yo,gain [-]  Gain output vector of artificial 

neural networks
yo,offset [-]  Offset output vector of artificial 

neural networks

Indices, superscripts
b, bend  Bending
t, tens  Tension
f. p.  Full penetration
k  PRC method index
toe  toe

1 Introduction

The effective notch stress approach according to IIW rec-
ommendations [1] is based on the idealization of weld toes 
and weld roots using a fictitious radius ρ = 1 mm. The DVS 
Merkblatt 0905 [2] suggests even smaller radii of ρ = 0.3 mm 
and ρ = 0.05 mm depending on the sheet thickness accom-
panied by associated FAT classes. Application of the effec-
tive notch stress approach for different fictitious radii can 
be found in [3]. There have been several investigations on 
the effective notch stress approach using these three dis-
tinct radii to design against fatigue of welded joints made 
of different materials such as magnesium alloys [4, 5]. A 
comparison of the effective notch stress approach using the 
three radii with the well-known structural and nominal stress 
approaches can be found in [6]. Sizing recommendations of 
this radius are based on the thickness of the weld leg length 

and sheet thickness based on accuracy and computational 
efficiency, as can be seen in [2]. Depending on the selected 
size of the radius and group of material, FAT classes have 
been derived by backward calculations from experimentally 
obtained life data using this concept conforming modeling 
rule for the fictitious radius ρ. This way, the theoretical notch 
factor Kt represents already the fatigue notch factor Kf. The 
notch stress concept as described in [1, 2] has been origi-
nally proposed by Seeger et al. [7] which was motivated on 
early works of Radaj [8] and Neuber [9].

Renken et al. [10] recently have shown an application 
of the notch stress concept for the analysis of scanned weld 
topographies and distributions of local SCFs. There exist sev-
eral other contributions where weld topographies have been 
scanned and analyzed numerically. Alam et al. [11] inves-
tigated eccentric fillet joints in such way, while Liinalampi 
et al. [12] analyzed laser-hybrid welds with thin plates in a 
similar fashion. Ottersböck et al. [13] characterized actual 
weld geometry and stress concentrations of butt welds and 
compared numerical results with approximation solutions.

The goal of this paper is to provide computational effi-
cient estimations for SCFs of transverse non-load carry-
ing stiffeners for three distinct weld toe radii ρ = 1 mm, 
ρ = 0.3 mm, and ρ = 0.05 mm for supporting fatigue evalua-
tions according to [2, 3]. Two new surrogate models based 
on a large amount of samples processed using FEA of trans-
verse non-load carrying stiffeners with varying geometrical 
parameters of flank angle α, reference radius ρ, sheet thick-
nesses t1, t2, and weld seam thickness a are provided. The 
paper extends an already investigated and published collec-
tion of the joint types (a) cruciform joints [14], (b) butt joints 
[15], and (c) load carrying T-joints [16].

The proposed estimations are compared to existing equa-
tions by Tsuji [17], Monahan [18], Brennan et al. [19], and 
Hellier et al. [20]. Similar analyses using artificial neural 
networks for nonlinear regression demonstrating a very good 
quality of prognosis have been published by Dabiri et al. 
[21]. The latter solution was done using a smaller applica-
tion range of the parameters and only for full penetration 
welds. Because the ANN of this group was not published, 
a direct comparison with the proposed methods in the pre-
sent paper was not possible. Since the application of ANN 
and advanced PRC for SCF estimation is a relatively new 
approach, these methods were chosen for this investigation. 
The methods appear to significantly reduce scatter in pre-
dicting SCFs for large ranges of the parameters considered.

2  Numerical simulation of welded T‑joints

The numerical models of the transverse non-load carrying 
stiffeners cover the geometrical parameters given in Table 1 
and 2 with the respective ranges of variables for sampling. 
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Axial or angular misalignment are not covered in the finite 
element models. In case misalignments are present, they 
have to be covered as secondary effects in the SCF Kt as 
presented in [1] or by reducing the allowable stress.

2.1  Parametrization

The linear-elastic FEAs were performed in ANSYS Mechan-
ical™ 18.11 according to Fig. 1 and Table 1 and 2. The 
models are loaded by tension and bending (see Fig. 2). For 
each load case, full penetration welds have been considered.

The following assumptions apply to the finite element 
models:

• No axial or angular misalignment is covered.
• The weld seam flank is modeled by a straight line.
• Quadratic PLANE183 elements with plane strain condi-

tion.
• Constant parameters for linear elastic material:

– Modulus of elasticity E = 210GPa
– Poisson ratio ν = 0.3

• Uniform tension or bending nominal stress of 
St = Sb = 1MPa.

• Evaluation of maximum principal stress σ1 at the weld 
toe.

• The SCF Kt =
�1

St∕b
 is defined as the ratio of maximum 

principal stress σ1 at the weld toe to uniform tension or 
bending nominal stress of St = Sb = 1MPa.

DVS Merkblatt 0905 [2] addresses three different refer-
ence radii ρ = 1.0 mm/0.3 mm/0.05 mm depending on the 
sheet thickness. Hence, the design space is additionally 
separated into a subsystem for each reference radius (see 
Table 2). Note that the equations presented in this paper 
provide SCFs based on maximum principal stress. Similar 
formulas could be derived on the basis of v. Mises equivalent 
stress in the notch radius. In that case, Sonsino [22] suggests 
different FAT values for fatigue evaluation based on v. Mises 
equivalent stress values.

2.2  Finite element modeling and sampling

The finite element models are meshed with PLANE183 ele-
ments of quadratic order and with plane strain condition. 
The areas around the weld toes are mapped meshed with 
quadrilateral elements with element lengths of 0.05 · ρ in 
the notch up to a depth of 0.4 · ρ. An exemplary finite ele-
ment mesh is shown in Fig. 3. More detailed information on 
numerical modeling can be found in [14].

For each subsystem in Table 2, a space filling Latin 
hypercube sampling was created with optiSLang® 7.2.02. 
In total, 4579 samples were successfully simulated.

Further information on sampling and modeling can be 
found in [14, 15].

The parameter ranges in Table 2 have been chosen. They 
cover all and beyond of the parameter ranges of the older 
equations from other authors as presented in Section 3. 
These parameters are typical for arc welded transverse non-
load carrying stiffeners.

3  Known methods of notch factor 
estimation of T‑joints

This section shows already published methods for the 
estimation of SCFs. Their predictive quality will be com-
pared with the newly proposed methods using polynomial 
regression with coupling terms (PRC) and artificial neural 
networks (ANN). Most of the older equations presented in 
this section are of simpler form than the presented solu-
tions using PRC and ANN. Because of the more complex 
form of the new approaches, the models PRC and ANN basi-
cally have a better adaptability to the finite element-based 
data points which leads to smaller errors in predicting SCFs 
of geometry combinations within the allowable parameter 
ranges.

Table 1  Parameter ranges of numerical model

Parameter Range

Flank angle [°] α [110; 160]
Reference radius [mm] ρ See Table 2
Sheet thickness [mm] t1, t2 See Table 2
Weld seam thickness a = fat1 [0.1t1; 0.9t1]
Length of the base plate [mm] L1 150
Length of the attachment [mm] L2 50

Table 2  Parameter ranges for space filling Latin hypercube samplings

Subsystem ρ [mm] t1, t2 [mm] α [°] a = fat1[mm] Samples

1 1.0 [5; 50] [110; 160] [0.1t1; 0.9t1] 1599
2 0.3 [1.5; 20] [110; 160] [0.1t1; 0.9t1] 1519
3 0.05 [0.25; 5] [110; 160] [0.1t1; 0.9t1] 1461

1 ANSYS Mechanical™ is a trademark of ANSYS, Inc., Canonsburg, 
PA, USA (see http:// www. ansys. com).

2 optiSLang® is a trademark of Dynardo GmbH, Weimar, Germany 
(an ANSYS, Inc. company) (see https:// www. dynar do. de/ softw are/ 
optis lang. hmtl).
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3.1  Method by Tsuji

Tsuji [17] in 1990 published regression-based equations for 
notch factors of transverse non-load carrying stiffeners sub-
jected to tension and bending loading. The equations were 
derived on the basis of multiple boundary element method 
calculations. The range of validity is not explicitly given for 
the Tsuji’s method given in Table 3.

3.2  Method by Monahan

Monahan [18] proposed two formulae for SCFs at the weld 
toe. Their range of validity is restricted to 120 °  < α < 150° 
and 0.02 < ρ/t1 < 0.066. The formulae are given in Table 4.

3.3  Method by Brennan

Brennan et al. [19] derived regression equations for SCFs 
on the basis of 80 different weld toe T-butt geometries 
which are displayed in Table  5. The calculations were 
performed using linear elastic FEA and plane stress con-
dition. The geometry validity limits are 120 °  < α < 150°, 
0.01 < ρ/t1 < 0.066, and 0.3 < L/t1 < 4.0 where L is the 
attachment width.

3.4  Method by Hellier

Hellier et al. [20] published equations for SCFs of ten-
sion loaded T-joints which have a similar structure like the 

Fig. 1  Parametrized geometry 
of the T-joint with full penetra-
tion

Fig. 3  Complete finite element 
mesh (left) and mesh refinement 
in the notch at weld toes (right) 0.

4
∙

Fig. 2  Load cases 1 (tension) 
(left) and 2 (bending) (right)
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equations by Brennan. In fact, the “simplified” version of the 
equation is exactly the same. Only the “full equation” differs 

from the one by Brennan, see Table 6. The range of validity 
is also similar to the ones given by Brennan.

Table 3  Method by Tsuji

Position Loading Equation

Weld toe Tension Kt, TSUJ, tens = 1 + 1.015Q0.446f(180 °  − α) (1)

f (180◦ − �) =
1−e

−0,9

(
(180◦−�)�

180◦

)
√√√√√√√√√√

t1+
t1 fa

sin

(
�

2
−
(180◦−�)�

180◦

)

2
t1 fa

sin

(
�

2
−
(180◦−�)�

180◦

)

1−e

−0,9( �

2 )

√√√√√√√√√√

t1+
t1 fa

sin

(
�

2
−
(180◦−�)�

180◦

)

2
t1 fa

sin

(
�

2
−
(180◦−�)�

180◦

)

Q =
1

2.8

⎛⎜⎜⎜⎝

t1+
t1 fa

sin

�
�

2
−
(180◦−�)�

180◦

�

t1

⎞
⎟⎟⎟⎠
−2

� t1 fa

sin

�
�

2
−
(180◦−�)�

180◦

�

�

�

Bending
Kt,TSUJ,bend = 1 +

(
0.629 + 0.058 ln

(
t2+2

t1 fa

sin

(
(180◦−�)�

180◦

)

t1

))(
�

t1

)−0.431

tanh

(
6

t1 fa

sin

(
�

2
−
(180◦−�)�

180◦

)

t1

)
f (180◦ − �)

(2)

Table 4  Method by Monahan

Position Loading Equation

Weld toe Tension
Kt,MONA,tens = 1 + 0.388

(
(180◦−�)�

180◦

)0.37(
�

t1

)−0.454 (3)

Bending
Kt,MONA,bend = 1 + 0.512

(
(180◦−�)�

180◦

)0.572(
�

t1

)−0.469 (4)

Table 5  Method by Brennan et al.

Position Loading Equation

L = t2 + 2
t1fa

sin

(
(180◦−�)

180◦
�

) � =
(180◦−�)�

180◦

Weld toe (simplified) Tension
Kt,BREN,tens = 1.027 + 0.271�0.261

(
�

t1

)−0.47(
L

t1

)0.183 (5)

Bending
Kt,BREN,bend = 1.01 + 0.344�0.336

(
�

t1

)−0.468(
L

t1

)0.233 (6)

Weld toe (full) Tension Kt,BREN,tens = 1.1 + 0.067� − 0.25

(
�

t1

)
− 0.04

(
L
t1

)

+ 0.003�2 − 12

(
�

t1

)2

− 0.014

(
L
t1

)2
+ 0.0164�3 − 0.0005

(
L
t1

)3

+ 0.00004

(
L
t1

)4

− 0.3�

(
�

t1

)
− 0.023�

(
L
t1

)
+ 0.91

(
�

t1

)(
L
t1

)
− 8.3�2

(
�

t1

)

+ 0.255�2

(
L
t1

)
+ 100.5�

(
�

t1

)2

− 0.0792�

(
L
t1

)2

− 37.5

(
�

t1

)2(
L
t1

)
+ 0.908

(
�

t1

)(
L
t1

)2
+ 0.27�0.19

(
�

t1

)−0.74(
L
t1

)0.25

  

(7)

Bending
Kt,BREN,bend = 1.14 + 0.13� − 0.67

(
�

t1

)
− 0.083

(
L
t1

)
+ 0.08�2 + 28

(
�

t1

)2

− 0.02

(
L
t1

)2

+ 0.01�3 − 0.0005

(
L
t1

)3

− 0.00002

(
L
t1

)4
− 4.3�

(
�

t1

)
− 0.09�

(
L
t1

)
− 1.03

(
�

t1

)(
L
t1

)
− 13.7�2

(
�

t1

)

+ 0.443�2

(
L
t1

)
+ 150�

(
�

t1

)2

− 0.13�

(
L
t1

)2
− 62

(
�

t1

)2(
L
t1

)

+ 1.53

(
�

t1

)(
L
t1

)2

+ 0.005�3

(
L
t1

)
− 30�

(
�

t1

)3
+ 3.57�

(
�

t1

)(
L
t1

)

+ 5�

(
�

t1

)2(
L
t1

)
+ 0.35�0.26

(
�

t1

)−0.468(
L
t1

)0.3

(8)
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4  New methods of notch factor 
determination

In this section, the two methods for the derivation of estima-
tion formulae for SCFs are presented. The input values for 
the estimations shall be the geometrical parameters accord-
ing to Table 1 and 2, whereas the output value is a single sca-
lar value, the SCF based on the maximum principle stress σ1.

4.1  Polynomial regression with coupling terms (PRC 
method)

The polynomial regression of quadratic order with coupling 
terms is carried out in optiSLang® 7.2.0. Equation (11) 
shows how the SCF is calculated with the respective factors 
ck ∙ fk(t1, α, fa) according to Table 12. The restrictions for the 
equation can be found in Table 7.

The nomenclature of the SCF for each reference radius 
and loading type is determined in Table 8.

The three parameters (t1, α, fa) yield a maximum of 10 
terms for the estimation of a SCF. The 10 terms result from 
the three parameters, their squares, each combination of two 
parameters, and one fixed term. In case one of these terms 
does not significantly affect the SCF, they are filtered out by 
optiSLang. The default filter settings have been used.

(11)Kt,PRC =

10∑
k=1

ck ∙ fk
(
t1, �, fa

)

4.2  Application of artificial neural networks (ANN 
method)

With the help of Matlab’s Neural Network Toolbox, an arti-
ficial neural network (ANN) was derived for each SCF. The 
data has been randomly divided into three subsets: 70 % 
training data, 15% validation data, and 15% testing data. The 
ANN is fitted to the training data. During training the vali-
dation set is used to measure network generalization and to 
stop training when generalization stops improving. Testing 
data has no effect on training of the ANN and is only used 
as independent measure for the network performance and 
quality of prognosis. Levenberg-Marquardt was chosen as 
training algorithm. The ANN feed-forward neural network 
consists of three hidden layers, where each hidden layer 
consists of 4 neurons according to the 4 input parameters 
(t1, t2, α, fa). The output layer yields the stress concentration 
factor as output value (kt = (Kt, ANN)). A graphical representa-
tion of the ANN is displayed in Fig. 4.

Each layer consists of a weight matrix Wi, a bias bi, and a 
layer potential ϕi which is transferred to a hyperbolic tangent 
sigmoid transfer function.

The restrictions to this method are similar to the PRC 
method in Table 7. More information on neural networks 
can be found in Hagan et al. [23].

Table 6  Method by Hellier

Position Loading Equation

L = t2 + 2
t1fa

sin

(
(180◦−�)

180◦
�

) � =
(180◦−�)�

180◦

Weld toe (simplified) Tension
Kt,HELL,tens = 1.027 + 0.271�0.261

(
�

t1

)−0.47(
L

t1

)0.183 (9)

Weld toe (full) Tension Kt,HELL,tens = 0.889 − 0.302� + 3.44

(
�

t1

)
+ 0.529

(
L
t1

)
+ 0.012�2

+ 104

(
�

t1

)2

− 0.633

(
L
t1

)2
− 0.614�3 + 0.18

(
L
t1

)3
− 0.018

(
L
t1

)4
− 35.5�

(
�

t1

)
− 0.153�

(
L
t1

)

+ 4.38

(
�

t1

)(
L
t1

)
+ 30.6�2

(
�

t1

)
− 0.219�2

(
L
t1

)
− 64.3�

(
�

t1

)2
+ 0.041�

(
L
t1

)2
− 54.5

(
�

t1

)2(
L
t1

)

+ 0.595

(
�

t1

)(
L
t1

)2
+ �

0.68

(
�

t1

)−0.299(
L
t1

)0.263

(10)

Table 7  Restrictions of the PRC method

Parameter combina-
tion

t1, t2 [mm] t1

t2
or

t2

t1

fa

Restriction 5…50 for ρ = 1.00mm 1

3
<

t1∕2

t2∕1
< 3 0.1…0.9

1.5…20 for 
ρ = 0.30mm

0.25…5 for 
ρ = 0.05mm

Table 8  Stress concentration factors for equations applying to maxi-
mum principal stress according to new method

Loading Sheet thickness Radius Stress con-
centration 
factor

t1, t2 [mm] ρ [mm]

Tension [0.25; 10] 0.05 K
f .p.

t,PRC,t,1

[1.5; 20] 0.3 K
f .p.

t,PRC,t,2

[5; 50] 1 K
f .p.

t,PRC,t,3

Bending [0.25; 10] 0.05 K
f .p.

t,PRC,b,1

[1.5; 20] 0.3 K
f .p.

t,PRC,b,2

[5; 50] 1 K
f .p.

t,PRC,b,3
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The multilayer approach with a low number of neu-
rons in each hidden layer resulted in better estimation of 
stress concentration factors than a single-layer approach 
with a high number of neurons in the layer. Addition-
ally, benefits in training and evaluation time could be 
accomplished.

The mathematical expressions for the used network can 
be found in Table 93, and the corresponding normalization 
vectors, weighting matrices, and bias vectors can be found 
in Tables 13, 14, 15, 16, 17 and 18.

5  Comparison of notch factor determination 
and quality

In order to draw a comparison between the aforementioned 
existing methods and the newly proposed methods using 
PRC and ANN, the given restrictions have to be kept in 
mind. In the following figures, the evaluated finite element 
results have been selected according to these restrictions.

It should be noted that:

– Keep in mind that the ratio of notch stress to structural 
stress Kw = σn/σs has to meet a lower limit Kw, min; see 
Rother and Fricke [24]:

Kw,min = 1.6 for � = 1mm

Kw,min = 2.13 for � = 0.3mm

Kw,min = 3.56 for � = 0.05mm

In order to check Kw against the minimum ratio Kw, min, 
calculation of the structural stress is also required. This task 
has to be done by the user on top of the estimation of the 
SCF with the new equations.

5.1  Comparison of methods for T‑joints

Figs. 5 and 6 show boxplots and probability plots for a nor-
mal distribution of the relative error which is calculated by:

Relative errors are calculated for all data points includ-
ing training, validation, and testing data. The blue boxes in 
the boxplots show 50% of the data between the 25 and 75% 
quantiles. The distance between top and bottom of the blue 
box is the interquartile range. The red line is the median 
value. The black whiskers represent the last value within 
1.5 times the interquartile range (the last value that is not an 
outlier) of the blue boxes.

Regarding the probability plots, the straight dashed lines 
represent a perfect normal distribution and are fitted to each 
data set.

Table 10 and 11 give additional statistical measures of the 
investigated data sets.

(17)errrel =
Kt,EST − Kt,FEM

Kt,FEM

[%]

Fig. 4  Schematic structure of the artificial network

Table 9  Equations to be used for the ANN method

ϕ1 = b1 + W1 · (((g − xi, offset) ° xi, gain) − 1) (12)
ϕ2 = b2 + W2 · tanh(ϕ1) (13)
ϕ3 = b3 + W3 · tanh(ϕ2) (14)
ϕ4 = b4 + W4 · tanh(ϕ3) (15)
kt = ((ϕ4 − yo, offset) ⊘ yo, gain) − 1 (16)

3 ∘ indicates the elementwise Hadamard product and ⊘ the element-
wise Hadamard division.
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Figs. 5 and 6 show the comparison of relative errors 
of each method for transverse non-load carrying stiff-
eners with fully penetrated welds (without root face). It 
should be noted that the methods by Brennan et al. and 
Hellier et al. have been derived with the assumption of 
plane stress condition which leads to a slight systemati-
cal deviation compared to PRC and ANN. The methods 
by Monahan and Tsuji tend remarkably well towards a 
median of little error. However, all these methods undergo 
multiple tight restrictions for the design variables. In con-
sequence they can only be applied in comparison with a 
smaller subset of finite element computations; see the total 
numbers of used samples in Table 10 and 11. The PRC and 

ANN methods are capable of covering all evaluated finite 
element results and overall show improved performance in 
terms of significantly lower scattering around about zero 
or small relative error.

In terms of application of the newly introduced equa-
tions, the PRC method is slightly simpler to implement 
than the ANN method. The ANN will still yield more accu-
rate predictions of SCFs. In order to reduce the computa-
tional effort for estimating SCFs for transverse non-load 
carrying stiffeners, the formulas for PRC and ANN will 
be provided via a programmed online solution which will 
be found in http:// www. rother. userw eb. mwn. de/ scf- predi 
ctor. html [25].

Fig. 5  Boxplot and probability 
plot of the relative errors for 
normal distribution—T-joint, 
load case 1 (tension)
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Fig. 6  Boxplot and probability 
plot of the relative errors for 
normal distribution—T-joint, 
load case 2 (bending)

Table 10  Statistical data of all evaluated parameter combinations, load case 1 (tension)

Load case 1 (tension) without root face

BRENFULL BRENSIMP HELLFULL HELLSIMP MONA TSUJ PRC ANN

Neglected results 39.62% 39.62% 39.62% 39.62% 54.53% 94.75% 3.6% 0%
Total number of used samples 1381 1381 1381 1381 1040 120 2204 2287
Mean −4.98% −6.46% −3.88% −6.46% −0.04% 0.90% −0.26% −0.06%
Standard deviation 2.90% 4.72% 1.48% 4.72% 1.91% 2.79% 1.79% 0.80%
1% quantile −11.68% −15.79% −7.84% −15.79% −2.59% −8.53% −4.28% −2.62%
10% quantile −9.06% −12.78% −5.73% −12.78% −2.01% −2.49% −2.13% −0.76%
Median −4.81% −6.46% −3.83% −6.46% −0.49% −1.02% −0.43% −0.04%
90% quantile −1.41% −0.35% −2.21% −0.35% 3.02% 3.80% 1.84% 0.59%
99% quantile 1.75% 4.54% 0.07% 4.54% 9.10% 8.09% 5.18% 2.29%
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6  Conclusion

Existing estimations of SCFs at the weld toe of transverse 
non-load carrying stiffeners have been compared to two 
new estimations using PRC and ANN. The comparison has 
been drawn on the basis of FEAs with respect to the maxi-
mum principal stress in the weld toe assuming plane strain 
condition.

PRC and ANN not only increase the ranges of validity of 
existing SCF formulae but also show improved predictive 
quality which is shown by lower scattering of the relative 
errors.

The proposed methods may be incorporated into a pro-
grammed solution for the fast estimation of SCFs. The new 
methods will be programmed and made available for the com-
munity by http:// rother. userw eb. mwn. de/ scf- predi ctor. html [25].

Table 11  Statistical data 
of all evaluated parameter 
combinations, load case 2 
(bending)

Load case 2 (bending) without root face

BRENFULL BRENSIMP MONA TSUJ PRC ANN

Neglected results 39.31% 39.31% 53.88% 94.76% 4.1% 0%
Total number of used samples 1391 1391 1057 120 2198 2292
Mean 12.86% −4.02% 5.98% −0.75% −0.47% 0.004%
Standard deviation 11.02% 6.25% 2.04% 4.70% 2.34% 0.39%
1% quantile −4.69% −14.31% 3.45% −11.88% −7.16% −1.29%
10% quantile −1.67% −11.53% 4.09% −5.07% −3.33% −0.47%
Median 12.32% −4.81% 5.40% −1.58% −0.44% −0.01%
90% quantile 28.57% 4.58% 9.09% 5.97% 2.51% 0.51%
99% quantile 42.40% 12.23% 23.12% 14.16% 8.45% 1.30%

Table 12  Regression formulae for PRC method for fully penetrated welds

k fk ck

K
f .p.

t,PRC,t,1
K

f .p.

t,PRC,t,2
K

f .p.

t,PRC,t,3
K

f .p.

t,PRC,b,1
K

f .p.

t,PRC,b,2
K

f .p.

t,PRC,b,3

1 1 −8.60483 −6.59428 −5.72123 −7.06393 −6.56684 −5.3789
2 α 0.154805 0.122145 0.107518 0.13486 0.121658 0.107623
3 t1 1.55803 0.301566 0.100052 2.05336 0.408816 0.14865
4 fa 2.19796 2.24764
5 α2 -0.000579344 −0.000454423 −0.000398838 −0.000512678 −0.000451622 −0.000413855
6 t2

1
−0.060623 −0.0028683 −0.000386015 −0.0824741 −0.00425806 −0.000529817

7 f 2
a

−0.579303 −0.569353
8 αt1 −0.00624203 −0.00116491 −0.000368296 −0.00910366 −0.00174477 −0.0006289
9 αfa −0.0129674 −0.0131744
10 t1fa 0.146999 0.0307963
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Table 13  Neural network data 
for full penetration joints, 
tension loading, ρ = 1.00mm xi,offset =

⎡⎢⎢⎢⎣

110.02500

5.20250

5.51750

0.10280

⎤⎥⎥⎥⎦
xi,gain =

⎡⎢⎢⎢⎣

0.04004

0.04467

0.04498

2.51256

⎤⎥⎥⎥⎦
yo, offset = 1.55949 yo, gain = 1.14896

b1 =

⎡
⎢⎢⎢⎢⎣

−2.63750

− 1.52428

− 0.48874

− 0.30838

− 2.93238

⎤⎥⎥⎥⎥⎦
b2 =

⎡
⎢⎢⎢⎢⎣

1.78577

− 1.20924

− 0.32212

− 1.14307

− 2.16028

⎤⎥⎥⎥⎥⎦
b3 =

⎡
⎢⎢⎢⎢⎣

1.96254

− 0.71252

− 0.13066

− 0.48033

1.08610

⎤⎥⎥⎥⎥⎦

b4 =  − 0.11368

W1 =

⎡
⎢⎢⎢⎢⎣

0.12471 −1.18246 −0.04909 0.03565

1.22835 0.12309 0.00658 0.01149

− 0.00449 0.28566 −0.46518 −0.77593

− 0.03089 −0.22904 0.01333 0.00489

0.09465 −0.22888 0.63831 0.21563

⎤⎥⎥⎥⎥⎦

W2 =

⎡
⎢⎢⎢⎢⎣

−0.41445 1.17610 −0.78883 −0.58004 0.38422

0.75332 0.43926 0.53550 0.79595 1.54875

− 1.16788 1.40932 −0.16843 −0.77458 −1.16229

− 1.34748 −0.63935 −0.00848 −1.02091 0.86437

− 0.49787 −0.94745 1.33462 0.36518 0.35820

⎤⎥⎥⎥⎥⎦

W3 =

⎡
⎢⎢⎢⎢⎣

−0.39408 −1.05253 0.92820 −0.99225 0.80445

0.49148 −1.34799 1.32417 −2.23282 0.50508

− 0.23179 0.61450 0.61442 0.96829 −0.11020

− 0.06170 −0.63832 1.63296 0.79919 0.46574

0.12877 0.96213 0.17480 −0.91970 −1.56047

⎤⎥⎥⎥⎥⎦
W4 =

[
−0.14984 −1.74079 1.67772 1.28830 1.20115

]

Table 14  Neural network data 
for full penetration joints, 
tension loading, ρ = 0.30mm xi,offset =

⎡⎢⎢⎢⎣

110.02500

1.62025

1.50925

0.10040

⎤⎥⎥⎥⎦
xi,gain =

⎡⎢⎢⎢⎣

0.04004

0.10887

0.10832

2.50250

⎤⎥⎥⎥⎦
yo, offset = 1.64436 yo, gain = 0.99020

b1 =

⎡
⎢⎢⎢⎢⎣

2.13081

− 1.25447

0.12572

1.53450

3.03466

⎤⎥⎥⎥⎥⎦
b2 =

⎡
⎢⎢⎢⎢⎣

−2.03300

1.44868

− 0.29829

1.07395

1.23545

⎤⎥⎥⎥⎥⎦
b3 =

⎡
⎢⎢⎢⎢⎣

1.88959

0.58858

− 0.05838

− 1.57365

2.03012

⎤⎥⎥⎥⎥⎦

b4 = 0.65926

W1 =

⎡
⎢⎢⎢⎢⎣

−1.71847 0.30526 −0.01004 −0.03836

0.14315 −0.99297 −0.00813 −0.00986

0.43550 0.08128 −0.01607 −0.02622

0.19476 −1.16424 0.10822 0.07762

− 0.09295 −0.87810 0.98216 1.60080

⎤⎥⎥⎥⎥⎦

W2 =

⎡
⎢⎢⎢⎢⎣

0.83447 −1.31102 −0.53128 0.58080 −1.43636

− 0.87178 0.53373 −0.40729 −1.09208 −0.10281

− 0.41707 −1.03699 0.50613 −0.36636 0.71042

0.88588 −0.75765 −0.39753 −1.88193 −1.02915

0.80325 0.09380 −1.66384 −0.21748 −0.53330

⎤⎥⎥⎥⎥⎦

W3 =

⎡
⎢⎢⎢⎢⎣

−1.06123 −0.18605 −2.00030 −0.07764 −1.29315

− 1.30634 0.96202 −1.92346 0.20636 −0.09881

0.29427 −1.66571 0.20669 0.95220 0.92256

− 0.66960 0.29632 −0.31867 −0.94652 0.65731

0.51903 0.92214 −1.04580 0.33136 −0.63867

⎤
⎥⎥⎥⎥⎦

W4 =
[
−1.70759 0.62563 −0.09762 −1.10884 −1.18112

]

763Welding in the World (2022) 66:753–766



1 3

Table 15  Neural network data 
for full penetration joints, 
tension loading, ρ = 0.05mm xi,offset =

⎡⎢⎢⎢⎣

110.02500

0.25238

0.25238

0.10040

⎤⎥⎥⎥⎦
xi,gain =

⎡⎢⎢⎢⎣

0.04004

0.42147

0.42232

2.50250

⎤⎥⎥⎥⎦
yo, offset = 7.88860E − 13 yo, gain = 0.47092

b1 =

⎡
⎢⎢⎢⎢⎣

1.38074

1.14626

0.25851

− 2.07276

− 1.35626

⎤⎥⎥⎥⎥⎦
b2 =

⎡
⎢⎢⎢⎢⎣

−1.91789

− 0.80858

0.19543

− 0.96326

− 2.12979

⎤⎥⎥⎥⎥⎦
b3 =

⎡
⎢⎢⎢⎢⎣

−1.96108

− 1.07827

0.18003

0.85566

2.04152

⎤⎥⎥⎥⎥⎦

b4 = 0.69596

W1 =

⎡
⎢⎢⎢⎢⎣

−1.08722 0.13071 −0.02262 0.00943

− 1.13488 −1.36691 −0.95868 0.51905

1.22694 0.37828 −0.62815 1.34176

− 0.01705 −1.16648 −0.03054 0.07017

− 0.68938 1.29152 −0.03971 −0.00535

⎤⎥⎥⎥⎥⎦

W2 =

⎡
⎢⎢⎢⎢⎣

0.38829 −0.05238 0.03802 −1.31242 0.19868

1.61804 0.10663 −0.14782 0.42953 0.74931

0.80894 0.36790 −0.19685 1.00284 −1.35807

− 0.52256 0.98236 0.44280 0.30795 −1.08856

− 1.07802 0.07905 −0.47301 −0.69965 1.19837

⎤⎥⎥⎥⎥⎦

W3 =

⎡
⎢⎢⎢⎢⎣

1.30471 −0.25925 0.65447 −0.24550 −1.20760

1.65298 0.00269 0.37120 0.36215 −0.98153

− 1.31203 −0.29506 0.03984 0.16727 0.81617

0.95156 −1.12236 −0.74351 −0.54731 −0.98864

1.02783 0.54741 −0.52435 −0.25411 0.80275

⎤⎥⎥⎥⎥⎦
W4 =

[
0.21386 0.90054 −1.07093 0.64049 −0.17511

]

Table 16  Neural network data 
for full penetration joints, 
bending loading, ρ = 1.00mm xi,offset =

⎡⎢⎢⎢⎣

110.02500

5.02250

5.02250

0.10040

⎤⎥⎥⎥⎦
xi,gain =

⎡⎢⎢⎢⎣

0.04016

0.04453

0.04449

2.50250

⎤⎥⎥⎥⎦
yo, offset = 1.64973 yo, gain = 0.80133

b1 =

⎡
⎢⎢⎢⎢⎣

1.63277

2.41333

− 0.64862

− 1.15707

2.09145

⎤⎥⎥⎥⎥⎦
b2 =

⎡
⎢⎢⎢⎢⎣

−1.75421

0.26660

1.82541

− 1.04391

2.75519

⎤⎥⎥⎥⎥⎦
b3 =

⎡
⎢⎢⎢⎢⎣

−1.17615

− 0.98811

− 0.08376

− 0.73649

2.39243

⎤⎥⎥⎥⎥⎦

b4 = 0.34003

W1 =

⎡
⎢⎢⎢⎢⎣

0.14817 0.71954 0.01606 −0.02038

− 2.24424 1.58089 0.23674 −0.31005

0.29852 0.14528 −0.00894 0.01092

− 0.00426 0.20859 −0.01434 0.00999

0.23577 −0.66331 0.93506 1.32037

⎤
⎥⎥⎥⎥⎦

W2 =

⎡
⎢⎢⎢⎢⎣

−0.69212 0.46098 −0.89220 −1.62336 −0.43720

− 1.29039 −0.06114 1.35085 −1.92079 0.07900

0.69252 −1.39025 −1.30864 −0.78577 0.31175

− 0.39087 −1.10350 0.40069 1.09288 0.21067

0.92240 0.75467 −0.90435 −0.73245 −0.32391

⎤⎥⎥⎥⎥⎦

W3 =

⎡
⎢⎢⎢⎢⎣

0.91787 2.13914 −0.25659 −0.18368 0.42503

0.97656 −0.53693 0.64571 −0.15607 −1.36993

− 1.26038 1.92501 −0.54514 1.14164 0.66525

− 1.00198 −1.06328 −0.47296 0.97266 0.94091

0.43214 0.33639 1.92539 0.57918 0.40035

⎤
⎥⎥⎥⎥⎦

W4 =
[
−1.14271 0.25950 −0.53340 2.34893 −0.04920

]
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Table 17  Neural network data 
for full penetration joints, 
bending loading, ρ = 0.30mm xi,offset =

⎡⎢⎢⎢⎣

110.07500

1.69425

1.65725

0.10120

⎤⎥⎥⎥⎦
xi,gain =

⎡⎢⎢⎢⎣

0.04008

0.10964

0.10909

2.50501

⎤⎥⎥⎥⎦
yo, offset = 1.70059 yo, gain = 0.67532

b1 =

⎡
⎢⎢⎢⎢⎣

2.07202

− 0.71703

0.86586

1.47502

1.74898

⎤⎥⎥⎥⎥⎦
b2 =

⎡
⎢⎢⎢⎢⎣

1.70881

− 0.75112

0.32752

− 0.49243

− 1.89602

⎤⎥⎥⎥⎥⎦
b3 =

⎡
⎢⎢⎢⎢⎣

1.77048

− 1.32134

0.24061

− 2.11095

− 1.58520

⎤⎥⎥⎥⎥⎦

b4 =  − 0.91851

W1 =

⎡
⎢⎢⎢⎢⎣

−0.65933 −0.28209 −0.01241 −0.14996

0.35745 0.03914 0.00299 0.01215

0.02481 0.31598 0.00294 −0.00191

0.18557 −0.33631 0.64000 0.64233

0.31851 −0.68371 0.96568 0.35313

⎤⎥⎥⎥⎥⎦

W2 =

⎡
⎢⎢⎢⎢⎣

−0.10760 0.56584 −1.98384 2.23201 −1.79552

1.21814 −1.08944 −1.24771 −1.67719 0.97521

− 0.06392 −0.80629 −0.84312 1.21709 −0.78558

− 0.43356 −2.06808 0.33505 −0.66776 −0.30975

− 0.26405 0.42376 −0.95184 −1.07987 −1.08719

⎤⎥⎥⎥⎥⎦

W3 =

⎡
⎢⎢⎢⎢⎣

0.52111 1.37444 −0.93052 −0.28999 −0.10442

0.25004 −0.74428 −0.56135 −0.59313 −0.24936

− 1.49478 −1.58103 2.08998 −0.30687 −0.19045

0.88150 2.14731 2.21917 −1.74421 0.84367

− 1.66846 −0.93697 1.89496 0.62419 −0.27932

⎤⎥⎥⎥⎥⎦
W4 =

[
−2.89344 −1.48079 1.30095 −1.34660 0.50663

]

Table 18  Neural network data 
for full penetration joints, 
bending loading, ρ = 0.05mm xi,offset =

⎡⎢⎢⎢⎣

110.02500

0.31412

0.27613

0.10040

⎤⎥⎥⎥⎦
xi,gain =

⎡⎢⎢⎢⎣

0.04004

0.42703

0.42445

2.50501

⎤⎥⎥⎥⎦
yo, offset = 1.73216 yo, gain = 0.52545

b1 =

⎡
⎢⎢⎢⎢⎣

−0.96940

1.89252

− 1.47518

− 0.43297

− 1.38961

⎤⎥⎥⎥⎥⎦
b2 =

⎡
⎢⎢⎢⎢⎣

−2.27294

0.26719

− 0.87922

− 0.03614

1.89663

⎤⎥⎥⎥⎥⎦
b3 =

⎡
⎢⎢⎢⎢⎣

−1.46064

0.26224

0.58167

0.22515

− 1.48161

⎤⎥⎥⎥⎥⎦

b4 =  − 0.09216

W1 =

⎡
⎢⎢⎢⎢⎣

0.37925 0.29004 −0.00542 0.00711

0.14026 1.20831 −0.00701 0.03851

− 0.14395 −0.06946 −0.36224 −1.00100

− 0.09965 0.79746 −0.02402 −0.00040

− 0.09612 −0.36752 −0.10713 −0.89858

⎤
⎥⎥⎥⎥⎦

W2 =

⎡
⎢⎢⎢⎢⎣

0.08752 −0.33646 −1.00848 1.52606 0.22927

− 0.86555 −1.37731 0.00143 0.94125 −0.11690

− 0.78633 0.93987 −2.03535 0.28000 2.04810

1.88640 1.16607 −1.62983 0.87690 0.34264

1.85637 −0.75186 −0.67911 −0.69471 0.63277

⎤⎥⎥⎥⎥⎦

W3 =

⎡
⎢⎢⎢⎢⎣

0.50921 −0.72167 0.33727 0.04485 1.68031

0.40941 1.42415 0.69389 0.42211 1.44612

− 1.36562 0.40229 −1.32157 −0.37417 0.66370

2.19644 0.45524 −0.15076 1.90735 −0.58971

− 1.07089 −0.18205 −1.13850 −0.31932 0.17478

⎤
⎥⎥⎥⎥⎦

W4 =
[
−0.47209 −0.71701 −1.31145 0.32785 −1.07983

]
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