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Abstract

Purpose Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be

technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability

and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D

image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy

of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method

for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a

feature-based multimodality registration method.

Methods A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the

pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated

visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected

based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The

method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus

non-optimised planes using manually segmented CT images and simulated (n = 9) or retrospective clinical (n = 1) EUS

landmarks.

Results The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared

with a non-optimised initialisation approach (p value < 0.01).

Conclusions The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures

may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical

setting.
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Introduction

Endoscopic ultrasound (EUS) is a minimally invasive tech-

nique to guide interventional procedures to evaluate and treat

pancreatobiliary disorders, including pancreatic cancer [1].

EUS provides a safe and effective means of identifying can-

cer and can be combined with fine needle aspiration (FNA)

cytology to provide a high level of sensitivity and specificity

[2].

During an EUS-guided procedure, an endoscope equipped

with an ultrasound (US) transducer and a video camera is

inserted and navigated through the gastrointestinal (GI) tract

to the stomach and duodenum from which the neighbour-

ing organs such as the pancreas, liver, and biliary ducts can
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be imaged. However, the small field-of-view, the variability

in pancreatobiliary anatomy and the lack of easily defin-

able landmarks make this procedure technically difficult to

perform and require skill in both endoscopy and US image

interpretation [3].

Multimodal registration of intra-procedure US with pre-

procedure images, such as computed tomography (CT) or

magnetic resonance (MR) scans, can improve the naviga-

tion to specific locations during image-guided procedures by

providing additional anatomical context [4,5]. Initialising the

MR/CT to US image registration, for example, by identifying

MR- or CT- visible anatomical landmarks on electromagnet-

ically tracked EUS planes [3,5–7], is critical for robust and

accurate registration. However, the relationship between the

initialisation-plane selection and registration robustness and

accuracy is complex and frequently unintuitive due to: (a)

the loss of 3D context in 2D EUS; (b) the limited number of

correspondent EUS/CT-visible anatomical point landmarks

available with which a registration can be performed; and (c)

the high dependency on operator skill and experience [8].

Therefore, pre-procedure simulation to identify anatomical

landmarks that are likely to be readily accessible in the EUS

field of view and will yield robust registration initialisations

may significantly reduce the time and complexity of this step,

whilst maximising the accuracy.

Although registration initialisation is common practice

in image registration systems, planning tools for optimis-

ing multimodal registration accuracy and robustness are

not widely available in interventional guidance systems and

do not currently exist for EUS-guided procedures. In this

paper, we present the first report of a method for simulating

the initialisation of a pre-procedure CT- to EUS registra-

tion scheme, based on landmarks-to-structure alignment of

anatomical landmarks. We identify the optimal position of

patient-specific EUS views in terms of enhancing registra-

tion accuracy and robustness by ensuring low variation in

intra-procedural registration accuracy.

Methods

Registrationmethod and initialisation

Landmark-based registration initialisation relies on identify-

ing corresponding landmarks on EUS and CT that represent

the upper abdominal anatomy of interest such as organs

(e.g. the liver and pancreas); blood vessels (e.g. the splenic

artery, splenic vein, and portal vein); and ducts (e.g. the

pancreatic duct and the ducts in the biliary tree). Due to

the loss of 3D contextual information on EUS, the task of

reliably identifying corresponding point landmarks is chal-

lenging, subjective, time-consuming and strongly depends

on the operator’s experience and skills [8]. Therefore, we

propose to align 2D EUS images and 3D pre-procedure

CT volumes using a rigid landmark-to-structure registration

method, wherein 3D structures (e.g. organ surfaces or ves-

sel/ductal centrelines) are defined on the CT images during

the planning stage and, instead of specifying a point-to-point

correspondence, the gastroenterologist needs only identifying

the corresponding CT-defined structure for each EUS land-

mark during the procedure. The use of landmark-to-structure

registration is in practice more feasible as, generally, finding

corresponding points requires more time than only defining

the structure (i.e. label) to which each point belongs.

Our approach uses a labelled CT volume where the struc-

tures are defined prior to the procedure. In theory, this

can be done manually or automatically [9]. Sophisticated

semi-automatic tools exist to accelerate manual image seg-

mentation for some applications, but manual segmentation is

still impractical for many clinical applications. For the pur-

poses of this study, we assume that a segmented CT (or MRI)

volume is available where relevant structures are labelled,

without placing any restrictions on how these data are gener-

ated. Using this labelled volume, we followed two different

strategies depending on the type of structure: (1) for organs,

we extracted the surface from the CT labelled volume (see

Sect. 3.2 for implementation details); (2) in the case of ves-

sels and ducts, given that the centre of the structure can be

easily identified in a 2D US image, we extracted the centre-

line using a parallel medial-axis thinning method [10]. Both

types of structures were represented as a point cloud as illus-

trated in Fig. 1.

During an EUS-guided procedure, a minimum of three

anatomical landmarks need to be manually identified by

the gastroenterologist in the EUS images by defining points

(i.e. clicking on the screen) and assigned to the correspond-

ing CT/MR structure. The registration method starts with

a stochastic initialisation assigning to each US landmark a

random point from the corresponding structure’s point cloud

and then iteratively refines the point correspondence. In each

iteration of refinement, as in the well-known iterative clos-

est point (ICP) algorithm, the method finds an overall rigid

transformation that minimises the root-mean-square (RMS)

distance between all EUS landmarks and their corresponding

point clouds.

Target registration error estimation

The accuracy of navigation depends on the registration ini-

tialisation, and thus, relies on the selection of anatomical

landmarks and the uncertainty on landmark localisation [11].

To evaluate plausible EUS plane positions and orientations

in 3D (determined by the pose of the transducer), and plausi-

ble sets of visible anatomical landmarks, we aim to estimate

the corresponding target registration error (TRE). Although

analytical approximations have been presented to estimate
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Fig. 1 Graphical representation of the planning method (see text for details)

the TRE in point-to-point or surface registration [11,12], the

use of centreline representations preclude their use. There-

fore, we estimated the TRE via a MC simulation of landmark

localisation error. Figure 1 shows a graphical representation

of the proposed method.

Our simulations are constrained to plausible EUS posi-

tions. Considering that the endoscope must be in contact with

the stomach wall or duodenum to ensure acoustic coupling

and obtain a good-quality US image during an EUS-guided

procedure, only positions on the surface of these two organs

should be considered candidates for registration. For this rea-

son, we used the vertices of the surfaces to sample possible

transducer positions during the procedure. From each ver-

tex, considering rotation about the three orthogonal axes,

sector view planes were sampled uniformly to simulate

views obtainable with an EUS transducer. These planes were

considered to be the ground truth for the purposes of the

experiments described in Sect. 3.

For each of the EUS view planes, the MC simulations of

landmark localisation error enable the estimation of a TRE.

Landmarks were automatically extracted depending on the

topology of the structure in question (i.e. a vessel/duct or

organ). We modelled the uncertainty in landmark localisa-

tion as an independent and isotropic Gaussian error with zero

mean. Only planes on which three or more features were

present were considered in the simulation to ensure that a

six-degree-of-freedom rigid transformation could be deter-

mined. Simulations were performed using the registration

method described in Sect. 2.1. The simulation was repeated

to estimate the distribution of TREs from all orientations that

contain the same set of features (see Sect. 3 for details).

For each simulation, we calculated two metrics: the TRE

between two planes and the TRE for a region of inter-

est. The TRE between two planes (i.e. ground truth and

registered plane) was quantified as the RMS error of the

Euclidean distances between each corresponding point on

the planes (i.e. between corresponding pixels) as follows:

TREplane =

√

1
n

∑n
i=1 d(gt i , r pi )

2, where n corresponds

to the number of points of the planes and d(gt i , r pi ) to

the 3D Euclidean distance between the i th point of the

ground truth plane gt and the i th point of the registered plane

rp. This provided an estimate of the accuracy of registra-

tion for a specific plane. The TRE for a region of interest

which may lay outside the EUS plane but may be of clini-

cal interest (i.e. lesion in the pancreas) was quantified as the

RMS error of the Euclidean distances between each corre-

sponding point on the surfaces of the structures as follows:

TREsurface =

√

1
m

∑m
i=1 d(si , rsi )

2, where m corresponds to

the number of vertices of the surface and d(si , rsi ) to the

3D Euclidean distance between the i th vertex of the surface

of interest s and the i th vertex of the registered surface of

interest rs. This second measure gives a better estimate of

the possible accuracy targeting a region of interest.
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Optimal EUS plane selection

To assist the gastroenterologist during planning of the pro-

cedure, we aim to determine the optimal planes likely to

produce a robust registration initialisation with a minimised

TRE. The mean and variance of TREs obtained from dif-

ferent simulations are both relevant measures to assess the

registration initialisation accuracy as a small estimated TRE

does not guarantee a robust initialisation with small vari-

ance. Therefore, as an alternative, we propose to minimise

the 90th percentile of TREs instead of the estimated mean

TRE. The 90th percentile can be interpreted as the estimated

upper bound of the nonparametric 90% prediction interval,

such that the optimised EUS plane will yield a 90% proba-

bility of achieving the 90th percentile TRE or lower [13]. We

believe that this is a more clinically informative measure for

procedure planning.

Furthermore, registration error depends on the landmark

localisation, which is difficult to generalise to other loca-

tions, especially locations distant to the plane, if only one

EUS plane is used to initialise registration. Therefore, we

investigated whether the addition of a second plane may

provide a more robust registration, by performing a sec-

ond MC simulation. For computational efficiency, pairs of

EUS planes were sampled using a Latin hypercube sam-

pling scheme [14], drawing from all possible pairs of planes

with at least three identifiable features in each plane. This

sampling scheme ensures that the randomly selected values

are uniformly distributed over all possible values. Landmark

localisation uncertainty was defined as described earlier in

Sect. 2.2. Additionally, in practice, the measured relative

position and rotation between planes may be subject to track-

ing errors. We modelled these as Gaussian errors added only

to the 3D position and orientation of the second plane (see

Sect. 3.2 for implementation details). Then, we registered

the pre-procedure point clouds to the automatically extracted

landmarks from each sampled EUS plane, again using the

same registration method described in Sect. 2.1 to evaluate

the difference in TRE due to using multiple planes. The opti-

mised planes were defined as the combination of planes that

yield the smallest 90th percentile of TREs.

The reported mean TREs and 90th percentiles for optimal

planes were re-estimated from a set of 1000 independent,

case-specific, simulations not used in the optimisation to

avoid bias in the TRE estimates. Furthermore, to mitigate

inter-subject variability, statistical tests were used to deter-

mine whether there was an improvement after adding a

second plane. In our statistical analysis, we did not use mul-

tiple comparison correction.

Experiments

Imaging and post-processing

The evaluation of the method was conducted on nine publicly

available, manually segmented CT volumes from the MIC-

CAI 2015 workshop and challenge: multi-Atlas labelling

beyond the cranial vault [15]. The volumes had variable vol-

ume sizes from 512 × 512 × 117 to 512 × 512 × 198 voxels,

variable pixel sizes from 0.59 × 0.59 to 0.98 × 0.98 mm,

and variable slice thicknesses from 2.5 to 3 mm. From the

labelled volumes, the following anatomical landmarks were

available: organs (stomach, pancreas, liver, gallbladder and

left kidney) and vessels (aorta, inferior vena cava, portal vein

and splenic vein). The duodenum was not available in this

dataset.

The feasibility of performing the proposed registration

initialisation on clinical data was evaluated retrospectively

using data from a 62-year-old female patient who underwent

an EUS-guided exploration with FNA. The procedure was

performed at University College London Hospital (UCLH)

with a Hitachi Preirus EUS console and a Pentax EG-

3270UK endoscope with a frequency of 7.5 MHz. During

the procedure, approximately 20 min of untracked US data

was recorded with a frame resolution of 720 × 576 pixels

and a frame rate of 25 frames per second. Two EUS frames

were identified with clear corresponding landmarks localised

by two clinical research fellows (LU and GK), confirmed

by an experienced consultant gastroenterologist (SP). The

region of the stomach (from the pre-procedure CT 3D model)

from which the EUS frames were taken was identified by the

gastroenterologist and used as a ground truth. In the first

frame, using a depth of 4 cm, six landmarks were identified

in both CT and US (the pancreatic duct, the splenic vein,

the mesenteric vein, the portal vein, and the confluence of

the three veins and the common bile duct) with a pixel size

of 0.12 × 0.11 mm (see Fig. 2). In the second frame, four

landmarks were identified in both CT and EUS (the pancre-

atic duct, the bile duct, the superior mesenteric artery and

the superior mesenteric vein) with a depth of 6 cm and a

pixel size of 0.18 × 0.16 mm (see Fig. 3). The pre-procedure

CT had a volume size of 512 × 512 × 229 voxels with a

pixel size of 0.55 × 0.55 mm with a slice thickness of 1 mm.

The following labels were extracted automatically using a

deep learning approach for multi-organ abdominal segmen-

tation [9] and manually corrected: spleen, right kidney, left

kidney, gallbladder, oesophagus, liver, stomach, duodenum

and pancreas. Additionally, the following EUS-visible labels

were manually segmented: the pancreatic duct, the bile duct,

the aorta, the vena cava, the splenic vein, the ampulla, the

mesenteric vein and artery, the portal vein and the conflu-

ence of portal vein with mesenteric vein and splenic vein and

the right adrenal gland.
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Fig. 2 EUS frame and the corresponding CT slice (ground truth) for the first frame of the patient case with the following landmarks: pancreatic

duct (orange), bile duct (purple), portal vein (yellow), mesenteric vein (green), splenic vein (red) and confluence of the three veins (blue)

Fig. 3 EUS frame and the corresponding CT slice (ground truth) for the second frame of the patient case with the following landmarks: bile duct

(green), pancreatic duct (blue), superior mesenteric vein (red) and superior mesenteric artery (yellow)

Implementation details

To perform the MC simulations, we used a custom-written

software implemented in MATLAB (MathWorks, Natick,

USA). The isosurfaces of the organs and vessels were

extracted from the labelled CT images. To reduce the com-

putational burden, the number of faces on the stomach was

reduced such that the average number of vertices was 2638

with an averaged distance between vertices of 5.33 mm,

corresponding to approximately half the width of the EUS

transducer. The simulated EUS slice sampled from a CT had

a view angle of 120◦ with a scanning depth of 5 cm, equiva-

lent to standard clinical EUS transducers. For each position,

planes within a range of [− 60, 60]◦ with a 20◦ step rotation

in the three orthogonal axes to the normal of the vertex were

considered to simulate physically achievable planes. There-

fore, a total of 125 planes were generated for each vertex of

the stomach surface and, if available, the duodenum.

The automatically extracted landmarks from vessels cor-

responded to the feature centroid (i.e. centre of mass) with

an added localisation error with a normal distribution of

N (0, 1
3
( 1

2
(w+h)

2
I ), where I is the identity matrix, and w and

h correspond to the width and height of the bounding box

defining the region of the feature visible in the plane, respec-

tively. For organs, the point closest to the mean of all points on

the boundary segment visible in the US plane was automati-

cally extracted with an estimated localisation error sampled

from a Gaussian distribution N (0, σ I ), where σ = 2 mm.

Features with cross-sectional areas less than 5 mm2 were

discarded, as a gastroenterologist would be unable to clearly

identify them on EUS images and CT [3]. For each individual

plane, 1000 simulations were performed with samples from

123



880 International Journal of Computer Assisted Radiology and Surgery (2018) 13:875–883

landmark localisation. For two planes, Gaussian errors with

σ = 0.4 mm and σ = 0.36◦ were added to the transducer

position and rotation of the second plane, respectively, based

on accuracy measurements reported in flexible endoscopes

[16]. In this case, twice the number of vertices (stomach sur-

face) were sampled and 100 simulations were performed for

each pair of planes.

Results

Using the nine labelled CT volumes, we performed three

comparisons: (a) the result of an optimised plane selection

compared to an alternative with a randomly selected plane

with at least three landmarks representing a non-optimised

approach, (b) the optimised plane compared to planes with

the same landmark composition (i.e. the same number of

ducts/vessels and same number of organs, as anatomical land-

marks) to investigate the dependency of the registration error

on the ultrasound image pose as opposed to the landmark

composition and (c) the result of using one optimised plane

compared to a pair of optimised planes. With a quadratic

complexity due to the use of ICP, registration of each plane

took an average of 47 ms (using an Intel Xeon CPU E5-1607).

The estimated 90th percentile TREs map of the stomach

for each of the nine subjects is illustrated in Table 1. The TRE

distributions at the EUS plane and in the pancreas and the

90th percentile TREs are also summarised in Table 1, for the

one- and two-EUS-plane registrations. We also include the

EUS plane TRE metrics, using the randomly selected planes

(i.e. a non-optimised approach), and with the same landmark

composition with respect to different poses, in terms of mean

and standard deviation (SD).

At a patient level, a Wilcoxon rank-sum test showed a

significant difference in median TREs between one and two

optimised planes (all p values < 0.03). Paired student’s t

tests showed a significant difference between the optimised

and non-optimised planes (p value < 0.01), and between

optimised planes and planes with the same landmark com-

position (p value < 0.01), as well as a significant difference

between one- and two-plane TREs calculated on the pancreas

(p value < 0.01).

Additionally, we modelled the effect of landmark com-

position on the 90th percentile TRE as a multiple linear

regression with two factors: the number of ducts and the

number of organs. Under this model, the 90th percentile

TRE decreased by 8.47 mm per additional duct landmark

and 9.10 mm per organ landmark. The within-group stan-

dard deviation of the 90th percentile TRE from different

poses after accounting for the number and composition of

landmarks was 16 mm. These results suggest that both the

landmark composition and the specific pose are important

factors to determine the accuracy.

In the second experiment, we assessed the feasibility of

the method by analysing the retrospective data taken during

the EUS-guided pancreas intervention. The 90th percentile

TRE map of the stomach and duodenum of the patient, the

mean TREs, 90th percentile TRE and TRE in the pancreas

for both simulated and obtained with the real EUS frame

are summarised in Table 2. Note that since it is a retro-

spective study, the optimal US frames were not available.

The distribution of TRE and the 90th percentile TRE both

had a skewed distribution along right tale (skewness = 2.38

and 0.72, respectively). Furthermore, we used the retrospec-

tive data to evaluate the correlations between the number

and types of landmarks and the 90th percentile TRE using

the Pearson’s linear correlation coefficient (CC) considering

all vertices. Overall, the number of landmarks was corre-

lated with the 90th percentile TRE with a CC of −0.71. The

number of ducts and vessels was correlated with the 90th per-

centile TRE with a CC of −0.68 and the number of organs

with a CC of −0.10.

Discussion

This work proposes a planning tool for image-guided EUS

therapy to the pancreas. We propose to (1) use a landmarks-

to-structure rigid registration method to relax the dependency

on landmark selection and localisation; (2) predict the TRE

on the surface of the stomach and the duodenum (if available)

via MC simulations; and (3) use the 90th percentile of TREs

to determine optimal EUS frames for a robust and accurate

registration.

Results suggest that optimised planes can potentially

provide a more robust registration in terms of TRE com-

pared to a non-optimised approach and compared to planes

with the same landmark composition but a different pose.

Additionally, using two planes can also provide a better reg-

istration accuracy in regions of interest such as the pancreas.

The estimated accuracy of registration can also inform the

gastroenterologist’s decision whether one or two EUS ini-

tialisation planes should be used, where these planes should

be located and what TRE can be expected with high confi-

dence.

The evaluation in a clinical setting was performed using

retrospective data, where the optimal plane was not avail-

able. The purpose of this experiment was to demonstrate the

feasibility and application of the method in a real clinical sce-

nario. Although with the limited data available, a rigorous

validation of the TRE estimation was not possible, results

showed differences between the predicted plane TRE and

the calculated TRE. Based on our observations, we suspect

this was in part due to the number of landmarks that were

automatically identified from the CT, which were not visi-

ble on EUS images (Fig. 2), and may also be attributed to
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Table 1 Mean and 90th percentile of TREs (±SD) in mm for nine cases

with one and two optimised planes (TRE±SD, 90th p.), the expected

mean plane TRE of a non-optimised approach (Non-opt.), the TRE when

using the same landmark composition (Comp. TRE) and the expected

mean TRE (±SD) on the vertices of the pancreas (Pancreas)

Case 1 Case 2 Case 3 Case 4 Case 5

90th p. TREs

TRE±SD 1p. 7.52 ± 2.92 6.47 ± 2.56 8.27 ± 1.86 6.30 ± 2.39 5.79 ± 1.95

90th p. 1p. 11.27 8.99 10.50 9.60 8.57

Pancreas 1p. 16.93 ± 8.57 10.88 ± 5.34 14.99 ± 9.89 18.28 ± 8.36 10.61 ± 5.45

Non-opt. 1p. 49.75 ± 19.99 41.16 ± 17.03 46.19 ± 18.95 47.63 ± 19.57 43.20 ± 16.81

Comp. TRE 35.88 ± 11.98 27.73 ± 11.26 24.43 ± 8.07 17.48 ± 4.14 7.85 ± 2.21

Opt. planes

TRE±SD 2p. 5.92 ± 2.36 4.91 ± 1.96 5.41 ± 2.50 4.71 ± 1.94 5.57 ± 1.39

90th p. 2p. 8.63 7.26 7.54 7.06 7.37

Pancreas 2p. 9.31 ± 3.90 5.49 ± 2.65 5.72 ± 1.84 6.22 ± 2.71 8.66 ± 1.60

Non-opt 2p. 20.76 ± 10.8 20.54 ± 14.30 24.50 ± 17.09 28.39 ± 18.91 26.52 ± 15.76

Case 6 Case 7 Case 8 Case 9

90th p. TREs

TRE±SD 1p. 10.64 ± 4.61 9.49 ± 2.78 7.67 ± 2.6 9.53 ± 1.91

90th p. 1p. 16.95 12.73 10.99 11.54

Pancreas 1p. 21.76 ± 10.35 16.46 ± 7.87 15.35 ± 7.21 18.67 ± 4.99

Non-opt 1p. 21.98 ± 24.66 38.72 ± 21.20 43.72 ± 23.18 42.13 ± 15.94

Comp. TRE 15.58 ± 8.34 30.36 ± 15.44 23.13 ± 10.13 10.71 ± 2.82

TRE±SD 2p. 6.09 ± 1.23 5.15 ± 2.49 4.58 ± 1.55 4.54 ± 1.56

90th p. 2p. 7.30 8.93 6.95 6.58

Pancreas 2p. 6.62 ± 1.86 4.63 ± 1.68 5.42 ± 1.81 5.98 ± 2.09

Non-opt 2p. 25.45 ± 19.31 21.56 ± 16.14 17.32 ± 15.67 22.32 ± 14.59

White regions on the wireframe mesh of the stomach correspond to positions where fewer than three features were identifiable. The 90th percentile

TREs map corresponds to the simulation with one single ultrasound plane

our conservative overestimate of landmark uncertainty for

segmentation-defined landmarks, which was higher than the

manual variation (Fig. 3). Both issues could be solved using

more accurate models of the landmark distributions on the

sector-plane view and are interesting subjects of future inves-

tigation.

Our sector-view-plane simulation approach could be

applied in a variety of EUS-landmark-based registrations. In

this work, we registered the US frames to the pre-procedural

CT using an ICP method, as it is widely known and used

for multimodal registration initialisation [5,8]. Other algo-

rithms, such as robust ICP [17,18], have a similar unintuitive

relationship between plane selection and TRE and therefore

could also benefit from these simulations.

Abdominal CT organ segmentation uncertainty could

affect simulation results in multiple ways. First, different

segmentation errors could yield different optimal planes

and TREs. This is expected and not a problem because

the same segmentation is used for planning and intra-

procedural guidance, and different segmentations may, in
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Table 2 Mean and 90th

percentile of TREs (in mm) and

the expected TRE at the surface

of the pancreas for the two US

frames obtained from a patient

case

90th percentile TRE map of the stomach

Frame 1 Frame 2

Simulated

TRE±SD plane 11.55 ± 3.60 23.08 ± 5.09

90th p. TRE plane 16.76 29.17

TRE±SD pancreas 65.76 ± 28.07 127.58 ± 34.57

US frame

TRE±SD plane 8.87 ± 1.82 13.27 ± 5.76

90th p. TRE plane 11.03 21.60

TRE±SD pancreas 65.77 ± 12.36 62.28 ± 42.91

fact, require different initialisation planes. Second, seg-

mentation uncertainty can increase the effective landmark

localisation uncertainty. Our simulations include a model

of the distribution of the EUS-localised landmarks li on

the simulated sector views, represented as a distribution

of offsets oi = li − si from segmentation-defined points,

si . In Sect. 2.2, we modelled the EUS landmark localisa-

tion distribution relative to EUS-defined ground truth points,

ei . If segmentation uncertainty induces variability in the

segmentation-defined points, si , then the distribution of off-

sets between EUS-defined and segmentation-defined points

[i.e. oi = li − si = (li − ei ) + (ei − si )] is the sum of

the two distributions, which in general will have a larger

magnitude and could be modelled in future simulations. On

the other hand, considering organ deformation requires a

robust non-rigid registration method, which, to the best of

our knowledge, has not been proposed yet for the applica-

tion of interest. This could also reduce the potential limitation

such as availability of landmarks during the procedure caused

by out-of-plane rotation. The robustness of the planes could

be further evaluated by assessing different distributions for

modelling the uncertainties. However, for the purposes of this

study, some simplifications such as using Gaussian distribu-

tions with zero mean, were needed to show and demonstrate

the feasibility of the method.

In this proof-of-concept work, we used the TRE between

the registered and ground truth plane as a measure of registra-

tion accuracy for optimisation. Regions of clinical interest,

such as a target lesion or an anatomical structure that lies far

from the optimised plane, may of course be registered with a

different TRE (e.g. pancreas in Table 1) and compromise the

accuracy of the navigation in that area. In this case, the mean

pancreas TRE was typically larger than the mean EUS-plane

TRE, by 95% for the one-plane registration and by only 23%

for the two-plane registrations. When specific clinical targets

are defined before the procedure, the methodology described

could be easily adopted to directly minimise the TRE on the

clinical target (estimated to be useful with an accuracy within

5 cm) yielding a patient-and-procedure-specific plan.

Conclusion

This work proposes a planning method for endoscopic pro-

cedures involving the gastrointestinal tract with the aim to

improve the navigation accuracy during EUS procedures.

In conclusion, results show that optimised planes provide

a more robust initialisation and that there is a time–accuracy

trade-off in opting to use one or two planes for registration

initialisation. We evaluated the use of the method in a clinical

setting retrospectively using US images from a EUS case.

Future work will include more patient data to further

assess the proposed method in a clinical environment for

EUS-guided procedures.
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