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ABSTRACT  

A drawback of the error-back propagation algorithm for a multilayer feed forward neural network is over 

learning or over fitting. We have discussed this problem, and obtained necessary and sufficient Experiment 

and conditions for over-learning problem to arise. Using those conditions and the concept of a 

reproducing, this paper proposes methods for choosing training set which is used to prevent over-learning. 

For a classifier, besides classification capability, its size is another fundamental aspect. In pursuit of high 

performance, many classifiers do not take into consideration their sizes and contain numerous both 

essential and insignificant rules. This, however, may bring adverse situation to classifier, for its efficiency 

will been put down greatly by redundant rules. Hence, it is necessary to eliminate those unwanted rules. 

We have discussed various experiments with and without over learning or over fitting problem.  
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1. INTRODUCTION TO NEURAL NETWORK  

Artificial Neural Network (ANN) is a computational model, which is based on Biological Neural 
Network. Artificial Neural Network is often called as Neural Network (NN). To build artificial 
neural network, artificial neurons, also called as nodes, are interconnected. The architecture of 
NN is very important for performing a particular computation. Some neurons are arranged to take 
inputs from outside environment. These neurons are not connected with each other, so the 
arrangement of these neurons is in a layer, called as Input layer. All the neurons of input layer are 
producing some output, which is the input to next layer. The architecture of NN can be of single 
layer or multilayer. In a single layer Neural Network, only one input layer and one output layer is 
there, while in multilayer neural network, there can be one or more hidden layer.  
 
An artificial neuron is an abstraction of biological neurons and the basic unit in an ANN. The 
Artificial Neuron receives one or more inputs and sums them to produce an output. Usually the 
sums of each node are weighted, and the sum is passed through a function known as an activation  
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or transfer function. The objective here is to develop a data classification algorithm that will be 
used as a general-purpose classifier. To classify any database first, it is required to train the 
model. The proposed training algorithm used here is a Hybrid BP-GA. After successful training 
user can give unlabeled data to classify  
 
The synapses or connecting links: that provide weights, wj, to the input values, xj for j = 1 ...m;  
An adder: that sums the weighted input values to compute the input to the activation function 

 
Where,  
w0 is called the bias, is a numerical value associated with the neuron. It is convenient to think of 

the bias as he weight for an input x0 whose value is always equal to one, so that; 

 

An activation function g: that maps v to g(v) the output value of the neuron. This function is a 

monotone function. The logistic (also called the sigmoid) function g(v) = (e
v
/(1+e

v
)) as the 

activation function works best. The practical value of the logistic function arises from the fact that 
it is almost linear in the range where g is between 0.1 and 0.9 but has a squashing effect on very 
small or very large values.  

2. INTRODUCTION TO OVER LEARNING  

Over learning (in Neural Networks): When an iterative training algorithm is run, over fitting 
which occurs when the algorithm is run for too long (and the network is too complex for the 
problem or the available quantity of data).  
 
Over parameterized Model: An over parameterized model uses the indicator variable approach to 
represent effects for categorical predictor variables in general linear models and generalized 
linear models. To illustrate indicator variable coding, suppose that a categorical predictor variable 
called Gender has two levels (i.e., Male and Female). A separate continuous predictor variable 
would be coded for each group identified by the categorical predictor variable. Females might be 
assigned a value of 1 and males a value of 0 on a first predictor variable identifying membership 
in the female Gender group, and males would then be assigned a value of 1 and females a value 
of 0 on a second predictor variable identifying membership in the male Gender group.  
 

Over-Learning and Generalization  
 
One major problem with the approach outlined above is that it doesn't actually minimize the error 
that we are really interested in - which is the expected error the network will make when new 
cases are submitted to it. In other words, the most desirable property of a network is its ability to  
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generalize to new cases. In reality, the network is trained to minimize the error on the training set, 
and short of having a perfect and infinitely large training set, this is not the same thing as 
minimizing the error on the real error surface - the error surface of the underlying and unknown 
model (see Bishop, 1995).  
 
The most important manifestation of this distinction is the problem of over-learning, or over-
fitting. It is easiest to demonstrate this concept using polynomial curve fitting rather than neural 
networks, but the concept is precisely the same.  
 
A polynomial is an equation with terms containing only constants and powers of the variables.  
 
For example:  

y=2x+3  
y=3x2+4x+1  

 
Different polynomials have different shapes, with larger powers (and therefore larger numbers of 

terms) having steadily more eccentric shapes. Given a set of data, we may want to fit a 

polynomial curve (i.e., a model) to explain the data. The data is probably noisy, so we don't 

necessarily expect the best model to pass exactly through all the points. A low-order polynomial 

may not be sufficiently flexible to fit close to the points, whereas a high-order polynomial is 

actually too flexible, fitting the data exactly by adopting a highly eccentric shape that is actually 

unrelated to the underlying function. See illustration below. 

 

Neural networks have precisely the same problem. A network with more weights models a more 
complex function, and is therefore prone to over-fitting. A network with less weight may not be 
sufficiently powerful to model the underlying function. For example, a network with no hidden 
layers actually models a simple linear function.  
 
How then can we select the right complexity of network? A larger network will almost invariably 
achieve a lower error eventually, but this may indicate over-fitting rather than good modelling.  
 
The answer is to check progress against an independent data set, the selection set. Some of the 
cases are reserved, and not actually used for training in the back propagation algorithm. Instead, 
they are used to keep an independent check on the progress of the algorithm. It is invariably the 
case that the initial performance of the network on training and selection sets is the same (if it is 
not at least approximately the same, the division of cases between the two sets is probably 
biased). As training progresses, the training error naturally drops, and providing training is 
minimizing the true error function, the selection error drops too. However, if the selection error 
stops dropping, or indeed starts to rise, this indicates that the network is starting to overfit the  
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data, and training should cease. When over-fitting occurs during the training process like this, it is 
called over-learning. In this case, it is usually advisable to decrease the number of hidden units 
and/or hidden layers, as the network is over-powerful for the problem at hand. In contrast, if the 
network is not sufficiently powerful to model the underlying function, over-learning is not likely 
to occur, and neither training nor selection errors will drop to a satisfactory level.  
 

The problems associated with local minima, and decisions over the size of network to use, imply 
that using a neural network typically involves experimenting with a large number of different 
networks, probably training each one a number of times (to avoid being fooled by local minima), 
and observing individual performances. The key guide to performance here is the selection error. 
However, following the standard scientific precept that, all else being equal, a simple model is 
always preferable to a complex model, you can also select a smaller network in preference to a 
larger one with a negligible improvement in selection error.  
 
A problem with this approach of repeated experimentation is that the selection set plays a key role 
in selecting the model, which means that it is actually part of the training process. Its reliability as 
an independent guide to performance of the model is therefore compromised - with sufficient 
experiments, you may just hit upon a lucky network that happens to perform well on the selection 
set. To add confidence in the performance of the final model, it is therefore normal practice (at 
least where the volume of training data allows it) to reserve a third set of cases - the test set. The 
final model is tested with the test set data, to ensure that the results on the selection and training 
set are real, and not artifacts of the training process. Of course, to fulfill this role properly the test 
set should be used only once - if it is in turn used to adjust and reiterate the training process, it 
effectively becomes selection data!  
 
This division into multiple subsets is very unfortunate, given that we usually have less data than 
we would ideally desire even for a single subset. We can get around this problem by resampling. 
Experiments can be conducted using different divisions of the available data into training, 
selection, and test sets. There are a number of approaches to this subset, including random 
(monte-carlo) resampling, cross-validation, and bootstrap. If we make design decisions, such as 
the best configuration of neural network to use, based upon a number of experiments with 
different subset examples, the results will be much more reliable. We can then either use those 
experiments solely to guide the decision as to which network types to use, and train such 
networks from scratch with new samples (this removes any sampling bias); or, we can retain the 
best networks found during the sampling process, but average their results in an ensemble, which 
at least mitigates the sampling bias. 
 
To summarize, network design (once the input variables have been selected) follows a number of 
stages:  
• Select an initial configuration (typically, one hidden layer with the number of hidden units set to 

half the sum of the number of input and output units).  
• Iteratively conduct a number of experiments with each configuration, retaining the best network 

(in terms of selection error) found. A number of experiments are required with each 
configuration to avoid being fooled if training locates a local minimum, and it is also best to 
resample.  
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• On each experiment, if under-learning occurs (the network doesn't achieve an acceptable 

performance level) try adding more neurons to the hidden layer(s). If this doesn't help, try 
adding an extra hidden layer.  

• If over-learning occurs (selection error starts to rise) try removing hidden units (and possibly 
layers).  

• Once you have experimentally determined an effective configuration for your networks, 
resample and generate new networks with that configuration.  

 
 

3. EXPERIMENTS AND RESULTS 

 
 

1. Experiment No. 1 : No of Input Neurons: 2, No of Hidden Neurons: 7, No of Output Neurons: 1  
 

 
 

Fig. 1 Training with Number of Hidden Neurons: 7  

 

The above mention figure shows the Learning cycle of XOR Problem with 118 epochs. Initially 
we have tested the problem with the l-m-n configuration of Neural network is [2-7-1], which is 
some what higher number of hidden neurons. After the training session we get the training error 
is 0.01848 and minimum is 0.003346.As soon as training goes on we get higher number of error. 
The same experiment has been done with the KDD CUP’99 data for Training purpose with more 
than 600 records and more than 17 columns which is discussed in later section.  
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2. Experiment No. 2 : No of Input Neurons: 2, No of Hidden Neurons: 5, No of Output Neurons: 1  
 

 
 

Fig. 2 Training with Number of Hidden Neurons: 5  

Figure 2 shows the learning process of same problem with 5 hidden neurons. As a comparison with 
previous experiment , it is quit better. We have reduced the number of errors.  

 

3. Experiment No. 3 : No of Input Neurons: 2 ,No of Hidden Neurons: 4, No of Output Neurons: 1  
 

 
 

Fig 3.Training with Number of Hidden Neurons: 4  

The Figure 3 shows the learning process of same problem with 4 hidden units also getting better result in 
terms of error.  
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4. Experiment No. 4 : No of Input Neurons: 2, No of Hidden Neurons: 3, No of Output Neurons: 1  
 

 
 

Fig 4.Training with Number of Hidden Neurons: 3 . 

 

Figure 4 shows the learning progress with 3 hidden neurons and we are getting maximum error 0.01774 
and minimum error is 0.00327 which is good as compare to previous experiment. As soon as we increase 
number of hidden neurons the over fitting problem get started. So let’s see the result by reducing one more 
hidden neuron.  
 
5. Experiment No. 5 : No of Input Neurons: 2, No of Hidden Neurons: 3, No of Output Neurons: 1  
 

 
 

Fig 5.Training with Number of Hidden Neurons: 2  
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The above figure show the training session with number of hidden neurons is 2. We have reduced the 
Maximum error but also increased minimum error but as a average error rate this is better. 
 
  

TABLE I 
TRAINING WITH NUMBER OF HIDDEN NEURONS: 2 

Changes in Number of Hidden Neurons  

No of Hidden Nodes  Max Training  Avg  Min  

7  0.0184  0.0099  0.0033  

5  0.0158  0.0096  0.00505  

4  0.0174  0.0098  0.0038  

3  0.0177  0.0096  0.0032  

2  0.0143  0.0089  0.00531  

 

The Above table show the summary of five experiments which is discussed above. The over 
learning start with some of weakness of Architecture of Network so to solve over learning / over 
fitting problem, specially in neural network we have to modify the hidden layer structure.  
Here we have taken Intrusion Detection Data Set (KDD CUP 99) for training purpose. We took 
more than 600 rows for the training purpose. It contains 16 data column.  
 
Data Set Details:  

No of Rows: 600.  
No of Column: 16  
Class Label Attribute: Attack_Type  

 

Other Attribute Name:  
Duration,Protocol(udp),Protocol(icmp),Protocol(tcp),Service(IRC),Service(X11),Service(private)
,Service(telnet),Service(auth),Service(SMTP),Service(eco_i),Service(http),src_bytes(S1),src_byte
s(S3),src_bytes(RSTR),src_bytes(SF),dst_bytes,Flags,Lands,wrong_fragment,urgent,HOT,num_f
ailed_logins,logged_in, 
num_access_files,num_outbound_cmds,is_hot_login,is_guest_login,Curr_Conn,serror_rate,rerror

_rate,same_srv_rate,diff_srv_rate,srv_count,srv_serror_rate,srv_rerror_rate,srv_diff_host
_rate 

 

 
 

Fig. 6 MSR vs. Epoch for Hidden Neurons 10  
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The above figure shows the progress report of MSE with various numbers of epochs with hidden neurons 

10. Below table show the experiment based on above figure. 

 
TABLE II 

TRAINING WITH NUMBER OF HIDDEN NEURONS: 2 
 

 
 
 

 
 

Fig. 7 MSR vs. Epoch for Hidden Neurons 10  

The above figure shows the progress report of MSE with various numbers of epochs with hidden neurons 
10. Below table show the experiment based on above figure. 

 
TABLE III 

TRAINING WITH NUMBER OF HIDDEN NEURONS: 2 
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Fig. 8 MSR vs. Epoch for Hidden Neurons 7  

The above figure shows the progress report of MSE with various numbers of epochs with hidden neurons 
10. Below table show the experiment based on above figure.  
 

TABLE IV  
TRAINING WITH NUMBER OF HIDDEN NEURONS: 2 

 

 
 

Over learning and over fitting that depend upon the neural network architecture. If data is noisy 
that time neural network will not train properly. So that we have to go for Data Pre-processing. 
And if data is not getting train or network enter in to over learning state that time we have to 
reduce one hidden neurons of one hidden layer. If we don’t get solution for over learning that 
time we have to reduced one hidden layer from the neural network architecture.  

4. CONCLUSION  

To overcome problem like over Learning or over fitting we have to modify the (l-m-n) 
configuration of Neural Network. For any classifier it is very important that it learn properly. 
Because of weak architecture or configuration of neural network, classifier may not learn because 
of over learning. So over learning or over fitting problem get started. By following the above 
steps we can resolve the over learning or over fitting problem.  
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