
International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

DOI : 10.5121/ijsc.2011.2204 40

 DETERMINATION OF OVER-LEARNING

AND OVER-FITTING PROBLEM IN BACK

PROPAGATION NEURAL NETWORK

Gaurang Panchal
1
, Amit Ganatra

2
, Parth Shah

3
, Devyani Panchal

4

Department of Computer Engineering, Charotar Institute of Technology (Faculty of
Technology and Engineering), Charotar University of Science and Technology, Changa,

Anand-388 421, INDIA
1gaurangpanchal.ce@ecchanga.ac.in

2amitganatra.ce@ecchanga.ac.in
3parthshah.ce@ecchanga.ac.in

4devyanipanchal.it@ecchanga.ac.in

ABSTRACT

A drawback of the error-back propagation algorithm for a multilayer feed forward neural network is over

learning or over fitting. We have discussed this problem, and obtained necessary and sufficient Experiment

and conditions for over-learning problem to arise. Using those conditions and the concept of a

reproducing, this paper proposes methods for choosing training set which is used to prevent over-learning.

For a classifier, besides classification capability, its size is another fundamental aspect. In pursuit of high

performance, many classifiers do not take into consideration their sizes and contain numerous both

essential and insignificant rules. This, however, may bring adverse situation to classifier, for its efficiency

will been put down greatly by redundant rules. Hence, it is necessary to eliminate those unwanted rules.

We have discussed various experiments with and without over learning or over fitting problem.

KEYWORDS

Neural Network, learning, Hidden Neurons, Hidden Layers

1. INTRODUCTION TO NEURAL NETWORK

Artificial Neural Network (ANN) is a computational model, which is based on Biological Neural
Network. Artificial Neural Network is often called as Neural Network (NN). To build artificial
neural network, artificial neurons, also called as nodes, are interconnected. The architecture of
NN is very important for performing a particular computation. Some neurons are arranged to take
inputs from outside environment. These neurons are not connected with each other, so the
arrangement of these neurons is in a layer, called as Input layer. All the neurons of input layer are
producing some output, which is the input to next layer. The architecture of NN can be of single
layer or multilayer. In a single layer Neural Network, only one input layer and one output layer is
there, while in multilayer neural network, there can be one or more hidden layer.

An artificial neuron is an abstraction of biological neurons and the basic unit in an ANN. The
Artificial Neuron receives one or more inputs and sums them to produce an output. Usually the
sums of each node are weighted, and the sum is passed through a function known as an activation

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

41

or transfer function. The objective here is to develop a data classification algorithm that will be
used as a general-purpose classifier. To classify any database first, it is required to train the
model. The proposed training algorithm used here is a Hybrid BP-GA. After successful training
user can give unlabeled data to classify

The synapses or connecting links: that provide weights, wj, to the input values, xj for j = 1 ...m;
An adder: that sums the weighted input values to compute the input to the activation function

Where,
w0 is called the bias, is a numerical value associated with the neuron. It is convenient to think of

the bias as he weight for an input x0 whose value is always equal to one, so that;

An activation function g: that maps v to g(v) the output value of the neuron. This function is a

monotone function. The logistic (also called the sigmoid) function g(v) = (e
v
/(1+e

v
)) as the

activation function works best. The practical value of the logistic function arises from the fact that
it is almost linear in the range where g is between 0.1 and 0.9 but has a squashing effect on very
small or very large values.

2. INTRODUCTION TO OVER LEARNING

Over learning (in Neural Networks): When an iterative training algorithm is run, over fitting
which occurs when the algorithm is run for too long (and the network is too complex for the
problem or the available quantity of data).

Over parameterized Model: An over parameterized model uses the indicator variable approach to
represent effects for categorical predictor variables in general linear models and generalized
linear models. To illustrate indicator variable coding, suppose that a categorical predictor variable
called Gender has two levels (i.e., Male and Female). A separate continuous predictor variable
would be coded for each group identified by the categorical predictor variable. Females might be
assigned a value of 1 and males a value of 0 on a first predictor variable identifying membership
in the female Gender group, and males would then be assigned a value of 1 and females a value
of 0 on a second predictor variable identifying membership in the male Gender group.

Over-Learning and Generalization

One major problem with the approach outlined above is that it doesn't actually minimize the error
that we are really interested in - which is the expected error the network will make when new
cases are submitted to it. In other words, the most desirable property of a network is its ability to

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

42

generalize to new cases. In reality, the network is trained to minimize the error on the training set,
and short of having a perfect and infinitely large training set, this is not the same thing as
minimizing the error on the real error surface - the error surface of the underlying and unknown
model (see Bishop, 1995).

The most important manifestation of this distinction is the problem of over-learning, or over-
fitting. It is easiest to demonstrate this concept using polynomial curve fitting rather than neural
networks, but the concept is precisely the same.

A polynomial is an equation with terms containing only constants and powers of the variables.

For example:

y=2x+3
y=3x2+4x+1

Different polynomials have different shapes, with larger powers (and therefore larger numbers of

terms) having steadily more eccentric shapes. Given a set of data, we may want to fit a

polynomial curve (i.e., a model) to explain the data. The data is probably noisy, so we don't

necessarily expect the best model to pass exactly through all the points. A low-order polynomial

may not be sufficiently flexible to fit close to the points, whereas a high-order polynomial is

actually too flexible, fitting the data exactly by adopting a highly eccentric shape that is actually

unrelated to the underlying function. See illustration below.

Neural networks have precisely the same problem. A network with more weights models a more
complex function, and is therefore prone to over-fitting. A network with less weight may not be
sufficiently powerful to model the underlying function. For example, a network with no hidden
layers actually models a simple linear function.

How then can we select the right complexity of network? A larger network will almost invariably
achieve a lower error eventually, but this may indicate over-fitting rather than good modelling.

The answer is to check progress against an independent data set, the selection set. Some of the
cases are reserved, and not actually used for training in the back propagation algorithm. Instead,
they are used to keep an independent check on the progress of the algorithm. It is invariably the
case that the initial performance of the network on training and selection sets is the same (if it is
not at least approximately the same, the division of cases between the two sets is probably
biased). As training progresses, the training error naturally drops, and providing training is
minimizing the true error function, the selection error drops too. However, if the selection error
stops dropping, or indeed starts to rise, this indicates that the network is starting to overfit the

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

43

data, and training should cease. When over-fitting occurs during the training process like this, it is
called over-learning. In this case, it is usually advisable to decrease the number of hidden units
and/or hidden layers, as the network is over-powerful for the problem at hand. In contrast, if the
network is not sufficiently powerful to model the underlying function, over-learning is not likely
to occur, and neither training nor selection errors will drop to a satisfactory level.

The problems associated with local minima, and decisions over the size of network to use, imply
that using a neural network typically involves experimenting with a large number of different
networks, probably training each one a number of times (to avoid being fooled by local minima),
and observing individual performances. The key guide to performance here is the selection error.
However, following the standard scientific precept that, all else being equal, a simple model is
always preferable to a complex model, you can also select a smaller network in preference to a
larger one with a negligible improvement in selection error.

A problem with this approach of repeated experimentation is that the selection set plays a key role
in selecting the model, which means that it is actually part of the training process. Its reliability as
an independent guide to performance of the model is therefore compromised - with sufficient
experiments, you may just hit upon a lucky network that happens to perform well on the selection
set. To add confidence in the performance of the final model, it is therefore normal practice (at
least where the volume of training data allows it) to reserve a third set of cases - the test set. The
final model is tested with the test set data, to ensure that the results on the selection and training
set are real, and not artifacts of the training process. Of course, to fulfill this role properly the test
set should be used only once - if it is in turn used to adjust and reiterate the training process, it
effectively becomes selection data!

This division into multiple subsets is very unfortunate, given that we usually have less data than
we would ideally desire even for a single subset. We can get around this problem by resampling.
Experiments can be conducted using different divisions of the available data into training,
selection, and test sets. There are a number of approaches to this subset, including random
(monte-carlo) resampling, cross-validation, and bootstrap. If we make design decisions, such as
the best configuration of neural network to use, based upon a number of experiments with
different subset examples, the results will be much more reliable. We can then either use those
experiments solely to guide the decision as to which network types to use, and train such
networks from scratch with new samples (this removes any sampling bias); or, we can retain the
best networks found during the sampling process, but average their results in an ensemble, which
at least mitigates the sampling bias.

To summarize, network design (once the input variables have been selected) follows a number of
stages:
• Select an initial configuration (typically, one hidden layer with the number of hidden units set to

half the sum of the number of input and output units).
• Iteratively conduct a number of experiments with each configuration, retaining the best network

(in terms of selection error) found. A number of experiments are required with each
configuration to avoid being fooled if training locates a local minimum, and it is also best to
resample.

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

44

• On each experiment, if under-learning occurs (the network doesn't achieve an acceptable

performance level) try adding more neurons to the hidden layer(s). If this doesn't help, try
adding an extra hidden layer.

• If over-learning occurs (selection error starts to rise) try removing hidden units (and possibly
layers).

• Once you have experimentally determined an effective configuration for your networks,
resample and generate new networks with that configuration.

3. EXPERIMENTS AND RESULTS

1. Experiment No. 1 : No of Input Neurons: 2, No of Hidden Neurons: 7, No of Output Neurons: 1

Fig. 1 Training with Number of Hidden Neurons: 7

The above mention figure shows the Learning cycle of XOR Problem with 118 epochs. Initially
we have tested the problem with the l-m-n configuration of Neural network is [2-7-1], which is
some what higher number of hidden neurons. After the training session we get the training error
is 0.01848 and minimum is 0.003346.As soon as training goes on we get higher number of error.
The same experiment has been done with the KDD CUP’99 data for Training purpose with more
than 600 records and more than 17 columns which is discussed in later section.

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

45

2. Experiment No. 2 : No of Input Neurons: 2, No of Hidden Neurons: 5, No of Output Neurons: 1

Fig. 2 Training with Number of Hidden Neurons: 5

Figure 2 shows the learning process of same problem with 5 hidden neurons. As a comparison with
previous experiment , it is quit better. We have reduced the number of errors.

3. Experiment No. 3 : No of Input Neurons: 2 ,No of Hidden Neurons: 4, No of Output Neurons: 1

Fig 3.Training with Number of Hidden Neurons: 4

The Figure 3 shows the learning process of same problem with 4 hidden units also getting better result in
terms of error.

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

46

4. Experiment No. 4 : No of Input Neurons: 2, No of Hidden Neurons: 3, No of Output Neurons: 1

Fig 4.Training with Number of Hidden Neurons: 3 .

Figure 4 shows the learning progress with 3 hidden neurons and we are getting maximum error 0.01774
and minimum error is 0.00327 which is good as compare to previous experiment. As soon as we increase
number of hidden neurons the over fitting problem get started. So let’s see the result by reducing one more
hidden neuron.

5. Experiment No. 5 : No of Input Neurons: 2, No of Hidden Neurons: 3, No of Output Neurons: 1

Fig 5.Training with Number of Hidden Neurons: 2

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

47

The above figure show the training session with number of hidden neurons is 2. We have reduced the
Maximum error but also increased minimum error but as a average error rate this is better.

TABLE I
TRAINING WITH NUMBER OF HIDDEN NEURONS: 2

Changes in Number of Hidden Neurons

No of Hidden Nodes Max Training Avg Min

7 0.0184 0.0099 0.0033

5 0.0158 0.0096 0.00505

4 0.0174 0.0098 0.0038

3 0.0177 0.0096 0.0032

2 0.0143 0.0089 0.00531

The Above table show the summary of five experiments which is discussed above. The over
learning start with some of weakness of Architecture of Network so to solve over learning / over
fitting problem, specially in neural network we have to modify the hidden layer structure.
Here we have taken Intrusion Detection Data Set (KDD CUP 99) for training purpose. We took
more than 600 rows for the training purpose. It contains 16 data column.

Data Set Details:

No of Rows: 600.
No of Column: 16
Class Label Attribute: Attack_Type

Other Attribute Name:
Duration,Protocol(udp),Protocol(icmp),Protocol(tcp),Service(IRC),Service(X11),Service(private)
,Service(telnet),Service(auth),Service(SMTP),Service(eco_i),Service(http),src_bytes(S1),src_byte
s(S3),src_bytes(RSTR),src_bytes(SF),dst_bytes,Flags,Lands,wrong_fragment,urgent,HOT,num_f
ailed_logins,logged_in,
num_access_files,num_outbound_cmds,is_hot_login,is_guest_login,Curr_Conn,serror_rate,rerror

_rate,same_srv_rate,diff_srv_rate,srv_count,srv_serror_rate,srv_rerror_rate,srv_diff_host
_rate

Fig. 6 MSR vs. Epoch for Hidden Neurons 10

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

48

The above figure shows the progress report of MSE with various numbers of epochs with hidden neurons

10. Below table show the experiment based on above figure.

TABLE II

TRAINING WITH NUMBER OF HIDDEN NEURONS: 2

Fig. 7 MSR vs. Epoch for Hidden Neurons 10

The above figure shows the progress report of MSE with various numbers of epochs with hidden neurons
10. Below table show the experiment based on above figure.

TABLE III

TRAINING WITH NUMBER OF HIDDEN NEURONS: 2

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

49

Fig. 8 MSR vs. Epoch for Hidden Neurons 7

The above figure shows the progress report of MSE with various numbers of epochs with hidden neurons
10. Below table show the experiment based on above figure.

TABLE IV
TRAINING WITH NUMBER OF HIDDEN NEURONS: 2

Over learning and over fitting that depend upon the neural network architecture. If data is noisy
that time neural network will not train properly. So that we have to go for Data Pre-processing.
And if data is not getting train or network enter in to over learning state that time we have to
reduce one hidden neurons of one hidden layer. If we don’t get solution for over learning that
time we have to reduced one hidden layer from the neural network architecture.

4. CONCLUSION

To overcome problem like over Learning or over fitting we have to modify the (l-m-n)
configuration of Neural Network. For any classifier it is very important that it learn properly.
Because of weak architecture or configuration of neural network, classifier may not learn because
of over learning. So over learning or over fitting problem get started. By following the above
steps we can resolve the over learning or over fitting problem.

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

50

ACKNOWLEDGEMENT

The authors’ wishes to thank all the colleagues for their guidance, encouragement and support
in undertaking the research work. Special thanks to the Principal for their moral support and
continuous encouragement

REFERENCES

[1] Carlos Gershenson , “Artificial Neural Networks for Beginners”

[2] Vincent Cheung ,Kevin Cannons, “An Introduction to Neural Networks”, Signal & Data Compression Laboratory,

Electrical & Computer Engineering University of Manitoba, Winnipeg, Manitoba, Canada

[3] “Artificial Neural Networks” ocw.mit.edu

[4] Guoqiang Peter Zhang , “Neural Networks for Classification: A Survey”, IEEE TRANSACTIONS ON SYSTEMS,

MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 4, NOVEMBER
2000

[5] V.P. Plagianakos, G.D. Magoulas, M.N. Vrahatis, “Learning rate adaptation in stochastic gradient descent”,

,Department of Mathematics, University of Patras,

[6] Wen Jin-Wei Zhao, Jia-Li Luo Si-Wei and Han Zhen “ The Improvements of BP Neural Network Learning

Algorithm”, Department of Computer Science & Technology,Northem Jiaotong University ,BeiJing, 100044,
P.R.China,

[7] Wenjian Wang, Weizhen Lu, Andrew Y T Leung, Siu-Ming Lo, Zongben Xu, “Optimal feed-forward neural

networks based on the combination of constructing and pruning by genetic algorithms”, IEEE TRANSACTIONS
ON NEURAL NETWORKS 2002

[8] “A Detailed Comparison of Backpropagation Neural Network and Maximum-Likelihood Classifiers for Urban

Land Use Classification”,IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 33, NO.
4, JULY 199.5

[9] Z. J. Liu C. Y. Wang Z. Niu A. X. Liu ”Evolving Multi-spectral Neural Network Classifier Using a Genetic

Algorithm”. Laboratory of Remote Sensing Information Sciences, the Institute of Remote Sensing Applications,

[10]Fiszelew, A., Britos, P., Ochoa, A., Merlino, H., Fernández, E., García-Martínez “Finding Optimal Neural

Network Architecture Using Genetic Algorithms”, R.Software & Knowledge Engineering Center. Buenos Aires
Institute of Technology.Intelligent Systems Laboratory. School of Engineering. University of Buenos Aires.

[11]M.P.Craven, “A FASTER LEARNING NEURAL NETWORK CLASSIFIER USING SELECTIVE

BACKPROPAGATION” Proceedings of the Fourth IEEE International Conference on Electronics, Circuits and
Systems

[12]Wenjian Wang, Weizhen Lu, Andrew Y T Leung, Siu-Ming Lo, Zongben Xu, “Optimal feed-forward neural

networks based on the combination of constructing and pruning by genetic algorithms”, IEEE TRANSACTIONS
ON NEURAL NETWORKS 2002

[13]Teresa B. Ludermir, Akio Yamazaki, and Cleber Zanchettin, “An Optimization Methodology for Neural Network

Weights and Architectures” IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 6, NOVEMBER
2006

[14]S. Rajasekaran, G.A Vijayalakshmi Pai, “Neural Networks, Fuzzy Logic, and Genetic Algorithms Synthesis and

Applications”

International Journal on Soft Computing (IJSC), Vol.2, No.2, May 2011

51

[15]Mrutyunjaya Panda and Manas Ranjan Patra, “NETWORK INTRUSION DETECTION USING NAÏVE BAYES”

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007
[16]S. SELVAKANI1 and R.S.RAJESH2, “Escalate Intrusion Detection using GA – NN”, Int. J. Open Problems

Compt. Math., Vol. 2, No. 2, June 2009

[17]Nathalie Villa*(1,2) and Fabrice Rossi(3), Recent advances in the use of SVM for functional data classification,

First International Workshop on Functional and Operatorial Statistics. Toulouse, June 19-21, 2008

[18] KDD Cup’99 Data set , http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Authors Profile

 Prof. Gaurang Panchal has received his B.E. degree in Information Technology from
Saurashtra University, Gujarat, India in 2003. He has completed his M.E. in Computer
Engineering from Dharamsinh Desai University, Gujarat, India. He has been with
faculty of Engineering and Technology, Charotar University of Science and
Technology, Changa, Gujarat, since 2007, where he is currently working as an
Assistant Professor in the Department of Computer Engineering. His current research
area interest includes Data Mining.

Prof. Amit P. Ganatra has received his B.E degree in Computer Engineering from
Gujarat University, Gujarat, India in 2000 and master Degree from Dharmsinh Desai
University, Gujarat, India in 2004. He has joined his Ph.D in the area of Multiple
Classifier System (Information Fusion) at Kadi Sarvavishvidhalaya University,
Gandhinagar, India in August 2008. Since 2000 he has been with faculty of Engineering
and Technology, Charotar University of Science and Technology, Changa, Gujarat,
Where he is currently working as an Associate Professor in the Department of
Computer Engineering. He has published more than 50 research papers in the field of
data mining and Artificial Intelligence. His current research interest includes Multiple
Classifier System, Sequence Pattern Mining

Prof. Parth Shah has received his B.E. degree in Information Technology from
Saurashtra University, Gujarat, India in 2002. He has completed his M.E. in Computer
Engineering from Dharamsinh Desai University, Gujarat, India. He has been with faculty
of Engineering and Technology, Charotar University of Science and Technology,
Changa, Gujarat, since 2002, where he is currently working as an Head & Assistant
Professor in the Department of Information Technology. His current research area
interest includes Data Mining.

Prof. Devyani Panchal has received his B.E. degree in Computer Engineering from
Sardar Patel University, Gujarat, India in 2005. She has been with faculty of Engineering
and Technology, Charotar University of Science and Technology, Changa, Gujarat, since
2007, where she is currently working as an Assistant Professor in the Department of
Computer Engineering. Her current research area interest includes Data Mining.

