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Combining X-ray diffraction data from multiple samples requires determination

of the symmetry and resolution of any indexing ambiguity. For the partial data

sets typical of in situ room-temperature experiments, determination of the

correct symmetry is often not straightforward. The potential for indexing

ambiguity in polar space groups is also an issue, although methods to resolve this

are available if the true symmetry is known. Here, a method is presented to

simultaneously resolve the determination of the Patterson symmetry and the

indexing ambiguity for partial data sets.

1. Introduction

The recording of an X-ray diffraction data set implies the

presence of a crystal lattice with, at the very least, triclinic

symmetry. If a relatively complete data set has been recorded

from a single crystal, determination of the Patterson symmetry

(i.e. the symmetry in the diffracted intensities) is relatively

straightforward (Evans, 2006); however, this is more challen-

ging for the partial data sets typical of in situ experiments,

where diffraction data are collected at room temperature.

Further complicating matters is the potential for indexing

ambiguity in polar space groups, although methods to resolve

this are available if the true symmetry is known (Brehm &

Diederichs, 2014). Determination of the correct Patterson

group is a necessary precondition for the correct scaling of

X-ray diffraction intensities. The correct group must be

compatible with both the observed crystal lattice and the

symmetry in the measured intensities. For substantial data sets

the unit cell may be accurately determined and the presence

or absence of symmetry operators tested within the single set

of observations. For sparse data sets this becomes unreliable

within one set, and data sets must be combined before

analysis. This, however, depends on correctly matching the

data sets to ensure that a consistent setting is used, which in

turn requires that the symmetry is known.

The correct crystal symmetry must form a subgroup of the

crystal lattice symmetry, although in most cases these are

identical. If they are not identical one or more ‘twinning

operations’ exist which map the true symmetry to internally

consistent but mutually incompatible cosets within the lattice

symmetry group. In contrast to the conventional problem of

indexing ambiguity in polar space groups, for sparse data sets

accidental ambiguity is more likely, as the uncertainties on

unit-cell constants are greater.

Since the symmetry is unknown at the point of integration

of the measurements, it may be appropriate to process the
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data with a triclinic model and later refine the unit-cell para-

meters once the symmetry has been determined. This may,

however, give rise to up to 24-fold ambiguity if a ’ b ’ c and

� ’ � ’ � ’ 90�, in addition to the need to determine the

symmetry. Here, we present a method building on that of

Brehm & Diederichs (2014) to simultaneously resolve the

determination of the Patterson symmetry and the indexing

ambiguity for partial data sets. The approach also addresses

cases of accidental unit-cell symmetry, i.e. lattice pseudo-

symmetry such as a monoclinic cell with � ’ 90�.

Brehm & Diederichs (2014) introduced a method for

resolving the indexing ambiguity from sparse data sets, and a

number of implementations of the method, or related

approaches, have since been introduced (Gildea et al., 2014;

Kabsch, 2014; Ginn et al., 2015; White et al., 2016). Their

method is a form of the dimensionality-reduction technique

known as multidimensional scaling (MDS). The method uses

as input the n� n matrix of pairwise inter-data-set correlation

coefficients, where n is the number of data sets, and outputs a

vector, x, of n points in k-dimensional space, where k is

generally small (e.g. 2 for the case of a twofold indexing

ambiguity). In the method presented by Brehm & Diederichs

(2014) each data set is used once in its original setting, and

thus is represented by a single point in the vector x. They also

propose a potential modification of the procedure to include

each data set in both its original setting and each of the

alternative indexing choices. Here, we present an extension of

the methods of Brehm & Diederichs (2014) and Diederichs

(2017) to all possible symmetry operations of a given lattice

group, allowing simultaneous determination of the Patterson

group and resolution of any indexing ambiguity.

2. Methods

2.1. Dimensionality reduction

The maximum possible lattice symmetry compatible with

the averaged unit cell is determined using algorithms based

on ideas by Le Page (1982) and Lebedev et al. (2006), and

implemented in cctbx (Grosse-Kunstleve et al., 2004; Sauter et

al., 2006). Subsequently, a list of all permissible symmetry

operations is compiled. The Pearson’s correlation coefficient

between data sets i and j, after application of the kth and lth

symmetry operators, respectively, is defined according to

rik;jl
¼

P
h

Iik
ðhÞ � Iik

� �
Ijl
ðhÞ � Ijl

� �
P

h

Iik
ðhÞ � Iik

� �2P
h

Ijl
ðhÞ � Ijl

� �2

� �1=2
: ð1Þ

The matrix of correlation coefficients is thus a real symmetric

matrix, of size (n�m)2, where n is the number of data sets and

m is the number of symmetry operations in the lattice group.

Following Brehm & Diederichs (2014), we represent data

sets as coordinates, x, in a multi-dimensional space; however,

in this method each data set appears as n � m coordinates in

an m-dimensional space. In the case of pseudo-symmetry,

where the true symmetry is P1, use of an m-dimensional space

is necessary to allow the presence of up to m orthogonal xi

clusters, where the orthogonality between clusters corre-

sponds to a correlation coefficient rik;jl
close to zero.

We then use a modification of algorithm (2) of Brehm &

Diederichs (2014) to iteratively minimize the function

� ¼
Pn�m

i¼1

Pn�m

j¼1

ðrik;jl
� xi � xjÞ

2
ð2Þ

using the L-BFGS minimization algorithm (Liu & Nocedal,

1989). As in Brehm & Diederichs (2014), starting coordinates

x are chosen randomly in the range 0–1.

2.2. Principal component analysis

The procedure outlined above in x2.1 is performed in an

m-dimensional space, where m is equal to the number of

symmetry operators in the lattice group. We anticipate that the

points resulting from the minimization above will form a

certain number of clusters, given by the ratio of the number of

symmetry operators in the lattice group to the number of

symmetry operators in the true Patterson group, i.e. the

number of potential ‘twinning’ operators. Unless the Patterson

group is P1, the clusters can be represented in a lower

dimensional space that is oriented arbitrarily in the higher

dimensional space used for the minimization. Principal

component analysis (PCA; Pearson, 1901) may be used to

reduce the dimensionality of the resulting clusters of coordi-

nates, which greatly simplifies both the visualization and the

further analysis of the clusters. Prior to this analysis, we

assume that the true Patterson group, and hence the number

of potential twinning operators, are unknown. However,

principal component analysis can give an estimate of the

relative ratio of the variance of the data that is explained by

each principal component, thus giving an indication of the

likely number of clusters.

2.3. Symmetry discovery

If the symmetry operator Sk
�1Sl is a member of the true

Patterson group, then we would expect the coordinates xik
and

xjl
to be part of the same cluster, as the corresponding element

of the matrix of correlations, rik;jl
, should be close to 1. In

contrast, if Sk
�1Sl is not a member of the true Patterson group,

and thus a potential twinning operator, then we would expect

the coordinates xik
and xjl

to appear in separate clusters, with a

correspondingly lower value of rik;jl
.

From analysis of a single cluster, it is possible to identify the

Patterson group from the combination of all unique symmetry

operators Sk
�1Sl corresponding to pairs of coordinates xik

and

xjl
. If a potential indexing ambiguity is identified, this can be

resolved as follows. If the symmetry operator Sk that corre-

sponds to the coordinate xik
belongs to the Patterson group

determined above, then data set i does not need reindexing. If,

however, the symmetry operator Sk does not belong to the

Patterson group, then Sk is a twinning operator that can be

used to reindex data set i. Analysis of any further clusters

should yield identical results.
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The reindexing operator determined using the above

procedure will be one from a coset of equivalent reindexing

operators. This can be mapped to a unique coset representa-

tive using left coset decomposition of the lattice group with

respect to the proposed Patterson group (Flack, 1987).

3. Results

3.1. Example 1: simulated microfocus data

Diffraction patterns for 100 partial data sets were generated

by James Holton (Holton, 2015) from the PDB model of titin

(PDB entry 1g1c; Mayans et al., 2001) as an explicit challenge

to the community of macromolecular crystallography software

developers. The space group of the generated data sets is

P212121, as in the published structure; however, the unit cell

has been modified slightly such that b = c, thus creating a non-

obvious pseudo-merohedral indexing ambiguity which must

be resolved before merging multiple data sets. The data are

intended to be a realistic simulation of the radiation damage

to a lysozyme-sized protein forming�5 mm crystals shot with a

6 mm beam.

The first three images of each data set were processed with

DIALS (Winter et al., 2018) via xia2 (Winter, 2010). No prior

space-group or unit-cell information was provided, and inte-

gration was performed in P1.

The resulting 100 integrated data sets were analysed using

the algorithms outlined in x2. A resolution cutoff of 3 Å was

used; however, the results were not sensitive to the choice of

resolution cutoff.

The 100 data sets had a median unit cell of a = 38.31 � 0.03,

b = 79.11� 0.05, c = 79.12� 0.07 Å, �= 89.99� 0.02, �= 89.99

� 0.03, � = 90.00 � 0.01�. The maximum possible lattice

symmetry was determined to be P422 (space group No. 89),

comprising eight symmetry operations.

A bimodal distribution of rik;jl
values can be seen in

Fig. 1(a), which suggests the presence of an indexing ambi-

guity. Fig. 1(b) shows the resulting coordinates, x, projected

onto the xy axes, and Fig. 1(c) shows the same coordinates

projected onto the first two directions found by principal

component analysis. The first direction identified by PCA

accounts for 48% of the variance of the data, compared with

only 11% for the second direction, and Fig. 1(c) shows that the

points are clearly separated into two clusters, reflecting the

two possible indexing choices. Two clusters were identified,

each containing 400 points, corresponding to four points per

data set. Analysis of each cluster according to x2.3 correctly

identified the Patterson group as P222.

Figure 1
The application of the algorithms in x2 to simulated microfocus data sets as described in x3.1. A histogram of the rik;jl

values is shown in (a). The points x
determined by the procedure are shown projected onto the first two dimensions before (b) and after (c) principal component analysis. Points are
coloured according to the assigned indexing mode.



3.2. Example 2: in situ membrane-protein data set

Previously published in situ data (Axford et al., 2015) from

an integral membrane protein, Haemophilus influenzae TehA

(HiTehA), were reprocessed using DIALS via xia2. Processing

was attempted on 72 wedges of data consisting of 30–50

images of 0.2� rotation, each wedge therefore consisting of 6–

10� of data. No prior space-group or unit-cell information was

provided, and integration was performed in P1 with the

reduced unit cell. Two data sets failed in indexing, leaving 70

data sets which were subsequently analysed according to the

algorithms described above.

The 70 data sets had a median unit cell of a = 72.58 � 0.36,

b = 72.74� 0.29, c = 72.79� 0.23 Å, �= 85.16� 0.08, �= 85.19

� 0.09, � = 85.29 � 0.17�. The maximum possible lattice

symmetry was determined to be R32:r (space group No. 155),

comprising six symmetry operations.

A bimodal distribution of rik;jl
values can be seen in

Fig. 2(a), which suggests the presence of an indexing ambi-

guity. The first direction identified by principal component

analysis accounts for 67% of the variance of the data,

compared with only 9.6% for the second direction, and

visualization of the coordinates after projection onto the first

two directions found by principal component analysis in
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Figure 2
The application of the algorithms in x2 to the TehA multi-crystal data as
described in x3.2. A histogram of the rik;jl

values is shown in (a). The
points x determined by the procedure are shown projected onto the first
two dimensions identified by principal component analysis (b). Points are
coloured according to the assigned indexing mode.

Figure 3
The application of the algorithms in x2 to multi-crystal data from CPV
polyhedrin as described in x3.3. A histogram of the rik;jl

values is shown in
(a). The points x determined by the procedure are shown projected onto
the first two dimensions identified by principal component analysis (b).
Points are coloured according to the assigned indexing mode.



Fig. 2(b) shows that the points are clearly separated into two

clusters, indicating the presence of two possible indexing

modes. Two clusters were identified, each containing 210

points, corresponding to three points per data set. Analysis of

each cluster according to x2.3 correctly identified the

Patterson group as R3:h (space group No. 146), which is

consistent with the published space group.

3.3. Example 3: in cellulo micro-crystal room-temperature
data set

Forty 2� wedges of in cellulo data from cytoplasmic poly-

hedrosis virus (CPV) polyhedrin crystals (Axford et al., 2014)

were reprocessed using DIALS via xia2. No prior space-group

or unit-cell information was provided, and integration was

performed in P1 with the reduced unit cell. 28 data sets were

successfully indexed and integrated, one of which was rejected

after preliminary analysis using the hierarchical unit-cell

clustering methods (Zeldin et al., 2015) available within the

cctbx.xfel software (Hattne et al., 2014). The remaining 27 data

sets had a median unit cell of a = 88.92� 0.17, b = 89.00� 0.14,

c = 89.04 � 0.12 Å, � = 109.50 � 0.08, � = 109.44 � 0.09,

� = 109.38 � 0.08�. The maximum possible lattice symmetry

was determined to be I432 (space group No.211), comprising

24 symmetry operations.

A bimodal distribution of rik;jl
values can be seen in

Fig. 3(a), which suggests the presence of an indexing ambi-

guity. The first direction identified by principal component

analysis accounts for 24% of the variance of the data,

compared with only 6.2% for the second direction, and

visualization of the coordinates after projection onto the first

two directions found by principal component analysis in

Fig. 3(b) shows a separation of the points into two clusters,

indicating the presence of two possible indexing modes. Each

of the two clusters identified contained 324 points, corre-

sponding to 12 points per data set. Analysis of each cluster

according to x2.3 correctly identified the Patterson group as

I23 (space group No. 197), which is consistent with the

published space group.

4. Discussion

The results shown in x3 demonstrate that it is possible to

determine the Patterson group for sparse data sets in

the presence of an indexing ambiguity. Three different

examples were shown, covering simulated data sets with a

pseudo-merohedral indexing ambiguity and previously

published in situ and in cellulo multi-crystal data sets. In all

cases, the data were reprocessed in space group P1 with no

prior assumptions regarding the unit cell or symmetry.

Application of the algorithms presented in x2 shows a

separation of the resulting points into two clusters, repre-

senting the two alternative indexing choices. Further analysis

of the composition of the clusters was able to correctly identify

the correct Patterson group symmetry.

It is noteworthy that while the analysis defined above is

predicated on the use of an m-dimensional space, where m is

the number of symmetry operations in the lattice group, in

many cases a lower dimensional analysis will give rise to a

similar conclusion, particularly where the final number of

clusters is small. In the above examples, the analysis was

repeated with only two dimensions, resulting in the same

conclusions.

Above, we refer to potential twinning operators as the

sources of potential indexing ambiguity. The presence of

partial twinning would have the effect of making the inten-

sities of the alternative indexing possibilities more similar,

thus reducing the separation between the peaks in the histo-

gram of rik;jl
values. This would be expected to reduce the

angular separation between the clusters of points, xi, output by

the algorithm. As such, we expect our algorithm to be tolerant

to the presence of partial twinning when the twin fraction is

small, albeit with reduced sensitivity. However, the power of

the algorithm to distinguish between indexing modes will

rapidly reduce as the twin fraction approaches that for perfect

twinning, i.e. � = 0.5.

Once any potential symmetry and indexing ambiguities

have been identified and resolved, existing methods for the

determination of the space group (Evans, 2006) and clustering

of data sets based on unit-cell parameters (Foadi et al., 2013)

and intensities (Giordano et al., 2012; Diederichs, 2017;

Santoni et al., 2017) may be used. The algorithms presented

here allow data to be integrated in P1 with no prior assump-

tions, with conclusions relating to symmetry derived from the

data set as a whole. They therefore make a useful addition to

the tools for in situ data processing.
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