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The phase diagram of a system consisting of hard particles with an attractive Yukawa interaction is 
computed by Monte Carlo simulation. From the results of these simulations we can estimate that the 
liquid-vapor coexistence curve disappears when the range of the attractive part of the Yukawa 
potential is less than approximately one-sixth of the hard-core diameter. The results of the 
simulations are compared with predictions based on first order perturbation theory. 

1. INTRODUCTION where (+ is the diameter of the hard core, E is ~the well depth, 
and K- ’ is a measure for the range of the attractive part of 
the potential. Note that the well depth E defines our unit of 
temperature. In what follows we shall use reduced units such 
that E= 1 and (+= 1. Figure 1 shows the shape of this interac- 
tion potential for the values of K studied in this paper. We 
have chosen to study the hard-core attractive Yukawa model 
because, while it is a simple pair potential, it is known to 
provide a reasonable approximation of the polymer-induced 
interaction between a pair of hard cohoidal particles (see, 
e.g., Refs. 2 and 7). Hence, the results of the present simu- 
lations should provide a reasonable estimate of the phase 
behavior of polymer colloid mixtures. 

The range of the attractive part of the intermolecular 
potential determines whether or not a given substance can 
have a stable liquid phase. This observation was made in the 
context of colloid science when Gast, Hall, and Russel re- 
ported a theoretical study of the phase diagram of colloid- 
polymer mixtures.’ In the model used by these authors,“.3 the 
presence of free polymer induces an attractive interaction 
between the (hard-core) colloids. The range of this iuterac- 
tion is determined by the radius of gyration of the polymers. 
In Ref. 1, the phase diagram was estimated using perturba- 
tion theory and it was found that when R,, the radius of 
gyration of the polymer, is sufficiently large (R,la20.3), 
the colloidal system can exist in a solidlike,.liquidlike, and 
vaporlike state. However, for smaller polymers (short ranged 
attraction), the liquid phase disappears and only the solid and 
the “fluid” phases remain. Subsequent theoretical work by 
Lekkerkerker et al. ,4 experiments by Pusey’ and Leal 
Calderon6 and computer simulations by Meijer and Frenke17 
indicate that the colloidal liquid-vapor. transition does in- 
deed disappear for sufficiently short-ranged attractive inter- 
actions between the colloidal particles. Thus far, there is lim- 
ited evidence that the liquid-vapor transition can be made to 
disappear in simple atomic or molecular fluids. The reason is 
that for most molecular substances, the ratio of the ranges of 
the attractive and repulsive interactions are such that a 
liquid-vapor transition is to be expected. In particular, all 
particles interacting through an effective pair potential that 
can be approximated by the famous Lennard-Jones 12-6 po- 
tential, should have a liquid-vapor transition (see Ref. 8). 
Only for Co,, a molecule with an anomalously narrow attrac- 
tive well, is there numerical evidence9 that the liquid-vapor 
transition should be absent. Apart from that, there has been 
hardly any systematic attempt to study, by computer simula- 
tion, the relation between the range of the attraction part of 
the intermolecular potential and the stability of the liquid 
phase, for simple one-component model systems. in the 
present paper, we report a numerical study of a simple model 
fluid with a variable-range attractive interaction, namely a 
hard-sphere fluid with an attractive Yukawa interaction 
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In order to map out the phase diagram of the hard-core 
Yukawa model, we combine Gibbs-ensemble Monte Carlo 
simulation to determine the liquid-vapor coexistence 
curve10’12 with the Gibbs-Duhem integration method of 
Kofke.‘41’5 The latter method is well suited to compute the 
solid-liquid coexistence line, starting from the (known) co- 
existence properties of the hard-sphere model. The latter 
model corresponds to the inlinite temperature limit of the 
attractive Yukawa system. 

In the following section, we briefly describe the simula- 
tion methods used. We then present the. phase diagram of the 
hard-core Yukawa system, as obtained from our Monte Carlo 
simulations. Finally, we compare our simulation results with 
the predictions of first-order perturbation theory. 

II. SIMULATIONS 

In order to map out the phase diagram of the hard-core 
attractive Yukawa model, we have used, as much as possible, 
methods that allow us to limit our simulations to points lo- 
cated on the coexistence curves. For liquid-vapor coexist- 
ence, this can be achieved by employing the Gibbs-ensemble 
method of Panagiotopoulos. ‘O-t2 In this method, two simula- 
tions are carried out in parallel; one of the liquid phase and 
one of the vapor. The two systems are held at the same 
temperature and are allowed to exchange volume and mass, 
but the total volume and total number of particles of the two 
systems is fixed. This ensures that, at equilibrium, the pres- 
sure and chemical potential of the two systems are the same. 
As a consequence, the conditions for phase coexistence are 
automatically satisfied. The Gibbs ensemble technique can- 
not be used to study solid-fluid coexistence, because ex- 
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FIG. 1. Interaction potential. 

change of mass with the solid phase will not occur. For this 
reason, points on the solid-liquid coexistence curve are usu- 
ally located starting from explicit calculations of the free 
energy of both phases.13 However, once we know a single set 
of points on the coexistence curve, no additional free energy 
calculations are needed to determine the remainder of that 
curve. Rather we can straightforwardly integrate the 
Clausius-Clapeyron equation, 

(2) 

where p= 1 lk,T, with k, is the Boltzmann constant and T is 
the absolute temperature. P is the pressure, and Ah= h,-h, 
and Au = v n-v r are the differences in molar entbalpy and 
molar volume in phase I and II, respectively. The subscript c 
denotes that the derivative is taken along the coexistence 
line. This is the approach that we followed in our work. The 
method that we used was based on a scheme due to 
Kotke.‘4,‘5 We performed simulations for ~=3.9, ~=7, and 
~=9. The somewhat curious value ~=3.9 was selected be- 
cause for this value of K, the Boyle temperature of the hard- 
core attractive Yukawa model equals that of the Girifalco 
model potential for Co, (Ref. 16) used in Ref. 9, if the well 
depth of the two potentials is chosen as the unit of energy 
and the point where the potential crosses zero is chosen as 
the unit of length. In Ref. 9 it was shown that the critical 
point for Cc0 is very close to the sublimation line. Hence, we 
could expect something similar for the Yukawa model with 
~=3.9. As will be shown below, the results for this Yukawa 
model are analogous, but certainly not identical, to the ones 
obtained for C6a. 

The Gibbs ensemble simulations were performed for 
~=3.9 and ~=7. As the liquid-vapor coexistence curve has 
already moved well into the metastable regime for ~=7, we 
did not perform Gibbs-ensemble simulations for ~=9. The 
Gibbs ensemble simulations were started with the density in 
each box initially equal to the estimated critical density, and 

TABLE I. Coexisting vapor-liquid densities for different reciprocal tem- 
peratures p for two values of K as obtained from Gibbs-ensemble simula- 
tions. 
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3.9 1.85 
1.90 
1.95 
2.00 
2.05 

I 2.50 
2.60 
2.70 

0.16+0.04 0.59+0.03 
0.14-to.05 0.6lZO.04 
0.11+0.02 0.721-0.02 
0.07+0.02 0.74ti.02 
0.07+0.02 0.74+0.02 

0.32t0.04 0.69kO.05 
0.16r0.02 0.84?0.02 
0.13ZO.02 0.88kO.02 

at a temperature that is equal to the critical temperature es- 
timated by perturbation theory (see below). As first-order 
perturbation theory ignores fluctuations, we expect the actual 
critical temperature to be lower than this estimate and, in- 
deed, we always found that at the initial temperature, the 
system was still in the one-phase region. Subsequently, we 
lowered the temperature in small steps until phase separation 
was observed. To check that the liquid and vapor phases had 
reached equilibrium, we verified that the chemical potentials 
of the systems in the “liquid” and “vapor” box were equal. 

The Gibbs-ensemble simulations consisted of at least 
30 000 cycles (i.e., trial moves per particle), denoted by 
N One Gibbs-ensemble cycle consisted, on average, of 
onT&l displacement of every particle, N,,=50 attempts to 
exchange particles between the two simulation boxes and 
Nvol= 1 attempt to exchange volume between the two boxes. 
All our simulations were performed for a system consisting 
of N= 2 16 particles. We chose such a relatively small sys- 
tem size to keep the computational cost within bounds, as 
many individual runs are needed to map out the phase dia- 
gram. The potential in these simulations was truncated and 
shifted at Y,= 2. The error introduced by this truncation is 
very small, even for ~=3.9. In Table I we have collected the 
computed densities of the coexisting liquid and vapor phases 
for ~=3.9 and ~=7 as a function of temperature. 

From these data the critical points could be estimated by 
using the law of rectilinear diameter’t and assuming that the 
shape of the binodal is best described by a power law with 
the 3D-Ising exponent p=O.326 (see Ref. 12). For ~=3.9 the 
reciprocal critical temperature is estimated to be 
/3,=1.82+0.01, and the -critical density is 
p,=O.37+0.02. For ~=7 the estimate of the reciprocal 
critical temperature is PC= 2.43 + 0.0 1, with a critical den- 
sity p,=O.50-+0.02. 

For our implementation of the Kofke integration scheme 
to trace out the melting curve, it is more convenient to write 
the Clausius-Clapeyron equation as 

(3) 

where he= en-e1 is the difference in molar energy between 
the two phases. The Kofke method can only be used to com- 
pute the phase coexistence curve, provided that one set of 
points on this curve is already known. In the present case, the 
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TABLE II. Settings during Gibbs-Duhem simulations. K determines the 
range of the potential, Ap is the step in reciprocal temperature, Pinit is the 
initial reciprocal temperature, and Pena is the tinal reciprocal temperature. 

K 

3.9 
7 

9 

AP Pinit P end 

0.05 0.00 1.95 
0.05 0.00 2.20 
0.01 2.00 2.28 
0.05 0.00 2.35 
0.01 2.00 2.50 

known point is the infinite temperature limit (/?-to), where 
the hard-core attractive Yukawa system reduces to the hard- 
sphere model. The pressure and densities of the coexisting 
phases of the hard-sphere model at melting are given byt7 

Psolid= 19 04 1) 

pP=11.69. 

(4) 

In the high-temperature hard-sphere limit, the derivative 
in Eq. (3) is well-behaved and goes to a finite limit. Equation 
(3) was solved using a fourth-order predictor-corrector algo- 
rithm. As such algorithms are not self-starting, we initialized 
the integration using a hrst order predictor-corrector algo- 
rithm. After two time steps, a second order predictor- 
corrector algorithm was applied. After that, we continued 
with an integration routine of the desired order (4). 

Clausius-Clapeyron integrations were used to determine 
the liquid-solid coexistence curves for ~=3.9, 7, and 9. In 
the simulations, the solid and the liquid phase are simulated 
simuhaneously at the same temperature and pressure. By 
changing the pressure and temperature according to Eq. (3), 
we ensure the chemical potentials of the two phases also 
remain the same. 

Table II shows the values of the various parameters that 
we used in the Clausius-Clapeyron integration. In our simu- 
lations, the maximum trial displacement of a particle was 
adjusted such that the acceptance of trial moves varied be- 
tween 20% and 50%. Similar acceptance probabilities were 
maintained for the volume-changing moves. All simulations 
along the solid-fluid coexistence curve consisted of 10 000 
equilibration cycles (N,) and 10 000 “production” cycles 
(N,,,,). We assumed that, in all cases, the structure of the 
solid phase was face-centered cubic. It is obvious that this 
structure [or the closely related hexagonal close-packed 
structure) must be the stable structure of the high-pressure or 
low-temperature solid. It seems plausible that the same struc- 
ture is still thermodynamically stable at the melting point, 
although we have not tested this. 

III. RESULTS 

Combining the data obtained using the Gibbs-ensemble 
simulations and the Kofke integration scheme for ~=3.9, 7, 
9, we obtain the phase diagrams shown in Fig. 2, 3, and 4. 

As can be seen from the figures, the critical point for 
~=3.9 is still well above the triple point temperature. How- 
ever, for ~=7, the critical point has alr;ady crossed the sub- 

FIG. 2. Phase diagram for ~=3.9. In this figure the drawn lines correspond 
to the results of perturbation theory. The points with error-bars are the simu- 
lation results. The diamond indicates the critical point as obtained by Gibbs- 
ensemble simulations. 

limation line. This implies that for ~=7 and, a fortiori, for 
~=9, no stable liquid phase can exist. If we assume that the 
shift of the critical temperature relative to the sublimation 
curve is, to a first approximation, linear in K, then no stable 
liquid phase is possible for attractive Yukawa systems with K 
larger than approximately 6. It is interesting to note that, 
whereas for the K values 7 and 9, the solid fluid coexistence 
curve could be integrated all the way down to temperatures 
where the solid coexists with dilute vapor, this was not pos- 
sible for ~=3.9. The reason is that, for that value of K, the 
sublimation line crosses the liquid-vapor binodal and spin- 

0.0 

1.0 

Q 

2.0 

3.0 L 
0.0 1.0 1.5 

P 

PIG. 3. Phase diagram for ~=7. In this figure the drawn lines correspond to 
the results of perturbation theory. The points with error-bars are the simula- 
tion results. The diamond indicates the metastable critical point as obtained 
by Gibbs-ensemble simulations. 
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FIG. 4. Phase diagram for ~=9. The drawn lines correspond to the results of FIG. 5. Perturbation potential. The curves on the left denote the liquid 
perturbation theory. The points with error-bars are the simulation results. phase, whereas the ones on the right denote the solid phase. 

odal. In an infinite system, this would result in gas-liquid 
phase separation. However, in a finite periodic system the 
system remains homogeneous, but the pressure exhibits a 
van der Waals loop and the pressure may even go negative. 
When this happens, the integration of Eq. (3) breaks down. 
The fact that we observe this crossing of the spinodal only 
with ~~3.9 supports the conclusion that, only for this value 
of K, the liquid-vapor coexistence curve crosses the subli- 
mation line. 

For the sake of comparison, we have also estimated the 
phase diagram of the attractive Yukawa system by simple 
first-order thermodynamic perturbation theory.18 As a refer- 
ence system, we use the hard-sphere fluid (solid). The excess 
Helmholtz free energy of the Yukawa system is estimated as 

pFeX(p)=pFeHXs(p)+P(U~)~s, (5) 

where the identification of Fgs is the excess free energy of 
the hard-sphere system at density p, and ( UP)nS is the aver- 
age value of the attractive part of the Yukawa potential, com- 
puted in the hard-sphere reference system. From Eq. (S), it is 
possible to derive all thermodynamic properties of the sys- 
tem needed to construct the phase diagram. 

Simulations on a 108-particle hard-sphere fluid and 
hard-sphere (fee) crystal were used to compute ( UP)nS . All 
simulations of the hard-sphere reference system consisted of 
10 000 equilibration cycles and 10 000 “production” cycles. 
A plot of (bhs vs density p is shown in Fig. 5 for the 
relevant values of K. We used the r%ruthan-Starling equa- 
tion to estimate the excess Helmholtz free energy of the 
hard-sphere fluid,lg while the data of Hooveri7**’ were used 
to estimate the density-dependence of the free energy of the 
solid. 

The estimated phase diagrams for ~=3.9, 5, 7, 9 are 
shown in Fig. 6. By construction, the liquid-vapor coexist- 
ence curve obtained by perturbation theory is characterized 
by a “classical” critical exponent (p=1/2). From Fig. 6 and 
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‘i 
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Table III it can be seen that perturbation theory predicts that 
there is no stable liquid phase when K is larger than approxi- 
mately 7.4 (this estimate was obtained by linear interpola- 
tion). We recall that the simulations of the hard-core Yukawa 
model indicate that the stable liquid already disappears 
around ~=6. For the sake of comparison, we have drawn in 
Figs. 2-4 the phase-coexistence curves, as obtained by per- 
turbation theory, as solid curves. From these figures it is clear 
that perturbation theory works reasonably well, in particular 
for the shorter-ranged potentials. However, perturbation 
theory systematically overestimates the critical temperature 
and, as a consequence, the value of K for which the liquid 
phase disappears is overestimated by perturbation theory. 

FIG. 6. Phase diagram of Yukawa system by first order perturbation theory. 
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TABLE III. Critical density pc, critical reciprocal temperature pi; and 
reciprocal triple temperature & as a function of K as obtained from first 
order perturbation theory. 

K PC PC PI 

3.9 0.40 1.55 2.07 
5 0.44 1.75 2.10 
I 0.50 2.07 2.13 
9 0.57 2.34 
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