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Abstract

In this review we focus on the determination of phase diagrams by computer simulation, with

particular attention to the fluid–solid and solid–solid equilibria. The methodology to compute

the free energy of solid phases will be discussed. In particular, the Einstein crystal and Einstein

molecule methodologies are described in a comprehensive way. It is shown that both

methodologies yield the same free energies and that free energies of solid phases present

noticeable finite size effects. In fact, this is the case for hard spheres in the solid phase. Finite

size corrections can be introduced, although in an approximate way, to correct for the

dependence of the free energy on the size of the system. The computation of free energies of

solid phases can be extended to molecular fluids. The procedure to compute free energies of

solid phases of water (ices) will be described in detail. The free energies of ices Ih, II, III, IV, V,

VI, VII, VIII, IX, XI and XII will be presented for the SPC/E and TIP4P models of water.

Initial coexistence points leading to the determination of the phase diagram of water for these

two models will be provided. Other methods to estimate the melting point of a solid, such as the

direct fluid–solid coexistence or simulations of the free surface of the solid, will be discussed. It

will be shown that the melting points of ice Ih for several water models, obtained from free

energy calculations, direct coexistence simulations and free surface simulations agree within

their statistical uncertainty. Phase diagram calculations can indeed help to improve potential

models of molecular fluids. For instance, for water, the potential model TIP4P/2005 can be

regarded as an improved version of TIP4P. Here we will review some recent work on the phase

diagram of the simplest ionic model, the restricted primitive model. Although originally

devised to describe ionic liquids, the model is becoming quite popular to describe the behavior

of charged colloids. Moreover, the possibility of obtaining fluid–solid equilibria for simple

protein models will be discussed. In these primitive models, the protein is described by a

spherical potential with certain anisotropic bonding sites (patchy sites).

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

One of the first findings of computer simulation was the

discovery of a fluid–solid transition for a system of hard

spheres [1, 2]. At that time the idea of a solid phase without

the presence of attractive forces was not easily accepted. It

took some time to accept it, and it was definitively proved

after the work of Hoover and Ree [3], in which the location

of the transition was determined beyond any doubt and, even

more recently, when it was experimentally found for colloidal

systems [4]. Certainly the study of phase transitions has

always been a hot topic within the area of computer simulation.

However, fluid–fluid phase transitions (liquid immiscibility,

vapor–liquid) have received far more attention than fluid–solid

equilibria [5]. The appearance of the Gibbs ensemble [6, 7]

in the late 1980s provoked an explosion of papers dealing

with vapor–liquid equilibria. The method has been applied to

determine vapor–solid equilibria [8], but not for studying fluid–

solid equilibria.

An interesting approach to the problem of the fluid–solid

equilibrium was provided by Wilding and co-workers, who, in

1997, proposed the phase switch Monte Carlo method [9, 10].

This method was first applied to the study of the free energy

difference between fcc and hcp close-packed structures of

hard spheres [9, 11]. Three years later, Wilding and Bruce

showed that the method could be applied to obtain fluid–

solid equilibrium, and the fluid–solid equilibria of hard spheres

was determined for different system sizes [12, 13]. Quite

recently, Wilding and co-workers and Errington independently

illustrated how the method could also be applied to Lennard-

Jones (LJ) particles [14, 15]. In our view, the phase switch

Monte Carlo is closely related to the ‘Gibbs ensemble method’

for fluid–solid equilibria, because, as in the Gibbs ensemble

method, phase equilibria are computed without free energy

calculations. In the phase switch methodology, trial moves

are introduced within the Monte Carlo program, in which

configurations obtained from simulations of the liquid are

tested for the solid phase and vice versa (phase switch). For

a certain thermodynamic condition (p and T ) the relative

probability of the system being in the liquid or solid phase

is evaluated, and this allows one to estimate free energy

differences. In the phase switch methodology the system jumps

suddenly from the liquid to the solid in just one step. This

method has been reviewed recently by Bruce and Wilding [10],

and has proved to be quite successful for hard spheres and LJ

systems. It is likely that the methodology can also be applied

to molecular systems although results have not been presented

so far. It is not obvious whether the methodology can be used

to determine solid–solid equilibria in complex systems.

Another alternative route has emerged in recent years.

Grochola [16] proposed to establish a thermodynamic path

connecting the liquid with the solid phase. Of course, phase

transitions should not occur along the path. If this is the

case then it is possible to compute the free energy difference

between the two phases. It is fair to say that Lovett [17]

was the first to suggest such a path, although it was Grochola

who developed it into a practical method. The system goes

from the liquid to the solid not in one step (as in the
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phase switching methodology) but in a gradual way. Several

variations have been proposed so far and the method has been

applied successfully to LJ, electrolytes, aluminum [16, 18, 19]

and also molecular systems, such as benzene [20]. At this stage

it is not obvious whether it could also be applied to study solid–

solid equilibria.

Another approach to get free energies of solids is to use

lattice dynamic methods [21]. By diagonalizing the quadratic

form of the Hamiltonian the system may be transformed into a

collection of independent harmonic oscillators for which the

free energy is easily obtained. This procedure allows one

to estimate free energies at low temperatures and fails for

discontinuous potentials and when anharmonic contributions

become important (close to the melting point). The method

has been used by Tanaka et al [22, 23] to get the melting point

of several water models.

In this review we focus on the determination of phase

equilibria between two phases, where at least one of them

is a solid phase. Therefore, the goal is not just fluid–

solid equilibria but also solid–solid equilibria. Free energy

calculations allow in fact the determination of the global

phase diagram of a system (fluid–solid and solid–solid). In

this methodology the free energy is determined for the two

coexisting phases and the coexistence point is obtained by

imposing the conditions of equal pressure, temperature and

chemical potential. Usually the chemical potential of the liquid

is obtained via thermodynamic integration. Different methods

are used to determine the chemical potential of the solid. In

their pioneering work, Hoover and Ree used the so called cell

occupancy method [24, 3]. In this method each molecule is

restricted to its Wigner–Seitz cell, and the solid is expanded up

to low densities [3]. One of the problems of this method is the

appearance of a phase transition in the integration path (from

the solid to the gas). The method has also been applied to the

LJ system [25, 26].

In 1984, Frenkel and Ladd proposed an alternative

method, the Einstein crystal method [27]. In this method, that

has become the standard method for determining free energies

of solids, the change in free energy from the real crystal to

an ideal Einstein crystal (in which there are no intermolecular

interactions and where each molecule vibrates around its

lattice point via a harmonic potential) is computed. Since the

free energy of the reference ideal Einstein crystal is known

analytically, it is possible to compute the free energy of the

solid. If the equation of state (EOS) and free energies of both

phases are known it is then possible to determine the conditions

for the equilibrium between the two phases. Repeating the

calculation at different thermodynamic conditions, it is then

possible to determine the phase diagram for a certain potential

model. This route has often been used in the past for

a number of simple models including hard ellipsoids [28],

the Gay Berne model [29], the hard Gaussian [30], hard

dumbbells [31–34], hard spherocylinders [35–37], diatomic LJ

models [38–40], quadrupolar hard dumbells [41], hard flexible

chains [42, 43], linear rigid chains [44, 45], chiral systems [46],

quantum hard spheres [47], primitive models of water [48],

electrolytes [49, 50], benzene [51, 52], propane [53] and

idealized models of colloidal particles [54–56, 50, 57, 58].

Some of the main findings of this research (up to 2000)

have been reviewed by Monson and Kofke [5]. Forty

years after the first determination of fluid–solid equilibria

(for hard spheres [2]), the number of models for which it

has been determined is still small. The situation is even

worse if one considers studies of phase diagram calculations

(including both fluid–solid and solid–solid calculations) for

models describing real molecules. Then the number of

considered systems is quite small, comprising nitrogen [59],

alkanes [60], fullerenes [61], ionic salts [62, 63] and just in

the last few years carbon [64], silicon [65], silica [66, 67] and

hydrates [68].

As can be seen, water was missing, and this is

surprising taking into account its importance as solvent

and as the medium where life occurs [69]. Although

water has been studied in thousands of simulation studies

since the pioneering works of Barker and Watts [70] and

Rahman and Stillinger [71], the study of its phase diagram

by computer simulation has not received much attention.

Interest has focused mainly on the possible existence of

a liquid–liquid equilibrium [72–79]. The interest in the

solid phases of water has been rather limited, although one

observes a clear revival in the last decade [80–104]. The

only attempt previous to our work to determine the phase

diagram of water was performed by Baez and Clancy in

1995 [105, 106]. Estimates of the melting point of TIP4P

were provided by Tanaka et al [22, 23], Vlot et al [107]

and Haymet et al [108, 109]. Motivated by this, our

group has undertaken the task of determining the phase

diagram for a number of water models [110, 111]. The

study of water revealed that phase diagram calculations are

indeed feasible for molecular systems and that they constitute

a severe test for potential models. It is clear that the

phase diagram contains information about the intermolecular

interactions [112–114].

The determination of a phase diagram is not, in principle,

a difficult task. However, it is cumbersome, and somewhat

tricky. In this work we will illustrate the details leading to the

determination of the phase diagram of water. They can indeed

be useful for those interested in water and its phase diagram.

But the described methodology can be applied to other

substances/models as well. We believe that by describing the

calculations for water we are also describing how to do it for

any other type of molecule. Problems where the determination

of the fluid–solid equilibria by molecular simulation can indeed

bring new light are, among others, the design of model

potentials for water and other molecules [69, 115, 116, 20],

the study of nucleation [117–121] (where the equilibrium

conditions should be known in advance), the study of

the fluid–solid equilibria in colloidal systems and also the

very interesting problem of protein crystallization. Our

goal here is to describe all the details to encourage the

reader to implement phase diagram calculations (including

at least one solid phase) either to gain new insight on

appealing problems or to improve currently available potential

models.
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2. Basic definitions

For a pure substance, two phases (labeled as I and II) are in

equilibrium when their pressures, temperatures and chemical

potentials are equal. A phase diagram is just a plot (for

instance in the p, T plane) of the coexistence points between

the different phases of the system (gas, liquid or solid). In

this paper we shall focus on determining the phase equilibria

for rigid molecules. Two ensembles are particularly useful to

study phase equilibria: the canonical ensemble (NV T ) and

the isobaric–isothermal ensemble (N pT ). In the canonical

ensemble the Helmholtz free energy A is given by the

following expression [122, 26]:

A = −kBT ln(Q(N, V , T )) = −kBT ln

(
q N

N !

×

∫
exp[−βU(r1, ω1, . . . , rN , ωN )] d1 . . . dN

)
(1)

where β = 1/(kBT ), U is the intermolecular energy of the

whole system, q is the molecular partition function and di

stands for dri dωi , where dri = dxi dyi dzi . The location of

molecule i is given by the Cartesian coordinates xi , yi , zi of

the reference point and a normalized set of angles defining

the orientation of the molecule (ωi ). By normalized we mean

that
∫

dωi = 1. For instance a reasonable choice for ωi is

ωi = Ωi/V�, where Ωi are the Euler angles [123] defining

the orientation of the molecule and V� =
∫

dΩi = 8π2.

For a non-linear molecule the partition function can be written

as [122]

q = qt′qrqvqe

q =

[(
2πmkBT

h2

)3/2
][

(2πkBT )3/2V�(I1 I2 I3)
1/2

s′h3

]

×

[∏

j

exp(−βhν j/2)

1 − exp(βhν j)

]
[
ge−βDe

]
. (2)

In the previous equation translational and rotational

degrees of freedom are treated classically (except for the

symmetry number s ′ and for the factor h), and vibrational and

electronic degrees of freedom are described by the quantum

partition function. qt′ = qt/V is the translational partition

function (divided by the volume), and qr, qv and qe are

the rotational, vibrational and electronic partition functions,

respectively. The rotational, vibrational and electronic

partition functions are dimensionless. We shall assume that

the rotational, vibrational and electronic partition functions

are identical in two coexistence phases. For this reason their

precise value does not affect phase equilibria and we shall

simply assume that their value is unity (we do not pretend to

determine absolute free energies but rather phase equilibria).

The first factor qt′ has units of inverse volume or inverse cubic

length. It is usually denoted as the inverse of the cubic de

Broglie wavelength [122] (i.e. 1/�3). Therefore, in this work

qt′ is given by

qt′ =
1

�3
=

1

(h2/(2πmkBT ))3/2
. (3)

In the N pT ensemble the Gibbs free energy G can be

obtained as G = −kBT ln(Q(N, p, T )), where Q(N, p, T )

is given by

Q(N, p, T ) =
q Nβp

N !

∫
exp(−βpV ) dV

×

∫
exp[−βU(ω1, s1, . . . , sN , ωN ; H)]V N

× ds1 dω1 dsN dωN (4)

where si stands for the coordinates of the reference point of

molecule i in simulation box units. The conversion from

simulation box units si to Cartesian coordinates ri can be

performed via the H matrix ri = Hsi (the volume of the system

is just the determinant of the H matrix). When performing

Monte Carlo (MC) simulations of solid phases it is important

that changes in the shape of the simulation box are allowed

(i.e. changes in H). This is usually denoted as anisotropic N pT

simulations. They were first introduced within MD simulations

by Parrinello and Rahman [124, 125], and extended to MC

simulations by Yashonath and Rao [126]. In anisotropic N pT

Monte Carlo the elements of the H matrix undergo random

displacements, and this provokes a change both in the volume

of the system and in the shape of the simulation box. Further

details of the methodology can be found elsewhere [126, 127].

The use of the anisotropic version of the N pT ensemble is

absolutely required to simulate solid phases. It guarantees that

the shape of the simulation box (and therefore that of the unit

cell of the solid) is the equilibrium one. It also guarantees

that the solid is under hydrostatic pressure and free of stress

(the pressure tensor will then be diagonal, with the three

components being identical to the thermodynamic pressure).

3. Fluid–solid equilibrium from NpT simulations?

A possible way to determine the fluid–solid equilibria is by

performing simulations at constant pressure and cooling the

liquid until it freezes. However, it is very difficult to observe

in computer simulations the formation of a crystal, and this

is especially true for molecular fluids [82, 83, 128]. The

nucleation of the solid is an activated process and it may be

difficult to observe within the timescale of the simulation. In

fact even in real experiments super-cooled liquids are often

found [128]. The other possibility is to heat the solid until

it melts. Experimentally, when a solid is heated at constant

pressure it always melts at the melting temperature (with only

a few exceptions to this rule). In fact, Bridgman [129] stated

in 1912 ‘It is impossible to superheat a crystalline phase with

respect to the liquid’. Unfortunately in computer simulations

(in contrast to real experiments) one may superheat the solid

before it melts. This is well known for hard spheres [130] (with

pressure being the thermodynamic variable in question) and

for Lennard-Jones particles [131]. The same is true for other

systems, such as water. For water models it has been found that

in N pT runs ices melt at a temperature about 90 K above the

equilibrium melting point [132, 133]. Similar results have been

obtained for nitromethane [134] or NaCl [19]. In this respect

N pT simulations provide an upper limit of the melting point.
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Introducing defects within the solid reduces considerably the

amount of superheating [135, 136].

The difference between the results of N pT simulations

and those found in experiments (summarized in the Bridgman’s

statement) is striking. The explanation to this puzzle is that

in experiments melting occurs typically via heterogeneous

nucleation starting at interfaces (real solids do always have

interfaces), whereas in N pT simulations it must occur via

homogeneous nucleation (due to the absence of the interface),

requiring a rather long time [131, 137, 138]. Therefore new

strategies must be proposed to obtain fluid–solid (or solid–

solid) equilibria from simulations. The first possibility is to

compute separately the free energy of the liquid and of the

solid and determine the condition of chemical equilibrium. The

second is to introduce a liquid nucleus in contact with the solid

(i.e. a seed), since this will eliminate the superheating. These

two possibilities will be discussed in this paper.

4. Thermodynamic integration: a general scheme to
obtain free energies

In thermodynamic integration the free energy difference

between two states/systems is obtained by integrating a certain

thermodynamic function along the path connecting both

states/systems [139]. The path connecting the two systems or

states must be reversible. No first order phase transition should

be found along the path. We shall distinguish (somewhat

arbitrarily) two types of thermodynamic integration. In the

first one the two states connected by the path possess the same

Hamiltonian (i.e. interaction potential) and they just differ

in the thermodynamic conditions (i.e. T, p . . .). We shall

denote this type of integration as thermodynamic integration.

In the second one, the thermodynamic conditions are the

same for the final and initial conditions (i.e. the same p

and T or same density and T ), but the Hamiltonian (i.e. the

intermolecular potential) will be different for the initial and

final systems. This type of integration will be denoted as

Hamiltonian thermodynamic integration.

4.1. Thermodynamic integration

Assuming that the free energy at a certain thermodynamic state

is known, the free energy at another thermodynamic state is

determined by establishing a reversible path connecting both

states. For a closed system, with a fixed number of particles,

two thermodynamic variables are needed to determine the state

of the system (for instance p and T or V and T ). In practice,

it is convenient to keep one of the thermodynamic variables

constant while performing the integration.

4.1.1. Keeping T constant (integration along isotherms).

Once the Helmholtz free energy at a certain reference density

ρ1 = N/V1 is known, the free energy at another density

ρ2 = N/V2 (T being the same in both cases) can be obtained

as
A(ρ2, T )

NkBT
=

A(ρ1, T )

NkBT
+

∫ ρ2

ρ1

p(ρ)

kBTρ2
dρ. (5)

The integrand can be obtained in a simple way from

N pT runs, isotropic for the fluid and anisotropic for solid

phases [124–126] (so that the equilibrium density is obtained

for different pressures).

4.1.2. Keeping p constant (integration along isobars). In this

integration the temperature of the system is modified while

keeping constant the value of the pressure. In this way the

Gibbs free energy G is obtained for any temperature along

the isobar starting from an initial known value. The working

expression is

G(T2, p)

NkBT2

=
G(T1, p)

NkBT1

−

∫ T2

T1

H (T )

NkBT 2
dT (6)

where H is the enthalpy. In practice, several N pT

simulations (anisotropic N pT for solids) are performed at

different temperatures and the integrand is determined from the

simulations.

4.1.3. Keeping the density constant (integration along

isochores). In this case the density is constant and the

temperature is modified. The working expression is

A(T2, V )

NkBT2

=
A(T1, V )

NkBT1

−

∫ T2

T1

U(T )

NkBT 2
dT . (7)

For fluids the integrand is easily obtained from NV T

simulations. Although equation (7) is quite useful for fluid

phases, it is not so useful for solid phases. The reason is that

for solids the density should be constant along the integration

but the shape of the simulation box should not (except for

cubic solids). In fact, the equilibrium shape of the unit

cell (simulation box shape) changes when the temperature is

modified at constant density.

4.2. Hamiltonian integration

In this type of integration the Hamiltonian of the system

changes between the initial (λ = 0) and the final state (λ = 1).

This can be accomplished by introducing a coupling parameter

(λ) into the interaction energy of the system. The interaction

energy becomes then a function of this coupling parameter

(U(λ)). The free energy of the system will be a function not

only of the thermodynamic variables but also of λ:

A(N, V , T, λ) = −kBT ln

[
q N

N !

∫
exp[−βU(λ)]d1 . . . dN

]
.

(8)

By performing the derivative with respect to λ in equation (8)

one obtains

∂ A(N, V , T, λ)

∂λ
=

〈
∂U(λ)

∂λ

〉

N,V,T ,λ

. (9)

By integrating this differential equation one obtains

A(N, V , T, λ = 1) = A(N, V , T, λ = 0)

+

∫ λ=1

λ=0

〈
∂U(λ)

∂λ

〉

N,V,T ,λ

dλ. (10)

This equation gives the difference in free energy between two

states with the same temperature and density but with different

5
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Hamiltonians (intermolecular potentials). A similar equation

can be obtained within the isobaric–isothermal ensemble. In

this case the difference in Gibbs free energy between two

systems with the same temperature and pressure and different

Hamiltonians is given by

G(N, p, T, λ = 1) = G(N, p, T, λ = 0)

+

∫ λ=1

λ=0

〈
∂U(λ)

∂λ

〉

N,p,T,λ

dλ. (11)

5. The machinery in action. I. Obtaining the free
energy of the liquid phase

Here we shall briefly describe three possibilities to obtain the

free energy of the liquid phase (there are other possibilities).

The three routes considered are: thermodynamic integration,

Hamiltonian thermodynamic integration and the Widom test

particle method.

5.1. Thermodynamic integration

When the density of a fluid tends to zero, the particles are far

apart so that intermolecular interactions are irrelevant, and the

system tends to an ideal gas. Therefore the free energy of the

real fluid at a certain density ρ and temperature is given by

A(ρ, T )

NkBT
= ln(ρ�3) − 1 +

ln(2π N)

2N

+

∫ ρ

0

[
p

kBTρ
′2

−
1

ρ ′

]
dρ ′ (12)

where the first three terms on the right-hand side represent

the ideal gas contribution to the free energy (a logarithmic

correction to the Stirling’s approximation was included) and

the last term is the residual part (a residual property is

defined as the difference between that of the system and that

of an ideal gas at the same temperature and density). To

derive equation (12) the rotational, vibrational and electronic

contributions to the partition function, equation (2), were set to

one. The integrand in equation (12) tends at low densities to

the second virial coefficient. The first term on the right-hand

side of equation (12) is just a reduced density and of course

is dimensionless (although its numerical value depends on the

value of �). To avoid phase transitions the integration along

the isotherm should be performed at supercritical temperatures.

Once the density of the liquid is achieved, one can integrate

along an isochore to low temperatures.

5.2. Free energy of liquids by Hamiltonian thermodynamic

integration

Let us label as A the system for which the free energy is known

in the fluid phase, and B the system for which the free energy is

unknown. By introducing a coupling parameter one can change

from the Hamiltonian of A to the Hamiltonian of B:

U(λ) = (1 − λ)UA + λUB (13)

where λ is a parameter ranging from zero (system A) to unity

(system B).

According to equation (10), the free energy difference

between A and B is given by

AB(N, V , T ) = AA(N, V , T ) +

∫ 1

0

〈UB − UA〉N,V,T ,λ dλ

(14)

where 〈UB − UA〉N,V,T ,λ can be obtained by performing NV T

simulations for a certain value of λ. The value of the integral

is then obtained numerically.

5.3. Widom test particle method

The chemical potential can be obtained by the procedure

proposed by Widom in 1963 [140], which yields

µres = −kBT ln 〈exp(−βUtest)〉N,V,T . (15)

This formula states that the residual value of the chemical

potential µres is just the average of the Boltzmann factor of

the interaction energy (Utest) of a test particle. Although this

formula is quite useful, its practical implementation may be

problematic when the density of the system is high (so that

inserting a particle becomes difficult). This is especially true

for molecular systems and even more dramatic for systems

with important orientational dependence in the pair potential.

This is the case of water, for which it is quite difficult to

obtain reliable chemical potentials by using the test particle

method [141].

6. The machinery in action. II. Free energy of solids

The Einstein crystal method was proposed by Frenkel

and Ladd in 1984 [27] and, since then, it has become

the standard method to compute the free energy of

solids [32, 41, 42, 142, 29, 143, 62, 44, 144, 63]. In this

method an ideal Einstein crystal is used as the reference

system to compute the free energy of a solid. An ideal

Einstein crystal is a solid (the word ideal pointing out the

absence of intermolecular interactions) in which the particles

(atoms or molecules) are bounded to their lattice positions

and orientations by a harmonic potential and in which there

are no interparticle interactions. The free energy of an ideal

Einstein crystal can be computed analytically for atomic solids

and numerically for molecular solids.

For practical reasons, that will be clarified later, it is

convenient to use an Einstein crystal where a certain reference

point of the whole crystal is fixed. Two choices are possible.

• Fixing the position of the center of mass. This was the

original choice of Frenkel and Ladd [27]. We shall denote

the reference system as an ideal Einstein crystal with fixed

center of mass and the technique will be referred to as the

Einstein crystal approach.

• The second choice is to fix the position of just one of

the molecules of the system, for instance molecule 1. In

this second case we shall denote the reference system as

an ideal Einstein molecule with fixed molecule 1. This

methodology has been proposed quite recently [145] and

will be denoted as the Einstein molecule approach.

6
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Since the determination of free energy for solids is rather

involved and not many examples can be found in the literature

describing the details, we shall describe both methodologies in

detail. Obviously both approaches are quite similar and indeed

provide identical values of the free energy of the solid phase.

6.1. The Einstein crystal method

In the Einstein crystal approach the reference system is an ideal

Einstein crystal with fixed center of mass. Let us describe

briefly the notation that will be used in this section. The

superscript CM indicates that the center of mass is fixed. The

subscript specifies the interactions present in the system. In

particular, the subscript Ein-id stands for ideal Einstein crystal

(without intermolecular interactions), the subscript Ein-sol

means that both the harmonic springs and the intermolecular

interactions are present and the subscript sol indicates that

only the intermolecular interactions are present (without the

harmonic springs).

The whole path from the reference ideal Einstein crystal

with fixed center of mass to the crystal of interest can be

described as

Asol = ACM
Ein-id + [(ACM

Ein-sol − ACM
Ein-id)

+ (ACM
sol − ACM

Ein-sol)] + (Asol − ACM
sol ). (16)

Here ACM
Ein-id is the free energy of the reference system (i.e. the

ideal Einstein crystal with fixed center of mass). The first step

is the computation of the free energy difference between the

ideal Einstein crystal and the interacting Einstein crystal both

with center of mass fixed (ACM
Ein-sol − ACM

Ein-id). In the second step

(ACM
sol − ACM

Ein-sol), the springs of the interacting Einstein crystal

are gradually turned off to obtain the crystal of interest (both

systems with fixed center of mass). Finally, the solid with fixed

center of mass is transformed into a solid with no fixed center

of mass (Asol− ACM
sol ). Equation (16) can be written in a simpler

way as

Asol = ACM
Ein-id + [�A1 + �A2] + �A3. (17)

By comparing equation (17) with equation (16) the

meaning of the terms �A1, �A2 and �A3 is clarified.

Basically, obtaining Asol is a four step process, since we need

to obtain ACM
Ein-id (step 0), �A1 (step 1), �A2 (step 2) and

�A3 (step 3). This integration path is schematically shown

in figure 1(a).

6.1.1. Step 0. Obtaining the free energy of the ideal

Einstein crystal with fixed center of mass: ACM
Ein-id. As

mentioned above, an ideal Einstein crystal is a solid in

which the molecules are bounded to their lattice positions and

orientations by harmonic springs. We will focus on rigid

non-linear molecular solids. Although the translational field

is always applied in the same form, the expression of the

orientational field depends on the geometry of the considered

molecule. We shall describe here the procedure for a molecule

with point group C2v, for instance water. The appropriate

expression of the orientational field for other geometries will

be given later on.

Figure 1. Thermodynamic path used in (a) the Einstein crystal
method (Frenkel and Ladd [27] and Polson et al [142]) and (b) the
Einstein molecule approach [145].

The energy of the ideal Einstein crystal is given by

UEin-id = UEin-id,t + UEin,or (18)

UEin-id,t =
N∑

i=1

[
�E (ri − ri0)

2
]

(19)

UEin,or(C2v) =
N∑

i=1

uEin,or,i

=
N∑

i=1

[
�E,a sin2

(
ψa,i

)
+ �E,b

(
ψb,i

π

)2
]

. (20)

In the preceding equation ri represents the instantaneous

location of the reference point of molecule i , and ri0 is the

equilibrium position of this reference point of molecule i in

the crystal (i.e. ri will fluctuate along the simulation run but

ri0 will not). A possible choice for the reference point (which

defines the location of the molecule) is the molecular center of

mass. In fact, the rotational partition function of the molecule

qr is computed by using the principal moments of inertia (I1,

I2 and I3) with respect to a body frame with origin at the

center of mass of the molecule. One could also use the center

of mass of the molecule as the reference point to compute

configurational properties. However, it should be pointed out

that configurational properties do not depend on the choice of

the reference point. For this reason, to compute configurational

properties, there is a certain degree of freedom in choosing the

reference point of the molecule. For free energy calculations it

is very convenient (the reasons will be clarified later) if the

reference point is chosen so that all elements of symmetry

pass through it. This requirement is satisfied by the center

of mass, but it may also be satisfied by other points. For

instance, in the case of water, all elements of symmetry pass

through the oxygen atom so that its choice as reference point is

also quite convenient. Alternatively, one could argue that the

7
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oxygen would become the center of mass of the molecule if

the hydrogen atoms would have zero mass. Since the phase

diagram of a water model does not depend on the masses

of the atoms forming the molecule, setting the masses of the

hydrogen atoms to zero would not affect the phase equilibria.

In this work we shall use the oxygen as the reference point

of the water molecule and this choice will not affect the

phase equilibria (take the reason you prefer: either because

configurational properties do not depend on the choice of the

reference point, or because there is a certain combination of

masses of the atoms of the molecule that render the center of

mass on the oxygen atom). The term UEin-id,t in equation (19)

is a harmonic field that tends to keep the particles at their

lattice positions (ri0), while UEin,or forces the particles to have

the right orientation. �E , �E,a and �E,b are the coupling

parameters of the springs (not to be confused with the thermal

de Broglie wavelength �). Notice that �E,a and �E,b have

energy units whereas �E has units of energy over a squared

length. The angles ψa,i and ψb,i are defined in terms of

two unit vectors, �a and �b, that specify the orientation of the

molecule. ψa,i is the angle formed by the unit vector �a of

molecule i in a given configuration (�ai ) and the unit vector

(�ai0) of this molecule in the reference lattice. The angle ψb,i

is defined analogously but with vector �b. The definition of

vectors �a and �b for a rigid triatomic molecule is shown in

figure 2. This form of the orientational field (equation (20))

was used by Vega and Monson [48] to get the free energy of

a primitive model of water [146]. The vector �a is calculated

as the subtraction of the bond vectors �a = (�l2 − �l1)/|�l2 − �l1|,
while �b = (�l2 + �l1)/|�l2 + �l1|. The angles ψa,i and ψb,i can

be obtained simply from the scalar product of vectors �ai and

�ai0 (both of them being unitary vectors) and �bi and �bi0 (both of

them being unitary vectors) respectively as

ψa,i = acos(�ai · �ai0)

ψb,i = acos(�bi · �bi0)
(21)

so that ψa,i and ψb,i will adopt values between zero and π .

Notice that in the orientational field along the �b direction (see

equation (20)) the angle ψb,i is divided by a factor of π . In this

way, this term (ψb,i/π)2 also takes values between zero (when
�b is parallel to �bi0) and unity (when �bi and �bi0 form an angle of

π radians), and both orientational fields have the same strength

(the sin2(ψa) field changes from zero when ψa = 0 or ψa = π

to unity when ψa = π/2).

The partition function of the ideal Einstein crystal in

the canonical ensemble (after integrating over the rotational

momenta) is given by

QEin-id =
1

N !

1

h3N
(qrqvqe)

N

×

∫
exp

[
−β

N∑

i=1

p2
i

2m i

]
dp1 . . . dpN

×

∫
exp

[
−βUEin-id

]
d1 . . . dN, (22)

where pi = (pxi , pyi, pzi ) represents the momentum of

molecule i and di = dri dωi , with ri the position vector of

the reference point of molecule i and ωi its normalized angular

Figure 2. Definition of the vectors �a and �b in a triatomic rigid

molecule with a twofold symmetry axis. The vectors �a and �b should
be normalized to have modulus one.

coordinates. Consistent with our choice for the fluid phase,

qr, qv, qe will be set arbitrarily to unity (they will be omitted in

what follows). Now a subtle issue appears. In the Einstein

crystal approach each molecule (via the reference point) is

attached to a lattice point. One can compute the free energy for

a solid where each molecule is attached to one and only one

lattice point. However, one should not forget that there are N !
possible permutations. Therefore, the true free energy of the

system is that obtained for a certain field where each molecule

is attached to one lattice site multiplied by the number of

possible permutations (i.e., N !). For this reason the partition

function is

QEin-id =
1

h3N

∫
exp

[
−β

N∑

i=1

p2
i

2m i

]
dp1 . . . dpN

×

∫

one permutation

exp
[
−βUEin-id

]
d1 . . . dN, (23)

where the integral over coordinates is now computed for just

one permutation (and hence the label one permutation in the

integral over coordinates). The expression one permutation in

equation (23) reminds us that each molecule is attached (via

UEin-id) to one and only one lattice point. Let us now impose

mathematically the condition of fixed center of mass of the

reference points. For water we are fixing the center of mass

of the oxygen atoms (the O will act as the reference point

of the molecule) rather than fixing the center of mass of the

whole system (including the hydrogens). It is simpler and more

convenient for molecular fluids to fix the center of mass of

the reference points, rather than fixing the center of mass of

all the atoms of the system. In the configurational space, the

restriction implies that

RCM(r1, r2 . . . rN ) − R0
CM = 0

N∑

i=1

µi(ri − ri0) = 0
(24)

where, if the mass assigned to all reference points (one per

molecule) is the same, µi = 1/N , i = 1, . . . , N . In the

8
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previous equation RCM is the center of mass of the reference

points of the system (there is one reference point per molecule)

in an instantaneous configuration and R0
CM is the center of mass

of the reference points of the system when the molecules stand

on the lattice positions of the Einstein crystal field. RCM is

a function of the coordinates of the particles of the system

whereas R0
CM is one parameter. Due to thermal vibration, in

general RCM will be different from R0
CM. The constraint given

by equation (24) means that from all possible configurations of

the particles of the system only those satisfying RCM = R0
CM

will be allowed.

A comment is in order here. The value of the molecular

mass does not affect the phase equilibria (i.e., the molecular

mass is irrelevant to determine phase transitions). For instance,

for an LJ system, the triple point does not depend on the

particular value of the mass of the system (for Ar and Kr

the melting point is different, not because of their mass but

because of the different values of the parameters of the LJ

potential). For this reason, for phase diagram calculations it

is quite convenient to assign the same mass to all molecules

of the system (regardless of whether this is true or not in real

experiments). For instance, for NaCl, it is possible to assign the

same mass to Na and Cl without affecting the phase equilibria

of the model. In fact, we have used this strategy to determine its

melting point [147]. Therefore, the simple choice µi = 1/N ,

i = 1, . . . , N (i.e., assigning the same mass to all particles

of the system or similarly to all reference points) can be used

to determine phase equilibria without affecting the results.

We strongly recommend this choice. Of course, dynamic

properties depend on the mass, but not phase equilibria, which

is the main focus of this paper.

As a consequence of the centre of mass constraint, the

space of momenta is constrained to

N∑

i=1

pi = 0. (25)

The partition function of an ideal Einstein crystal with fixed

center of mass QCM
Ein-id can be written as

QCM
Ein-id = QCM

Ein,t QEin,or. (26)

Then the free energy is simply obtained as

ACM
Ein-id = ACM

Ein,t + AEin,or

= −kBT ln QCM
Ein,t − kBT ln QEin,or. (27)

The orientational term QEin,or will be computed by

evaluating numerically the following integral:

QEin,or =

[
1

8π2

∫
exp

(
−βuEin,or

)
sin θdφ dθ dγ

]N

(28)

where φ, θ and γ stand for the Euler angles defining the

orientation of the molecule and uEin,or is the orientational

Einstein field for just one molecule (see equation (20)). We

have chosen to use the definition of Gray and Gubbins of the

Euler angles [123]. In the particular case of a molecule with

C2v symmetry (for instance water) it reads

QEin,or =

[
1

8π2

∫
exp

(
−β�E,a sin2(ψa)

− β�E,b

(
ψb

π

)2)
sin θdφ dθ dγ

]N

. (29)

Notice that ψa and ψb are functions of the Euler angles.

The integral given by equation (28) or (29) can be evaluated

numerically (for instance using a Monte Carlo numerical

integration methodology). An approximate analytical

expression [48] has been provided for C2v which is valid

in the limit of large coupling constants (�E,a,�E,b). The

translational term QCM
Ein,t is given by the following expression:

QCM
Ein,t =

1

h3(N−1)

∫
exp

[
−β

N∑

i=1

p2
i

2m i

]
δ

( N∑

i=1

pi

)
dp1 . . . dpN

×

∫
exp

[
−β�E

N∑

i=1

(ri − ri0)
2

]

× δ

( N∑

i=1

1

N
(ri − ri0)

)
dr1 . . . drN . (30)

Notice that to simplify the notation we have dropped the

subindex ‘one permutation’ in the integration over coordinates,

since it is sufficiently clear that this is indeed the case when

each molecule is attached by harmonic springs to just one

lattice point. This integral (equation (30)) can be solved

analytically [142] (see appendix A for the details) and the result

is

QCM
Ein,t = PCM

(
π

β�E

)3(N−1)/2

(N)3/2 . (31)

The factor PCM accounts for the contribution of the integral

over the space of momenta. Its value is not given explicitly,

because we will see later that it cancels out with another similar

term.

6.1.2. Step 1. Free energy change between an interacting

Einstein crystal and a non-interacting Einstein crystal (both

with fixed center of mass): evaluating �A1. The free energy

difference between two arbitrary systems 1 and 2 is given by

A2 − A1 = −kBT ln

∫
exp(−βU2)d1 . . . dN∫
exp(−βU1)d1 . . . dN

. (32)

Multiplying and dividing the numerator of the integrand by the

factor exp(−βU1), it is obtained that

A2 − A1 = −kBT ln 〈exp [−β(U2 − U1)]〉1 (33)

where 〈exp[−β(U2 − U1)]〉1 is an average over the

configurations visited by system 1. Taking U2 = UEin-id + Usol

and U1 = UEin-id (with Usol the intermolecular potential of the

solid), the previous expression can be written

ACM
Ein-sol − ACM

Ein-id = −kBT ln 〈exp [−β(Usol)]〉Ein-id . (34)

Therefore, the free energy change can be computed simply

as the ensemble average of the factor exp[−β(Usol)] along

a simulation of the ideal Einstein crystal with fixed center

9
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of mass. This average is evaluated in an NV T MC

simulation [41, 48, 57, 50]. Note that this calculation must be

done with the center of mass fixed. Often it is not possible to

evaluate the free energy change as expressed in equation (34),

because the exponential exp(−βUsol) takes values larger than

those that can be handled by a computer. This problem can

be avoided if the expression is rewritten in such a way that the

exponent does not take large values, for example, adding and

subtracting from the energy of the solid Usol the constant lattice

energy Ulattice:

�A1 = ACM
Ein-sol − ACM

Ein-id = Ulattice − kBT

× ln 〈exp [−β(Usol − Ulattice)]〉Ein-id . (35)

One of the parameters that needs to be fixed when

implementing the Einstein crystal method is the value of the

spring constant (we will choose �E = �E,a = �E,b). A

convenient choice for �E is one that guarantees a small value

(of about 0.02 NkBT ) for the second term on the right-hand

side of equation (35). When this is the case, �A1 is quite

close to the lattice energy Ulattice, defined as the intermolecular

energy of the system when the molecules stand on the positions

and orientations of the external Einstein field.

6.1.3. Step 2. Free energy change between the solid and the

interacting Einstein crystal (both with fixed center of mass):

evaluating �A2. The free energy change between the solid

and the interacting Einstein crystal (both with fixed center

of mass) will be computed by Hamiltonian thermodynamic

integration. The harmonic springs are turned off gradually, and

the total potential energy can be given by

U(λ) = λUsol + (1 − λ)(UEin-id + Usol). (36)

The parameter λ is defined between zero and unity, so that

when λ = 0 one has the Einstein solid and when λ = 1 one

obtains the solid of interest. The free energy change along this

path will be given by

�A2 = A(N, V , T, λ = 1) − A(N, V , T, λ = 0)

=

∫ λ=1

λ=0

〈
∂U(λ)

∂λ

〉

N,V,T ,λ

dλ

= −

∫ λ=1

λ=0

〈
UEin-id

〉
N,V,T ,λ

dλ. (37)

It is a good idea to use the same values for �E ,�E,a,�E,b.

Then the spring constants along the integration are given by

λ�E , λ�E,a and λ�E,b (all of them being equal). It is

convenient to perform a change in the independent variable

from λ to λ�E so that the integral of equation (37) can be

rewritten as

�A2 = ACM
sol − ACM

Ein-sol = −

∫ �E

0

〈
UEin-id

〉
N,V,T ,λ

�E

d(λ�E ).

(38)

Since the integrand changes by several orders of magnitude it

is convenient to perform a new change of variable [27, 139]

λ�E to ln(λ�E + c), where c is a constant:

�A2 = ACM
sol − ACM

Ein-sol = �A2

= −

∫ ln(�E +c)

ln(c)

〈
UEin-id

〉
N,V,T ,λ

(λ�E + c)

�E

× d(ln(λ�E + c)). (39)

The integrand is now a smooth function of the variable

ln(λ�E + c). A value [27] of c = exp(3.5) provides a good

estimate of the integral (although the optimum value of c may

depend on the particular considered problem). The integral

of this smoother function can be accurately computed using,

for example, the Gauss–Legendre quadrature formula [148].

It is usual to use between ten and 20 points to evaluate the

integral. Fixing the position of the center of mass avoids the

quasi-divergence of the integrand of equation (38) when the

coupling parameter λ tends to zero. Without this constraint,

the integrand would increase sharply in this limit (although

it would remain finite), making the evaluation of the integral

(equation (38)) numerically involved, and making the accurate

evaluation of the integrand at low values of the coupling

parameter somewhat difficult. For this reason, it is numerically

convenient to avoid the translation of the crystal as a whole

for low values of λ and this is achieved either by fixing the

center of mass, as in the Einstein crystal technique, or by fixing

the position of one molecule of the system, as in the Einstein

molecule approach to be described below. In appendix B, the

procedure to implement the somewhat unpleasant condition

of fixed center of mass within a Monte Carlo simulation is

described. This is important since the calculations leading to

�A1 and �A2 should be done with the center of mass fixed.

6.1.4. Step 3. Free energy change between an unconstrained

solid and the solid with fixed center of mass: evaluating �A3.

As we have seen before—see equation (32)—the free energy

change between two systems can be obtained as

�A3 = Asol − ACM
sol = −kBT ln

Qsol

QCM
sol

= kBT ln
QCM

sol

Qsol

(40)

where QCM
sol is given (after integration over rotational momenta)

by

QCM
sol =

(qrqvqe)
N

N !h3(N−1)

×

∫
exp

[
−β

N∑

i=1

p2
i

2m i

]
δ

( N∑

i=1

pi

)
dp1 . . . dpN

×

∫
exp [−βUsol(r1, ω1 . . . rN , ωN )]

× δ

( N∑

i=1

µi (ri − ri0)

)
dr1 dω1 . . . drN dωN (41)

and Qsol is given by an expression similar to that of QCM
sol but

without the delta functions (and with h3N in the denominator

instead of h3(N−1)). Notice that the factor N ! cancels out

when computing the free energy change (it appears both in

Qsol and QCM
sol ). The integration over the space of momenta

of the unconstrained solid is simply the integral of a product

of Gaussian functions, whose solution is (when all molecules

have the same mass)

P =

(
2πmkBT

h2

)(3N)/2

=

(
1

�

)3N

. (42)

The integral over the space of momenta of the solid with

fixed center of mass is equal to the integral of momenta of
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Figure 3. Left: schematic representation of the Einstein molecule, in which particle 1 is fixed and acts as the carrier of the lattice. The
movement of all the remaining particles is given relative to the position of particle 1. Right: permutations generated through periodical
boundary conditions by the motion of particle 1.

the ideal Einstein crystal with fixed center of mass, which

was denoted as PCM. Substituting the partition functions in

equation (40), we arrive at the following expression:

�A3 = Asol − ACM
sol = kBT ln

(
PCM

P

)

+ kBT ln

{∫
exp [−βUsol(r1, ω1 . . . rN , ωN )]

× δ

( N∑

i=1

(1/N)(ri − ri0)

)
dr1ω1 . . . drNωN

}

×

{∫
exp [−βUsol(r1, ω1, . . . rN , ωN )]

× dr1 dω1 . . . drN dωN

}−1

. (43)

The energy of a system is not modified if the sys-

tem is translated (while keeping the relative orientation

of the molecules). The mathematical consequence of

this is that Usol(r1, ω1, . . . , rN , ωN ) can be rewritten as

Usol(ω1, r′
2, ω2, . . . , r′

N ωN ), where r′
i = ri − r1. Let us lo-

cate the center of mass of the lattice point at the origin of the

coordinate system so that
∑

(1/N)ri0 = R0
CM = 0. Let us per-

form a change of variables from r1, r2, . . . , rN to r′
2, . . . , RCM

where RCM is the position of the center of mass of the reference

points. The Jacobian of this transformation is N . With these

changes one obtains for the second term on the right-hand side

of equation (43)

kBT ln

{∫
exp(−βUsol(ω1, r′

2, ω2, r′
3, . . . , r′

N , ωN ))

× δ(RCM)N dω1 dr′
2 dω2 dr′

3 . . . dr′
N dωN dRCM

}

×

{∫
exp(−βUsol(ω1, r′

2, ω2, r′
3, . . . , r′

N , ωN ))

× N dω1 dr′
2 dω2 dr′

3 . . . dr′
N dωN dRCM

}−1

. (44)

After integrating with respect to ω1r′
2ω2 . . . r′

N ωN one obtains

kBT ln

∫
δ(RCM) dRCM∫

dRCM

= kBT ln
1∫

dRCM

. (45)

Since the Dirac Delta is normalised to one. Now there is a quite

subtle issue. The integral in the denominator of equation (45)

is just the volume available to the center of mass. What is the

value of this volume? An interesting comment made explicitly

by Wilding [11, 13, 15, 10] is that the translation of a crystal

as a whole under periodical boundary conditions generates

N permutations between the particles. This is illustrated in

figure 3 for a two dimensional model. When counting the

number of possible configurations we used the value N ! when

going from equations (22) to (23). Therefore, we counted all

possible permutations, so the integral in the denominator of

equation (45) is the volume available to the center of mass

within one given permutation. This value is simply V/N .

Using V instead of (V/N) in the denominator of equation (45)

is incorrect if the value N ! was used to count the number

of permutations. In this case certain permutations would be

counted twice, the first time in the factor N ! and the second

via the translation of the whole crystal (in the volume V ).

Therefore,

�A3 = Asol − ACM
sol = kBT

[
ln(PCM/P) − ln(V/N)

]
. (46)

As can be seen the expression for �A3 is general and does not

depend on the particular form of the intermolecular potential

Usol. Notice that correct results would also be obtained if

one used V in the denominator of equation (45) (so that the

center of mass moves in the whole simulation box) but used

(N −1)! when counting the number of permutations (i.e. count

all permutations between particles except those obtained via

the translation of the whole crystal through the periodical

boundary conditions). In equation (23) one then would obtain

a term (N − 1)!/N !, which provides an 1/N factor that could

be joined with the ln(1/V ) term of equation (45) to give a

contribution −kT ln(V/N) which is identical to that given

in equation (46). Thus �A3 will have a term of the form

−kT ln(V/N) if N ! permutations were included in ACM
Eins-id (as

done by Polson et al [142], and described here) or will have

a term of the form −kT ln(V ) if (N − 1)! permutations were

included in ACM
Eins-id. Both choices are possible and provide the

same total free energy. However, when presenting results it is

important to state clearly the choice, not to confuse the reader.

A sentence like the following could be useful.

11
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• All permutations were included in the reference ideal

Einstein crystal. This would indicate that a term N ! was

used, and therefore �A3 contains a term of the form

−kT ln(V/N).

• All permutations except those obtained by translation of

the crystal under periodical boundary conditions were

included in the reference ideal Einstein crystal. This

would indicate that a term (N−1)! was used, and therefore

�A3 contains a term of the form −kT ln(V ).

However, when presenting results we recommend joining

ACM
Eins-id and �A3 into a unique term since the sum of both

terms is unique and does not depend on the choice of the

number of permutations included in ACM
Eins-id. It is fair to say

that Wilding [12] was the first to point out explicitly that N

permutations were generated by translation under periodical

boundary conditions. This has been taken into account

implicitly by Polson et al [142], since they used a term of the

form −kT ln(V/N) for �A3.

6.1.5. Final expression. The final expression of the free

energy of the solid is

Asol = (ACM
Ein-id + �A3) + �A1 + �A2

= A0 + �A1 + �A2 (47)

where we have defined A0 as A0 = ACM
Ein-id +�A3. Taking into

account all the contributions to the free energy, the free energy

of a molecular solid can be computed using the following

expression:

Asol

NkBT
= −

1

N
ln

[(
1

�

)3N (
π

β�E

)3(N−1)/2

(N)3/2 V

N

]

+
AEin,or

NkBT

+

[
Ulattice

NkBT
−

1

N
ln 〈exp [−β(Usol − Ulattice)]〉Ein-id

]

−

∫ λ=1

λ=0

〈
UEin-id

NkBT

〉

N,V,T ,λ

dλ. (48)

Notice that PCM does not appear in the final expression (so

that its value is irrelevant for free energy calculations). The

first two terms in equation (48) correspond to A0. The last

two terms of equation (48) are �A1 and �A2 respectively.

The argument of the logarithm in the first term on the right-

hand side (embraced by brackets) is adimensional. In fact it

has three factors, the first factor having dimensions of L−3N ,

the second factor having dimensions of L3(N−1) and the last

factor having dimensions of L3. In any computer program a

unit of length l is selected. It is quite convenient to set the

thermal de Broglie wavelength to � = l, and this choice

should be used for the solid (in equation (48)) and for the liquid

(in equation (12)). Then the volume of the simulation box V

(in equation (48)) should be given in l3 units and the value

of the translational spring �E should be given in energy/(l2)

units. Notice that assigning an arbitrary value to � affects the

absolute value of the free energies but it does not affect the

coexistence properties.

An important final comment is in order. Free energy

calculations are usually performed in the NV T ensemble

(with temperature and density fixed). It is quite important

that the shape of the simulation box used in free energy

calculations corresponds to that adopted by the system at

equilibrium. It is not valid to impose (for instance from

experiment) the shape of the simulation box since this will

give free energies higher than the correct ones (the equilibrium

shape minimizes the free energy of the system for a certain

density). Rather, one should first perform N pT anisotropic

Monte Carlo simulations [124–126], and determine the shape

at equilibrium of the simulation box at a certain p, T and

Hamiltonian (the density will be obtained as an average of

the run) and then to perform free energy calculations in the

NV T ensemble using the density and equilibrium shape of

the simulation box obtained from the N pT runs. This remark

is important for solids belonging to any crystalline class but

cubic. A convenient choice for the vectors ri0, �ai,0 and
�bi,0 that define the Einstein crystal field (equations (18)–(20))

is to use the equilibrium positions (to determine ri0) and

orientations (to determine �ai,0 and �bi,0) of the molecules of the

system. Other choices are also possible (for instance fields

driving the molecules into configurations slightly distorted

from the equilibrium one). However, the choice of the

equilibrium configuration has the advantage that a lower value

of the external field �E is needed to obtain reliable results.

Obviously, the free energy of the solid should not depend on

the particular choice of the vectors ri0, �ai,0 and �bi,0 that define

the Einstein crystal field.

6.2. The Einstein molecule approach

Quite recently Vega and Noya have proposed [145] a slightly

different version of the Frenkel–Ladd method. The method

has been denoted as the Einstein molecule approach. The idea

behind the Einstein molecule approach is to fix the position of

one molecule of the system (say molecule 1) instead of fixing

the center of mass. More precisely, by fixing the position of

molecule 1, we mean that we fix the position of its reference

point. The molecule can still rotate as long as its reference

point remains fixed. Therefore, we fix the position of molecule

1 (as given by the reference point) but we do not fix the

orientation of molecule 1. Of course for a simple fluid (HS,

LJ) there are no orientational degrees of freedom, so that in the

Einstein molecule approach atom 1 is fixed. Fixing the position

of one molecule avoids the quasi-divergence of the integrand

of equation (38) when the coupling parameter λ tends to zero.

The computational implementation of the method as well as

the derivation of the main equations is fairly simple.

6.2.1. The ideal Einstein molecule: definition and free

energy. The partition function in the canonical ensemble

(after integrating over the space of momenta) is given by the

following expression:

Q =
(qrqvqe)

N

N !�3N

∫
exp [−βU(r1, ω1, . . . , rN , ωN )]

× dr1 dω1 . . . drN dωN . (49)

We shall assign qr, qv, qe the arbitrary value of one. This

expression can be written in a more convenient way by

12
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exploiting the fact that the potential energy of the system U

depends only on the relative positions of the particles, and not

on their absolute positions; i.e., it is invariant under translations

of the whole system (while keeping the orientations of all the

molecules in the translation). We will perform a change of

variables from (r1, r2, . . . , rN ) to (r1, r2
′ = r2−r1, . . . , rN

′ =
rN − r1). Under periodic boundary conditions and the

minimum image convention, this change of variables leaves

the limits of the integrals unchanged, because the maximum

distance between two particles in any of the three directions of

the space is always less than the length of the simulation box.

Therefore,

Q =
1

N !�3N

∫
dr1

∫
exp

[
−βU(ω1, r′

2, ω2, . . . , r′
N , ωN )

]

× dω1 dr′
2 dω2 . . . dr′

N dωN

=
1

N !�3N

∫
dr1 κ. (50)

The value of the integral κ is independent of the value of r1

and, therefore, we can integrate over r1:

Q =
1

N !�3N
V κ. (51)

The whole partition function (κ) can be computed by

multiplying the integral corresponding to one permutation (κ ′)

by the number of possible permutations, which, for a given

fixed position of particle 1, is equal to (N − 1)!. Therefore, the

partition function can be written as

Q =
1

N !�3N
V (N − 1)! κ ′ =

1

N�3N
V κ ′. (52)

Let us now define the ideal Einstein molecule. The ideal

Einstein molecule is an ideal system (without intermolecular

interactions) where the reference point of one of the molecules

(e.g. molecule 1) does not vibrate and acts as reference,

while the rest of the molecules of the system (i.e. molecules

2, 3, . . . , N) vibrate around their equilibrium configurations

(see figure 3 for a schematic representation). The reference

point of molecule 1 is called the carrier, because this point

transports the lattice. Notice that, in the Einstein molecule,

molecule 1 can undergo orientational vibrations, as long as

its reference point remains in a fixed position (obviously for a

simple fluid there is no such rotation, and the carrier is just the

position of atom 1). The lattice (crystal) is uniquely determined

by the position of the carrier. The Einstein molecule can move

as a whole, and this motion is represented by the motion of

the carrier, which is able to move and occupy any position in

the simulation box. The expression of the energy of the ideal

Einstein molecule is

UEin-mol-id = UEins-mol-id,t + UEin,or

UEin-mol-id,t =
N∑

i=2

[
�E (ri − ri0)

2
]
.

(53)

Notice that the main difference from equation (19) is the

absence of a harmonic term for the reference point of molecule

1. The orientational part of the potential is identical in

the Einstein crystal and in the Einstein molecule approach.

The partition function of the ideal Einstein molecule can be

obtained by performing the integral κ ′ for this particular case

and substituting the value in equation (52). The translational

integral is particularly simple since is just a set of 3(N − 1)

oscillators. The orientational contribution is obtained as in

the Einstein crystal approach. Therefore, the Helmholtz free

energy AEin-mol-id of the ideal Einstein molecule is given by

β AEin-mol-id

N
= −

1

N
ln(Q) =

1

N
ln

(
N�3

V

)

+
3

2

(
1 −

1

N

)
ln

(
�2β�E

π

)
−

1

N
ln(QEin,or). (54)

In the case where the carrier molecule (molecule 1) is

fixed, the free energy will be equal to the free energy of

the ideal Einstein molecule plus a term kT ln(V/�3) (where

the term V comes from the constraint on the position of

molecule 1, and the term �3 comes from the constraint on the

momentum).

6.2.2. Integration path and computation of the free energy

in each step. In the ideal Einstein molecule approach, the

free energy of a given solid will be computed from integration

to the ideal Einstein molecule. This integral is performed in

several steps, that are summarized in the scheme shown in

figure 1. First the ideal Einstein molecule is transformed into

an ideal Einstein molecule with one molecule fixed (what we

mean by particle fixed is that its reference point remains fixed).

Then the ideal Einstein molecule with one particle fixed is

transformed into the real solid with one particle fixed. In the

last step this fixed particle is allowed to move to obtain the

real solid. As is shown in the scheme, the factor kT ln(V/�3)

that appears as a result of fixing one molecule in the ideal

Einstein molecule cancels out with the free energy contribution

of allowing molecule 1 to move to recover the real solid. As

a result, the free energy of a solid can be computed simply by

adding to the free energy of the ideal Einstein molecule the

free energy change between an ideal Einstein molecule with

one fixed atom and the solid with one fixed atom (given by

�A∗
1 + �A∗

2):

Asol = AEin-mol-id + �A∗
1 + �A∗

2 = A∗
0 + �A∗

1 + �A∗
2

(55)

where the asterisk in �A∗
1 and �A∗

2 serves to remind us that the

integral should be performed while keeping the position of the

reference point of molecule 1 fixed (and A∗
0 is just AEin-mol-id).

The computation of the free energy change between the solid

and the ideal Einstein molecule keeping one particle fixed is

completely analogous to the computation of the free energy

change between the solid and the ideal Einstein crystal keeping

the center of mass of the system fixed. As in the Einstein

crystal method, this free energy change will be calculated

in two steps, represented by the terms �A∗
1 and �A∗

2. In

particular, in the first step (�A∗
1) we will compute the free

energy change between the interacting Einstein molecule with

one fixed particle and the ideal Einstein molecule with one

fixed particle. This free energy change is evaluated using the

same procedure as in the Einstein crystal method with the

13
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Table 1. Free energy of the fcc hard sphere solid at a density ρ∗ = 1.040 86. The values of the different terms that contribute to the free
energy in the Einstein molecule and in the Einstein crystal methods are also shown. All free energies are given in NkBT units. The thermal
de Broglie wavelength was set to � = σ , the hard sphere diameter.

Einstein molecule Einstein crystal

N �E /(kT/σ 2) �A∗
1 �A∗

2 A∗
0 Asol �A1 �A2 A0 Asol

108 632.026 0.0172 −3.0046 7.8830 4.896 0.0175 −2.9400 7.8180 4.895
256 632.026 0.0174 −3.0116 7.9254 4.931 0.0175 −2.9797 7.8929 4.931

1372 1000.00 0.0018 −3.6862 8.6383 4.955 0.0018 −3.6802 8.6304 4.952
2048 1000.00 0.0018 −3.6866 8.6403 4.955 0.0015 −3.6819 8.6347 4.954

difference that, instead of fixing the center of mass, the position

of molecule 1 is kept fixed:

�A∗
1 = Ulattice − kBT ln 〈exp [−β(Usol − Ulattice)]〉Ein-mol-id

(56)

which is formally identical to equation (35) except for the

fact that averages should be computed over the ideal Einstein

molecule system, rather than over the ideal Einstein crystal,

and that molecule 1 will be fixed instead of the center of mass.

In the second step, the free energy change between the

interacting Einstein molecule with one fixed particle and the

solid with one fixed particle is computed (�A∗
2). This will

be done by slowly switching off the springs of the interacting

Einstein molecule:

U(λ) = λUsol + (1 − λ)(UEin-mol-id + Usol). (57)

The parameter λ is defined between zero and unity, so that

when λ = 0 one has the interacting Einstein molecule, and

when λ = 1 one obtains the solid of interest (both with

the position of molecule 1 fixed). Usol is the potential of

the system under consideration. This equation is equivalent

to equation (36) for the Einstein crystal. The free energy

change in this first step will be calculated from the following

expression:

�A∗
2 = −

∫ �E

0

〈
UEin-mol-id

〉
N,V,T ,λ

�E

d(λ�E ) (58)

which is identical to equation (38) except for the replacement

of UEin-id by UEin-mol-id. The asterisk indicates that the

reference point of molecule 1 is fixed in the integration. Notice

that this integral does not diverge at low values of λ, because

the translations of the system as a whole are prevented by fixing

the reference point of molecule 1.

6.3. Calculations for the hard sphere solid

Let us now present some results for the free energy of an

fcc solid of hard spheres at a density ρ∗ = 1.040 86. We

shall compute the free energy using both the Einstein crystal

methodology [27, 142] described extensively in this paper

and the Einstein molecule approach. Results are presented in

table 1. The first point to be noted is that �A1 and �A∗
1 (and

�A2 and �A∗
2) are similar but not identical (reflecting the fact

that it is not exactly the same fixing the center of mass as fixing

molecule 1). However, the sum of all terms contributing to

Asol gives the same value, so that the estimated free energy is

the same (within statistical errors) with both methodologies.

Obviously, the free energy of a well defined state should not

depend on the procedure chosen to compute it. Since �A1 and

�A∗
1 are quite similar, and the free energy of the system must

be the same computed by both routes (fixing the center of mass

or fixing molecule 1), then �A2 and �A∗
2 must differ by about

3 ln(N)/(2N), which is the analytical difference between A∗
0

and A0. This is indeed the case as it can be seen in table 1.

The third aspect to be considered from the results of table 1

is that the total free energy presents a strong size dependence.

Notice that this is not a problem of the methodology chosen

to compute the free energy, but it is an intrinsic property of

the HS solid (and likely of other solids as well). In other

words, the free energy of solids presents important finite size

effects. This is further illustrated in figure 4, where the free

energy is plotted as a function of 1/N . The estimated value

of A/(NkBT ) in the thermodynamic limit from our results is

4.9590(2), which is in good agreement with the estimates of

Polson et al [142] (4.9589), Chang and Sandler [149] (4.9591),

Almarza [150] (4.9589) and de Miguel et al (4.9586) [151] (all

obtained from free energy calculations, although with different

implementations). Therefore, the value of the free energy

of hard spheres in the thermodynamic limit for the density

ρ∗ = 1.040 86 seems to be firmly established.

A consequence of the strong N dependence of the solid

free energy is that the coexistence pressure p∗ also presents

a strong N dependence as illustrated in figure 4. It is

of interest to estimate the properties at coexistence in the

thermodynamic limit. We found [145] p∗ = p/(kBT/σ 3) =
11.54(4), ρ∗

s = ρsσ
3 = 1.0372, ρ∗

l = ρlσ
3 = 0.9387

and µ∗ = µ/(kBT ) = 16.04. The coexistence pressure

is in agreement with estimates by Frenkel and Smit [139]

(11.567), Wilding [12] (11.50(9)), Speedy [152] (11.55(11))

and Davidchack and Laird [153] (11.55). The Hoover and Ree

estimate (11.70) seems now to be a little bit high. The chemical

potential at coexistence obtained here is consistent with the

value reported by Sweatman [154] (µ∗ = 15.99–16.08)

obtained using the self-referential methodology to compute

fluid–solid equilibria.

Although finite size effects are present both in fluid and

solid phases, they seem to be more pronounced in the solid

(probably due to the coupling between the periodical boundary

conditions and the geometry of the solid). In principle, one is

interested in properties of the system in the thermodynamic

limit rather than for a finite size system. To estimate free

energies in the thermodynamic limit one should repeat the free

energy calculations for several system sizes and extrapolate
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Figure 4. Left: free energies of HS in the fcc solid for ρ∗ = 1.040 86 as a function of system size (filled circles). The open circles represent
the free energies after including the Frenkel–Ladd finite size corrections (i.e. adding (2/N) ln N to the free energies of the solid). For all
values of N the free energies obtained here (black circles) are in excellent agreement with those reported by Polson et al [142] and de Miguel
et al [151]. Right: coexistence pressure of the fluid–solid equilibria of hard spheres as a function of the system size as obtained from free
energy calculations (filled circles) or from phase switching simulations as reported by Wilding [12] and Errington [14] (open triangles).

to the thermodynamic limit. This is quite involved and

time consuming. For this reason it is of practical interest

to introduce finite size corrections (FSCs) that allow the

estimation (although in an approximate way) of large system

free energies, by performing simulations of small systems

(something similar to the g(r) = 1 approximation [130] used

to correct for the introduction of the cut-off). Several recipes

have been proposed recently [145]. Here we shall describe one

of them, namely the Frenkel–Ladd FSC.

6.4. Finite size corrections: the Frenkel–Ladd approach

In the original paper of 1984, Frenkel and Ladd (FL) provided

an expression for the free energy of the solid (2/N) ln N

higher than the correct free energy. This was first pointed

out by Polson et al [142]. In appendix C the reasons for the

appearance of the extra term (2/N) ln N will be described.

Thus the FL free energy AFL
sol/(NkBT ) is given by

AFL
sol/(NkBT ) = Asol/(NkBT ) + (2/N) ln N. (59)

Notice that the term (2/N) ln(N) tends to zero in the

thermodynamic limit, and therefore the FL expression is valid

in this limit. However, for finite systems the FL expression

gives a free energy higher than the true free energy of the

system. For a typical system size N = 350 the difference

between both values is of the order of 0.03 NkBT . The

interesting issue is that the FL free energies, although incorrect

(for a certain value of N), are relatively close to the value of

the free energy in the thermodynamic limit. This is illustrated

in figure 4 for the HS system. For this reason, one may

simply view the FL expression as containing an approximate

prescription for the finite size corrections, providing free

energies closer to the thermodynamic limit than the correct

free energies of the system of finite size. Other approximate

expressions for the FSCs have been proposed recently [145].

6.5. The symmetry of the orientational field in Einstein crystal

calculations

For molecular fluids, the choice of the orientational external

field used within the Einstein crystal (or Einstein molecule)

simulations should be made with care since this can be a source

of methodological errors. The position of the molecule is given

by the position of the reference point. Things become simpler

if the reference point is chosen in such a way that all elements

of symmetry of the molecule contain this point. For instance,

a convenient choice for H2O, NH3, benzene and N2 are the O,

the N, the center of the hexagon and the geometrical center of

the N2, respectively. Now two orthogonal unit vectors �a and
�b are attached to the reference point, and these two vectors

are sufficient to define the orientation of the molecule (in fact

two degrees of freedom are needed to locate the orientation

of a unit vector �a, and just one degree of freedom to locate

the vector �b, which is perpendicular to �a). Therefore, the unit

vectors �a and �b are a useful way of defining the orientation

of the molecule (the Euler angles could be used as well but

it is more convenient to use �a and �b). For convenience, the

vector �b is chosen along the principal symmetry axis of the

molecule (the Cn with the highest value of n). When the

molecule i stands on its equilibrium position and orientation

in the crystal then the vectors �ai and �bi adopt the values �ai0

and �bi0 respectively. Thus the subindex 0 will refer to the

orientation of the molecule in the equilibrium lattice position.

Let us denote as ψa,i the angle between the vectors �ai and

�ai0 and as ψb,i the angle between the vectors �bi and �bi0 in an

instantaneous configuration. Which expression should be used

for the orientational field? The translational part will always be

given as in equation (19) for the Einstein crystal approach or

as in equation (53) for the Einstein molecule approach. The

orientational part will be the same for the Einstein crystal

or Einstein molecule approaches. We have already given a

convenient expression for the orientational field of a molecule

with point group C2v (for example water). Let us now give a

convenient expression for other symmetries. For a molecule

with a point group of type Cnv a convenient expression for
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UEin-id,or is

UEin,or =
N∑

i=1

[
�E,a sin2

(
nψa,i

2

)
+ �E,b

(
ψb,i

π

)2
]

. (60)

For a molecule with a point group of type Dnh a convenient

expression for UEin-id,or is

UEin,or =
N∑

i=1

[
�E,a sin2

(
nψa,i

2

)
+ �E,b sin2

(
ψb,i

)]
.

(61)

For a molecule with point group Oh, a convenient

expression [57] for UEin-id,or is

UEin,or =
N∑

i=1

[
�E,a sin2

(
ψa,i,min

)
+ �E,b sin2

(
ψb,i,min

)]

(62)

where ψb,i,min stands for the minimum angle between �bi0 and

the six vectors connecting the reference point of the molecule

with the six octahedral atoms/sites and an analogous definition

for ψa,i,min.

For a linear molecule only one vector (i.e. vector �bi ) is

needed and the applied field should be of the form, for a D∞,h,

UEin,or =
N∑

i=1

[
�E,b sin2

(
ψb,i

)]
. (63)

For a C∞,v molecule a convenient choice is

UEin,or =
N∑

i=1

[
�E,b

(
ψb,i

π

)2
]

. (64)

When performing an MC run, it is convenient to introduce

two different types of moves, translations and rotations. In a

translation move the molecule moves as a whole and there is

no change in the orientation of the molecule. Only the change

in the translational energy with respect to the reference Einstein

crystal (or molecule) needs to be computed. In a second type of

move the molecule is rotated in a random direction and angle

with respect to an axis passing through the reference point of

the molecule. Since the reference point does not change the

position under such a rotation, only the orientational energy

with respect to the reference Einstein crystal (or molecule)

needs to be computed.

The choice of an orientational field adapted to the

symmetry of the molecule such as the ones proposed here is

highly recommended. When this is done the energy with the

external field is invariant to any of the symmetry operations

of the molecule. Thus, a standard MC or MD program

will provide correct values of the orientational contribution

to the free energy. One interesting question is whether it is

possible to use an external orientational field that does not

reflect the symmetry of the molecule. The answer is, in

principle, yes, but a special MC or MD code should be written

for this purpose. Special moves should be added where the

symmetry operations of the molecule are implemented. For

instance, for water one should incorporate the C2 operation

that exchanges the positions of the two H atoms. Of course

the energy of the molecule with the rest of the system is

not affected by this operation. However, the energy of the

molecule with the external orientational field may change when

the external orientational field does not reflect the symmetry

of the molecule (see the interesting paper by Schroer and

Monson [51] illustrating this problem for benzene).

For this reason, it is far more convenient and simpler to

use an orientational field that respects the symmetry of the

molecule (examples for Cnv, Dnh, Oh and linear molecules have

been given here). This subtle issue of the symmetry of the

orientational field may have been an important source of errors

in free energy calculations for molecular fluids. Let us just

finish by saying that although we found it convenient to have

the vectors �a and �b orthogonal other choices (as long as they

are not collinear) are also valid and correct.

6.6. Einstein crystal calculations for disordered systems

Let us now discuss briefly the case of disordered solids.

When implementing the Einstein crystal, harmonic springs

are incorporated to fix the position (as given by the reference

point) and the orientation of the molecules of the system to

the equilibrium configuration. In a disordered solid, there

may be many possible ‘equilibrium configurations’ differing

in a significant way (not just differing in the labeling of the

molecules). Let us just give three examples.

Plastic crystals. Molecules with an almost spherical shape

tend to form plastic crystals when freezing. In these plastic

crystals the reference points of the molecules form a true lattice

but the other atoms of the molecule are able to rotate (either

with a free or with a hindered rotation) around the reference

points. In principle the Einstein crystal methodology described

in the previous section can also be applied to determine free

energies for plastic crystals [28, 31–33, 36, 37, 57]. In addition

to the translational field, an orientational field is included,

forcing the molecules to adopt an orientationally ordered solid

for large values of the orientational field. Some issues should

be taken into account when evaluating the free energy for

a plastic crystal phase. At low values of the orientational

field very long runs should be performed to guarantee that

the molecules are able to rotate. Many values (20–30) of

the coupling parameter �E should be used to compute the

integral of equations (38) or (58) (the orientational contribution

to the integrand increases quite rapidly for low values of the

orientational field). Finally, the absence of phase transitions

along the integration path should be checked (the external

field should lead the system from an orientationally disordered

solid at low values of coupling parameter to an orientationally

ordered solid for large values of the coupling parameter

without undergoing any phase transition).

Water. In the case of solid water (say ice Ih), while the

oxygens are ordered (i.e., they form a lattice) the hydrogens

are disordered. However, Bernal and Fowler [155] and

Pauling [156] suggested that configurations satisfying the so

called Bernal–Fowler rules have the same statistical weight and

that configurations violating the Bernal–Fowler rules can be
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neglected. The correct estimate of the experimental residual

entropy of ice at 0 K by using these two assumptions was

a major achievement. Therefore, the free energy of ice is

approximated by

A = −kBT ln(�Aconfiguration)

= −kBT ln(�) − kBT ln(Aconfiguration) (65)

where Aconfiguration is the free energy (obtained via the Einstein

crystal methodology for a certain configuration satisfying

the Bernal–Fowler rules) and � is the degeneracy. Pauling

estimates −kBT ln(�) as −kBT ln((3/2)N ). Therefore, for

ices one computes the free energy for a certain configuration

and then adds the Pauling contribution to the free energy. This

entropy can also be computed numerically (see for instance

the work by Berg and Yang [157]). Notice that when MC

or MD runs are performed for a certain configuration of ice

satisfying the Bernal–Fowler rules the system remains in this

configuration along the run. This is because the time required

by the system to jump from one configuration to another (both

satisfying the Bernal–Fowler rules) is beyond the typical time

of a simulation run. Equation (65) is useful not only for ice but

for other disordered solids as well. In fact, it can be applied

successfully [158, 159, 32, 160, 38] to tangent dimers, formed

by two tangent spheres, where Nagle [161] has estimated �,

and for fully flexible hard sphere chains [42] (where Flory and

Huggins [162, 163] have estimated �).

Partially disordered phases. In certain cases the system

possesses disorder, but still certain configurations are more

likely than others. Getting the free energy in such a situation

is especially difficult. Firstly it is important to sample

the configurational space properly to obtain equilibrium

configurations of the system representative of the partial

disorder. Secondly these configurations will differ in statistical

weight, so it does not seem a good idea to perform Einstein

crystal calculations for just one configuration, since its

statistical weight is unknown. In this case thermodynamic

integration can be a more adequate route. An example of a

partially disordered phase is the fcc disordered structure of the

RPM model (see discussion on this later on).

7. The machinery in action. III. Obtaining
coexistence lines: the Gibbs–Duhem integration

Once the free energy of the liquid and the solid has been

obtained for a reference state it is relatively straightforward

to perform thermodynamic integration to obtain it for other

thermodynamic states and locate a coexistence point between

two phases (in case where it exists). The Gibbs–Duhem

integration allows the determination of the coexistence lines

once an initial coexistence point is known.

7.1. Gibbs–Duhem integration

In 1993 Kofke realized that the Clapeyron equation can be

integrated to determine coexistence lines [164–166]. The

Clapeyron equation between two coexistence phases (labeled

as I and II) can be written as

dp

dT
=

sII − sI

vII − vI

=
hII − hI

T (vII − vI)
(66)

where we use lower case for thermodynamic properties per

particle. Since the difference in enthalpy and volume between

two phases can be determined easily (at a certain T and p), the

equation can be integrated numerically. When implementing

the Gibbs–Duhem integration one obtains the coexistence

pressure for the selected temperatures (the temperature acting

as the independent variable). This is quite convenient when

the coexistence line does not present a large slope in the p–T

plane. When the slope of the coexistence line is large within a

p–T representation then it may be more convenient to integrate

the Clapeyron equation in a different way: dT
d p

= T �v
�h

. In

this case the coexistence temperatures are determined for a set

of selected pressures (the pressure acting as the independent

variable). A fourth order Runge–Kutta algorithm is quite

useful to integrate the differential equation. It is important to

stress that anisotropic N pT simulations should be used for the

solid phase within Gibbs–Duhem calculations. Isotropic N pT

simulations could be used for fluid phases and for solids of

cubic symmetry.

7.2. Hamiltonian Gibbs–Duhem integration

When a coupling parameter λ is introduced within the

expression of the potential energy of the system, then a set of

generalized Clapeyron equations can be derived [31, 167, 168].

For two phases at coexistence,

gI(T, p, λ) = gII(T, p, λ). (67)

If the system is perturbed slightly while preserving the

coexistence it must hold that

vI dp − sI dT +

(
∂gI

∂λ

)
dλ = vII dp − sII dT +

(
∂gII

∂λ

)
dλ;

(68)

the last terms appearing in equation (68) are due to the presence

of the new intensive thermodynamic variable λ. If λ is

constant when performing the perturbation then one recovers

the traditional Clapeyron equation. If the pressure remains

constant when the perturbation is performed (so that T and λ

are changed) then one obtains

dT

dλ
=

T [(∂gII/∂λ) − (∂gI/∂λ)]

hII − hI

. (69)

It is simple to show (within the N pT ensemble) that ∂g/∂λ

is nothing but ∂g

∂λ
= 〈 ∂u(λ)

∂λ
〉N,p,T,λ, which can be determined

within an N pT simulation. The final working expression of

the generalized Clapeyron equation (for perturbations of T and

λ while keeping p constant) is

dT

dλ
=

T (〈∂uII(λ)/∂λ〉N,p,T,λ − 〈∂uI(λ)/∂λ〉N,p,T,λ)

hII − hI

. (70)

This generalized Clapeyron equation can be integrated

numerically, yielding the change in coexistence temperature (at
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a certain pressure) due to a perturbation of the Hamiltonian of

the system (i.e. of the potential energy). A similar expression

can be obtained for the case in which the system is perturbed

at constant T (changing the pressure and λ). In this case one

obtains

dp

dλ
= −

〈∂uII(λ)/∂λ〉N,p,T,λ − 〈∂uI(λ)/∂λ〉N,p,T,λ

vII − vI

. (71)

The change in the coexistence pressure (at a certain

temperature) due to a change in the Hamiltonian of the system

(potential energy) is then obtained. Equations (71) and (70)

will be denoted as Hamiltonian Gibbs–Duhem integration.

Hamiltonian Gibbs–Duhem integration is a very powerful

technique since it allows one to analyze the influence of the

parameters of the potential on the coexistence properties. It

also allows one to change the parameters of the potential

to improve phase diagram predictions. These two possible

applications will be illustrated later on for the case of water.

In the particular case in which λ is used as a coupling

parameter taking the system from a certain potential to another

(by changing λ from zero to one),

U(λ) = λUB + (1 − λ)UA. (72)

Then the generalized Clapeyron equations can be written as

dT

dλ
=

T (〈uB − uA〉II
N,p,T,λ − 〈uB − uA〉I

N,p,T,λ)

hII − hI

(73)

dp

dλ
= −

〈uB − uA〉II
N,p,T,λ − 〈uB − uA〉I

N,p,T,λ

vII − vI

(74)

where uB is the internal energy per molecule when the

interaction between particles is described by UB (with a similar

definition for uA). If a coexistence point is known for the

system with potential A, then it is possible to determine the

coexistence conditions for the system with potential B (it is

just sufficient to integrate the previous equations changing λ

from zero to unity). In this way the task of determining the

phase diagram of system B (unknown) from the phase diagram

of system A (known) is simplified considerably.

8. Coexistence by interfaces

8.1. Direct fluid–solid coexistence

In 1978 Ladd and Woodcock devised a method to obtain

fluid–solid equilibria without free energy calculations, the

direct coexistence method [169–171]. In this method, the

fluid and the solid phases are introduced into the simulation

box, and simulations are performed (NV E MD) to achieve

equilibrium between the two coexistence phases. The

coexistence conditions can then be obtained easily. Although

the initial results for LJ and inverse 12 power were not very

successful (probably due to the small size of the systems and

to the short length of the runs), the method has become more

popular in the last few years. In fact, it has been applied

to simple fluids [172–175, 153, 176], metals [177–180],

silicon [181], ionic systems [182, 183], hard dumbells [184],

nitromethane [135] and water [108, 109, 185–191]. Two

simulation boxes, having an equilibrated solid and liquid

respectively, are joined along the z axis (the direction

perpendicular to the plane of the interface). This could

generate overlapping at the interface, and this overlapping

should be relaxed/removed. The coexistence conditions

(i.e. pressure, temperature) will be independent of the plane

selected for the interface, but the dynamic behavior (and of

course the interface properties) will be different for different

planes [192, 193, 190].

The direct coexistence method can be implemented either

within molecular dynamics or Monte Carlo simulations. Both

are equally valid, although if dynamical properties are of

interest (for instance crystal growth rates) then MD is the

only choice. The direct coexistence method was firstly used

in the NV E ensemble, but other ensembles such as NV T ,

N pH , N pT and N pz T can be applied. Each ensemble will

have its advantages and disadvantages, and the election of one

ensemble or another depends on the information that one wants

to obtain. Broadly speaking there are two kinds of ensembles,

those at which it is possible to reach equilibrium having two

coexistence phases at equilibrium and those for which it is not

possible to have two phases at equilibrium. Obviously, for the

study of interface properties only those ensembles that lead to

equilibrium should be used.

8.1.1. NV E ensemble. This is the simplest approach. The

idea behind the method is that the system will evolve to the

equilibrium temperature and pressure by moving the interface

(so that either the amount of solid or the amount of liquid

increases). If the system is above the melting temperature,

the solid will melt, provoking (at constant E) a decrease of

temperature. If the system is below the melting temperature,

the fluid will freeze, provoking (at constant E) an increase

of temperature. In NV E runs the initial configuration should

not be too far from equilibrium to guarantee some portion of

liquid and solid in the final configuration. The equilibrium

temperature and pressure are obtained in NV E simulations at

the end of the run. The knowledge of the coexistence pressure

only at the end of the run is a serious problem. In fact, the

lattice parameter used in the xy plane (which remains fixed

along the run) may not correspond to the equilibrium value for

the solid at the coexistence pressure. In other words, stress was

introduced, and this may affect the free energy of the solid and,

therefore, the melting point. This can be adjusted by trial and

error [172, 153].

8.1.2. NV T ensemble. In the NV T ensemble the system

also evolves to equilibrium by changing the relative amounts of

liquid and solid phases, in this case to adjust the densities and

pressure to their coexistence values. One important difference

from the NV E ensemble is that in the NV T the heat released

or absorbed by the crystallization or the melting is immediately

accommodated by the thermostat and, therefore, it is expected

that the system will attain equilibrium faster than in the NV E

simulations. Actually, heat transfer is usually the determining

rate in the crystallization or melting process, and it has been
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seen that the presence of a thermostat in the simulations

leads to crystallization rates much higher than those measured

experimentally [194]. However, as in the NV E case, the solid

is not able to relax in the xy plane and, therefore, the system

might be under some stress.

8.1.3. NpH ensemble. A less common approach is to

perform the simulations in the isobaric–isoenthalpic N pH

ensemble [195], with anisotropic scaling, i.e., the three

edges of the simulation box change independently (see, for

example, [187]). In this ensemble, the system will also attain

equilibrium, in this case by evolving towards the coexistence

temperature. One advantage with respect to the previous

ensembles is that now the fluctuations of the volume will allow

the solid to relax, removing the presence of stress. Moreover,

as the volume of the box is allowed to change, the system can

adapt more easily to changes in the relative ratio of the amount

of solid and liquid phases, especially when the densities of the

solid and liquid phases are very different. The problem in this

case is that it is not strictly correct to use simulations under

constant pressure in the presence of an interface, because, due

to the contribution of the interface, the normal and tangential

components of the stress tensor are not equal. However, if the

system is chosen to be very large in the direction perpendicular

to the interface, it is expected that the error introduced by the

presence of the interface will be small. Another disadvantage

of this ensemble is that, as in the NV E , the transfer of heat is

not very efficient and, therefore, long simulations are needed

to obtain equilibrium.

8.1.4. N pT ensemble. It is possible to tackle both the

problem of having stress in the solid and that of slow heat

transfer by performing simulations in the anisotropic N pT

ensemble, where each of the edges of the box changes

independently. In this case, as the volume is able to fluctuate,

the solid can relax to equilibrium and, as the temperature is

fixed, the transfer of heat will occur very rapidly. However,

as in the N pH ensemble, the use of the N pT ensemble in

the presence of an interface is not strictly correct, although,

as mentioned before, it is expected that the error is small for

a system sufficiently large along the z axis. One important

difference of this ensemble from the previous ones is that, as

both the pressure and temperature are set, it is not possible to

have the interface at equilibrium. The procedure to determine

the coexistence properties is as follows. At a given pressure,

different simulations are performed at a few temperatures. If

the temperature is above the melting temperature the solid will

melt (i.e. the total energy of the system will increase), and, vice

versa, if the temperature is below the melting temperature the

fluid will freeze (i.e. the total energy will decrease). In this

way, it is possible to establish a lower and an upper limit to the

melting temperature.

8.1.5. N pz T ensemble. We have mentioned before that,

due to the contribution of the interface, the stress tensor has

different normal and transversal components and, therefore, it

is not correct to perform simulations under constant pressure

in the presence of an interface. The correct way would be to

allow the size of the box to change only along the axis normal

to the surface, i.e. the z axis. We will call such an ensemble

N pz T . The procedure to determine the coexistence properties

is completely analogous to the procedure followed in the N pT

ensemble. The only difference is that now a new starting

configuration with the corresponding bulk lattice parameter at

pressure pz and temperature T must be generated for each

simulation at different temperature and/or pressure in order to

avoid having stress in the solid. This was not necessary in the

N pT ensemble, as the fluctuations along the x and y planes

allowed the solid to relax to equilibrium.

Two issues that deserve special attention when implement-

ing the direct coexistence method are the system size and the

length of the simulation. As regards the system size, a typical

simulation box could have ten molecular diameters in the x and

y directions and about 30 in the z direction. Accordingly, stud-

ies by direct coexistence used typically 1000–3000 molecules,

and these sizes provide results relatively close to the thermo-

dynamic limit [173, 178, 135, 189, 190]. Besides large system

sizes, extremely long simulations are also needed (10 million

time steps or more may be needed in many systems). Systems

without a thermostat (NV E , N pH ) may require even longer

runs, since heat transfer along the interface may be quite slow.

8.2. Estimating melting points by studying the free surface

It is now commonly accepted that melting starts at the surface

and, already at temperatures lower than the bulk melting point,

solids exhibit a liquid-like layer at the surface [196–204]. Thus

for most substances a liquid layer is present at the surface even

at temperatures below the melting point. When the thickness

of this layer diverges at the melting point, this is denoted as

surface melting. When the thickness of the liquid layer remains

finite (or even zero) at the melting point, this is denoted as

incomplete surface melting [205–207]. The thickness of the

quasi-liquid layer for a certain T depends on the considered

material and on the exposed plane (as labeled by the Miller

indices). When the size of the liquid layer is sufficiently large

either because the system has surface melting or incomplete

surface melting (with a significant thickness of the liquid layer)

then it is not possible to superheat a solid. This is the reason

why experimentally solids usually melt at the melting point

(at least one plane of the crystals of the powder presents a

large quasi-liquid layer, provoking the melting of the whole

sample). For instance, for ice it is not possible to superheat

the solid, except for a few nanoseconds [208]. Superheating of

solids (over macroscopic times) has been found experimentally

only for monocrystals when the exposed planes have no liquid

layer at all. Since for most substances a quasi-liquid layer will

be present at the melting point, it is expected that for most

materials the melting will occur at the melting point (when

there is a free surface). That provides a remarkably simple

methodology to estimate melting points (at zero pressure).

NV T simulations of the solid exhibiting a free surface are

performed at different temperatures. A convenient geometry

is to locate a slab of solid in the center of an orthorhombic

simulation box. The pressure will be essentially zero since

no vapor is introduced in the simulation box, and besides
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the vapor pressure is typically so small that the sublimation

of a molecule from the solid will be a rare event within the

typical simulation times. The lattice parameter of the solid in

the direction perpendicular to the interface should correspond

to the equilibrium values at zero pressure for the studied

temperature. At temperatures below the melting point a stable

thin liquid layer will be formed at the surface. At temperatures

above the melting point the solid will melt. The simulations

should be fairly long to allow the system to melt completely.

In the case of water, the ice took about 10–20 ns to melt in the

presence of a free surface. This technique has been applied

successfully to estimate the melting point of the LJ model,

water [209] and nitromethane [203, 210]. Notice that the

technique will fail, for instance, for NaCl, a substance having

no liquid layer on the free surface [183].

9. Consistency checks

Evaluation of free energy and coexistence points requires

more effort than performing simple N pT runs. Besides, the

possibility of introducing errors in the calculations is relatively

high. For this reason it is a good idea to introduce several tests

to guarantee the accuracy of the calculations.

9.1. Thermodynamic consistency

In a number of cases it is possible to determine the free

energy for two different thermodynamic states. For instance,

for a solid the free energy at two different densities along

an isotherm can be determined by using Einstein crystal

calculations. The free energy difference between these two

states (as obtained from free energy calculations) should

be identical to that obtained by thermodynamic integration

(integrating the EOS along the isotherm). We indeed

recommend the implementation of this test before performing

any further calculation. Failing the test indicates an error

in the free energy calculations. However, passing the test it

is not a definite proof of the correctness of the free energy

calculations. They could still be wrong by a constant (the

constant being identical for the two thermodynamic states). It

is clear that other tests should also be introduced to guarantee

the correctness of the calculations.

9.2. Consistency in the melting point obtained from

different routes

The melting point obtained from free energy calculations

should be similar to that obtained from direct coexistence

simulations (where the fluid and the solid phases coexist)

within the simulation box. Notice that only fluid–solid

equilibria can be studied by direct coexistence (it is not obvious

how to implement solid–solid equilibria by direct coexistence).

This is indeed a useful test. An incorrect prediction of the free

energy of the solid phase (the typical source of errors) will

provoke an incorrect prediction of the fluid–solid equilibria

as compared to the estimate obtained from direct coexistence

techniques. Important differences (above 2–3%) in the melting

point estimated from free energy calculations and from direct

coexistence are not acceptable. The reader may be surprised

by the fact that we stated that both melting points should be

similar instead of stating that they should be identical. In the

thermodynamic limit (for very large system sizes) they should

indeed become identical. However, for finite systems some

technical aspects may provoke small differences. There are at

least two reasons.

(a) System size effects. The fluid–solid equilibria may

have a strong N dependence. For this reason the coexistence

pressure/temperature obtained from free energy calculations

for a system of N molecules will not be identical to that

obtained from direct coexistence simulations obtained with N∗

molecules. The case of HS was illustrated in a previous section.

In general, the stability of the solid increases as the system

becomes smaller. Since typically N∗ > N , then the solid

will appear slightly more stable in the free energy calculations

than in the direct coexistence results (assuming that no FSC

corrections were introduced). This is what one may expect

when the only difference between both types of calculation is

the size of the system.

(b) Cut-off effects. This is important when the cut-off used

in free energy calculations is different from that used in direct

coexistence simulations. The difference in the melting point

may just be due to the fact that we are simulating two sightly

different potentials. Even if the potentials were truncated at the

same distance in both methodologies there may be differences.

For instance, in free energy calculations, the potential may be

truncated at a distance rc, but long range corrections can be

incorporated in the calculations [130]. In direct coexistence

simulations, the potential may have been truncated at the

same rc but in this technique it is difficult to incorporate long

range corrections. Therefore, certain differences in the melting

point between free energy simulations and direct coexistence

calculations can be due to a different implementation of the

potential.

Notice that effects (a) and (b) may occur simultaneously.

For instance, in the case of water different numbers of particles

were used in free energy calculations and in direct coexistence

simulations (effect (a)), but also the truncation of the potential

(LJ contribution) was different in the free energy simulations

(where long range corrections were included) and in the

direct coexistence simulations (where they were not included).

In any case, for water models we found differences in the

melting point as estimated from both techniques of about 1–

2% [211, 189].

9.3. Some useful tests involving Gibbs–Duhem integration

Some useful tests that can be performed when using the Gibbs–

Duhem technique are the following.

• The coexistence lines should be identical (within statistical

uncertainty) when the integration is performed forward

(say by increasing T ) and when it is performed backward

(say by decreasing T ).

• If free energy calculations were used to locate an initial

coexistence point between phases I–II, I–III and II–III,

then the three coexistence lines obtained with Gibbs–

Duhem integration should cross at a point (the triple

point).
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• If the melting point of two models has been determined

by free energy calculations then it is also possible to use

Hamiltonian Gibbs–Duhem calculations to check that the

melting point of model B is obtained starting from the

melting point of model A and vice versa.

• If the melting point of models A and B is known,

then Hamiltonian Gibbs–Duhem integration could be

performed to estimate the melting point of model C. Both

integrations (one starting from A and the other starting

from B) should provide the same estimate of the melting

point of C.

• If two coexistence points between phases I and II are

known (either by free energy calculations or by direct

coexistence) a Gibbs–Duhem integration starting from one

of them should pass through the other one.

9.4. Consistency checks at 0 K

At zero temperature the condition of chemical equilibrium

(i.e. the equilibrium pressure peq) between two phases, labeled

as phases I and II, respectively, is given by

UI(peq, T = 0) + peqVI(peq, T = 0)

= UII(peq, T = 0) + peqVII(peq, T = 0). (75)

Hence, phase transitions between solid phases at zero

temperature occur with zero enthalpy change. This is really

useful since it means that phase transitions at 0 K can be

estimated without free energy calculations (just computing

mechanical properties as densities and internal energies). By

performing several N pT simulations where the temperature is

reduced to zero it is possible to obtain the EOS (and internal

energy) of each solid phase at 0 K. Then by equating the

enthalpy it is possible to locate phase transitions (at 0 K).

This can be used as a consistency check. By performing

free energy calculations it is possible to locate the coexistence

pressure between two phases (I and II) at a finite non-zero

temperature. Then, by performing Gibbs–Duhem simulations

it is possible to determine the coexistence line up to 0 K.

The coexistence pressure at 0 K obtained from this long route

(free energy calculations + Gibbs–Duhem integration) should

be identical to that obtained from the short route (estimating

the properties of the system at 0 K). This is again a strong

consistency check. Although runs at 0 K enable a check to be

made on the consistency of phase diagram calculations, they

do not allow us in themselves to draw the phase diagram of a

certain model. Gibbs–Duhem simulations cannot be initiated

from a known coexistence point at 0 K since both �H and T

are null so that their ratio �S, which within classical statistical

thermodynamics is finite even at 0 K, cannot be determined.

10. A worked example. The phase diagram of water
for the TIP4P and SPC/E models

We shall now illustrate how the previously described

methodology can be applied to determine the phase diagram

for two popular water models: SPC/E [212] and TIP4P [213].

We believe that they illustrate quite well the typical difficulties

found when determining by computer simulation free energies

Table 2. Potential parameters for several water potentials. Notice
that the OH bond length and the HOH angle are different for the
SPC/E and TIP4P models.

Model ǫ/k (K) σ (Å) qH (e) dOM (Å)

SPC/E [212] 78.20 3.1656 0.4238 0
TIP4P [213] 78.0 3.154 0.520 0.150
TIP4P/2005 [215] 93.2 3.1589 0.5564 0.1546
TIP4P/Ice [214] 106.1 3.1668 0.5897 0.1577

of solid phases and phase diagram calculations. The SPC/E

and TIP4P models are presented in table 2 (along with

two other recently proposed models, TIP4P/Ice [214] and

TIP4P/2005 [215]). In these models an LJ center is located on

the O atom, and positive charges are located on the H atoms.

The negative charge is located at a distance dOM from the O

along the H–O–H bisector. Let us now describe briefly some

of the simulation details.

10.1. Simulation details

In our Monte Carlo simulations, the LJ potential was truncated

for all phases at 8.5 Å. Standard long range corrections

to the LJ energy were added. The importance of an

adequate treatment of the long range Coulombic forces when

dealing with water simulations has been pointed out in

recent studies [216–219] and it is likely that this is even

more crucial when considering solid phases. In this work,

the Ewald summation technique has been employed for the

calculation of the long range electrostatic forces. The real

space contribution of the Ewald sum was also truncated at

8.5 Å. The screening parameter and the number of vectors

of reciprocal space considered had to be carefully selected for

each crystal phase [130, 139]. For the fluid phase we used

360 molecules. The number of molecules for each solid phase

was chosen so as to fit at least twice the cut-off distance in

each direction. Three different types of runs were performed:

N pT , NV T Einstein crystal calculations and Gibbs–Duhem

integration. The equation of state (EOS) of the fluid was

obtained from isotropic N pT runs, whereas anisotropic Monte

Carlo simulations (Parrinello–Rahman-like) [124–126] were

used for the solid phases. In the N pT runs, about 40 000

cycles were used to obtain averages, after an equilibration

period of about 40 000 cycles. However longer runs were used

for the fluid phase at low temperatures. A cycle is defined

as a trial move per particle plus a trial volume change. To

evaluate the free energy of the solid, Einstein crystal (NV T )

calculations were performed (with fixed center of mass). Also,

the length of the runs was about 40 000 cycles to obtain

averages after an equilibration of 40 000 cycles. In the Gibbs–

Duhem simulations a fourth order Runge–Kutta was used to

integrate the Clapeyron equation. In total about 60 000 cycles

were used to pass from a coexistence point to the next one.

When using Hamiltonian Gibbs–Duhem integration five to

10 values of λ were used to connect the initial to the final

Hamiltonian. In the Gibbs–Duhem simulations, the fluid and

the cubic solid were studied with isotropic N pT runs whereas

the solid phases were studied with anisotropic N pT runs.
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Table 3. Free energy of liquid water (Aliquid) for the SPC/E and TIP4P models (with qr = qv = qe = 1). The residual and ideal contributions
to the free energy of the reference LJ fluid are given. The residual term of the LJ fluid as obtained from the EOS of Johnson et al [220]. The
ideal term was obtained (in NkBT units) as ln(ρ�3) − 1 where � = 1 Å. The difference in free energy between the reference fluid and the
water model �A is given. Simulations were performed in the NV T ensemble for the density d .

Model T (K) p (bar) d (g cm−3) Aliquid/(NkBT ) Ares
LJ /(NkBT ) Aid

LJ/(NkB T ) �A/(NkBT )

SPC/E 225 564 1.05 −21.82 2.500 −4.350 −19.97
TIP4P 225 743 1.05 −19.48 2.401 −4.350 −17.52
SPC/E 443 4010 1.05 −9.53 2.856 −4.350 −8.04
TIP4P 443 4280 1.05 −8.58 2.777 −4.350 −7.01

10.2. Free energy of liquid water

The free energy of the liquid is calculated by integrating

the free energy along a reversible path in which the water

molecules are transformed into Lennard-Jones spheres by

switching the charges off. The free energy of the reference

Lennard-Jones fluid is reported in the work of Johnson et al

[220]. The energy (say, for the TIP4P model of water, the

treatment for SPC/E being fully equivalent) of the system for a

given point of the path, λ, is given by

U(λ) = λUTIP4P + (1 − λ)ULJ (76)

where λ varies between zero (LJ) and unity (water) along the

integration path. Given that ∂ A(λ)/∂λ = 〈∂U(λ)/∂λ〉N V T ,

the free energy difference between liquid water and the

Lennard-Jones fluid is given by

ATIP4P(N, V , T ) − ALJ(N, V , T )

=

∫ λ=1

λ=0

〈UTIP4P − ULJ〉N,V,T ,λ dλ (77)

where 〈UTIP4P − ULJ〉N,V,T ,λ is an NV T simulation average

computed for a given value of λ. The integral is solved

numerically (using Gauss–Legendre quadrature) by calculating

the integrand at different values of λ. In practice, we perform

the MC runs starting from λ = 1 and going to λ = 0. The final

configuration of a run was used as the input configuration of the

next run. The LJ fluid chosen as a reference state has the same

LJ parameters (ǫ/kB and σ ) as the water model. Therefore, the

difference UTIP4P − ULJ is just the electrostatic energy. Once

the Helmholtz free energy, A, is known, the chemical potential

is obtained simply as µ

kBT
= A

NkB T
+ pV

NkB T
. In this way we

have computed the free energy of the liquid at 225 and 443 K

(see table 3). In addition to the total free energy we report

the free energy difference with respect to the reference LJ fluid

(�A), the residual free energy for the LJ fluid and the ideal free

energy (NkBT (ln(ρ�3)−1)). In this work, for water, we shall

assign the thermal de Broglie wavelength to � = 1 Å both for

the liquid and for the solid phases.

Let us now present some consistency checks for the free

energies. We shall only discuss it for the TIP4P model. We

have computed the free energy at 225 and 443 K for the density

d = 1.05 g cm−3. The free energy difference between both

states is A443 K/(NkBT )− A225 K/(NkBT ) = −8.58+19.48 =
10.90. Then we calculated the same difference by means of

thermodynamic integration along an isochore (equation (7)),

obtaining again 10.90 NkBT . Besides, Jorgensen et al have

estimated the free energy for the TIP4P model at p = 1 bar and

T = 298 K to be G = −6.1 kcal mol−1 [221]. Starting from

the free energy at 225 K and d = 1.05 g cm−3 and performing

thermodynamic integration we obtained −6.09 kcal mol−1,

which is in excellent agreement with the value of Jorgensen

et al [221].

Instead of using the LJ fluid, it is also possible to

compute the free energy of the liquid taking the ideal gas

as a reference system. We obtain the free energy of

TIP4P water at 240 K and 1.0174 g cm−3 by two different

routes. In the first one the TIP4P is transformed into a

LJ model. We obtained for the free energy of TIP4P in

this state A(240 K, 1.0174 g cm−3)/NkBT = −20.15. In

the second route, a supercritical isotherm (T = 900 K) is

used from zero density to 1.0174 g cm−3 (obtaining using

equation (12) −4.699N KBT for A/NkBT of this intermediate

state). Then we integrate along the isochore up to 240 K

(with a free energy change computed by equation (7) of

−15.434 N KB T ). By adding these two numbers together we

obtain A(240 K, 1.0174 g cm−3)/NkBT2 = −20.13 from this

second route, in very good agreement with that obtained by the

first one. The computation of the free energy using the LJ fluid

as a reference system is considerably shorter than using the

ideal gas (besides, this last route is especially difficult since

the parameters of the Ewald sum should be chosen carefully

along the supercritical isotherm integration). Values of the free

energy of liquid water for other potential models have been

reported recently [222].

10.3. Free energy of ice polymorphs

The free energy of the different ice polymorphs is calculated

using the Einstein crystal method (with fixed center of mass).

The O is used as reference point and the field used is that

described by equations (18), (19) and (20). For disordered

ices [223–225] (Ih, Ic, III, IV, V, VI, VII, XII) the oxygens

form a well defined lattice, but the water molecules can

orient in different ways for a given oxygen lattice provided

that the Bernal–Fowler ice rules [155] are satisfied. We

have generated the disordered solid structures (with almost

zero dipole moment) using the algorithm proposed by Buch

et al [226] (see [227] for another algorithm). For proton

disordered ices we calculated the free energy for a particular

proton disordered configuration. Due to the fact that there are

many configurations compatible with a given oxygen lattice,

there is a degenerational contribution to the free energy. The

degenerational entropy of ice was estimated by Pauling in

1935 [156] as Sdeg = kB ln � = kB N ln(3/2). Therefore,

the disordered ice phases have an extra contribution to the free
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Table 4. Free energy of the ice polymorphs for the SPC/E model (with qr = qv = qe = 1). The free energy reported in the last column
corresponds to the sum of all the terms (A0 + �A1 + �A2) plus the degenerational free energy (−NkBT ln(3/2)) for the case of
orientationally disordered phases (the typical uncertainty of the resulting solid free energies is about 0.05 NkBT ). The number of molecules
used for each solid phase is indicated in parenthesis just after the Roman numeral of the phase. A finite size correction (Frenkel–Ladd type)
has been included in A0. The thermal de Broglie wavelength � was set to � = 1 Å. The residual internal energy of the ice U is reported, so
that the entropy of the solid can be obtained easily from the relation S = (U − Asol)/T . The orientational contribution to A0 (equation (29))
was computed from the approximate expression given in [48].

Ice p (bar) T (K) d (g cm−3) U

NkB T

�E

kB T
(Å−2) A0

NkB T

�A2

NkB T

�A1

NkB T

Asol

NkB T

Ih(288) 500 150 0.965 −46.08 25 000 29.46 −16.92 −48.94 −36.84
Ic(216) 2 620 150 0.983 −46.14 25 000 29.45 −16.85 −48.95 −36.80
II(432) 5 000 150 1.269 −46.42 25 000 29.47 −17.27 −49.08 −36.91
III(324) 5 000 150 1.229 −44.89 25 000 29.46 −19.10 −45.66 −35.73
IV(432) 5 000 150 1.353 −43.97 25 000 29.47 −18.23 −45.54 −34.73
V(504) 5 000 150 1.316 −44.39 25 000 29.47 −20.11 −44.17 −35.23
VI(360) 25 000 150 1.492 −43.29 25 000 29.46 −19.78 −42.81 −33.56
VI(360) 25 000 225 1.474 −27.88 25 000 29.46 −19.94 −28.69 −19.60
VII(432) 81 690 443 1.700 −9.79 9 000 26.40 −16.58 −13.81 −4.41
VIII(600) 60 000 225 1.743 −23.92 25 000 29.47 −19.38 −24.68 −14.61
IX(324) 5 000 150 1.244 −46.31 25 000 29.46 −19.10 −46.93 −36.60
XI(360) 500 150 0.971 −46.26 25 000 29.46 −18.01 −48.08 −36.65

energy of −NkBT ln(3/2). Ice III and V present partial proton

ordering [228], and this decreases the Pauling estimate a little,

but the effect of this change on the phase diagram was found

to be small [229, 230]. For this reason we shall also use the

Pauling estimate for ices III and V. For ices II, IX, VIII and

the antiferroelectric analogue [231] of ice XI the protons are

ordered, and there is no degenerational entropy contribution.

Generating an initial configuration for proton ordered ices is

relatively straightforward.

The free energy calculations were performed in the NV T

ensemble using the equilibrium shape of the simulation box

obtained in anisotropic N pT runs. The locations of the springs

of the ideal Einstein crystal field were chosen to be close to

the equilibrium positions/orientations of the molecules. The

computed free energy should not depend on the particular

choice of the positions and orientations of the ideal Einstein

crystal field (provided that they are sufficiently close to the

equilibrium position and orientations of the molecules in the

absence of the external field). Several strategies are possible.

For instance, one could choose the position/orientations of the

external field as those obtained from an energy minimization

at constant density (using the equilibrium box shape of the

system). Another possibility is to use the experimental

crystallographic positions (if available) of the atoms of the

molecule and modify them slightly to satisfy the bond lengths

and angles of the model (the bond lengths may be different

in the model and in the real molecule, as for instance in

SPC/E water). Also, experimental crystallographic positions

(if available) could be used for the reference point (oxygen

in the case of water), and the orientations could be optimized

from an energy minimization. We have used this last approach

for ices. This approach has also been used recently by

Wierzchowski and Monson for gas hydrates [68]. To obtain

�A2 we used Gaussian integration with 12 points. �A1 was

evaluated from runs (200 000 cycles) of the ideal Einstein

crystal with fixed center of mass. The value of �E (in

kBT/(Å)2) was identical to the value selected for �E,a and

�E,b (in kBT units). The value of �E was chosen so

that the computed value of �A1 differs by about 0.02NBT

units from the lattice energy of the solid (defined as the

intermolecular energy of the system when the molecules

occupy the positions and orientations of the external Einstein

field).

Coexistence between phases at 150, 225 and 443 K was

investigated. Therefore, the free energy calculations have been

performed at these temperatures. In tables 4 and 5 we report the

free energy (Asol/(NkBT )) calculated for different ice phases

for SPC/E and TIP4P respectively. The different contributions

to the free energy (A0, �A1, �A2) are given. The term A0

is the sum of ACM
Eins-id plus �A3 plus a finite size correction

(Frenkel–Ladd type, (2/N) ln N). For proton disordered ices

the value of Asol is the sum of A0, �A1, �A2 and the Pauling

degeneracy entropy −NkBT ln(3/2). For proton ordered ices

(XI, II, IX, VIII) the total value of A is just the sum of A0,

�A1, �A2. The lattice energy Ulattice/NkBT is the energy

of the solid when all water molecules remain fixed on the

position/orientations of the Einstein crystal field (the value of

�A1/(NkBT ) being quite close to Ulattice/NkBT ). The free

energies of the SPC/E model are lower than those of the TIP4P

(this is consistent with their lower internal energies).

As a consistency check we determined via Einstein crystal

calculations the free energy of ice VI at two different thermo-

dynamic conditions for SPC/E and TIP4P. Let us discuss the

results for TIP4P. For TIP4P (ice VI) we obtained from free en-

ergy calculations A1(225 K, 1.480 g cm−3) = −17.67 NkBT

and A2(150 K, 1.498 g cm−3) = −30.65 NkBT (both states

having a pressure of 25 000 bar). Starting from the value of

A1 and performing thermodynamic integration we estimated

A2(150 K, 1.498 g cm−3) = −30.66 NkBT , in excellent

agreement with the value obtained from Einstein crystal cal-

culations.

10.4. Determining the initial coexistence points

Once the free energy of each phase is known, it is possible to

find the points in the pressure–temperature plane at which two
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Table 5. The same as table 4 for the TIP4P model.

Ice p (bar) T (K) d (g cm−3) U

NkB T

�E

kB T
(Å−2) A0

NkB T

�A2

NkB T

�A1

NkB T

Asol

NkB T

Ih(288) 1365 150 0.966 −42.50 25 000 29.46 −16.92 −45.55 −33.45
Ic(216) 500 150 0.958 −42.50 25 000 29.45 −16.96 −45.52 −33.47
II(432) 8230 150 1.269 −41.80 25 000 29.46 −16.98 −44.75 −32.28
III(324) 5000 150 1.237 −41.43 25 000 29.46 −18.82 −42.63 −32.39
IV(432) 5000 150 1.353 −40.86 25 000 29.47 −18.18 −42.60 −31.74
V(504) 5000 150 1.315 −41.13 25 000 29.47 −19.62 −41.56 −32.11
VI(360) 25 000 150 1.498 −40.26 25 000 29.46 −19.20 −40.48 −30.65
VI(360) 25 000 225 1.480 −25.91 25 000 29.46 −19.58 −27.12 −17.67
VII(432) 78350 443 1.700 −8.66 9 000 26.40 −16.76 −12.85 −3.63
VIII(600) 60000 225 1.743 −21.97 25 000 29.47 −19.11 −23.24 −12.90
IX(324) 5000 150 1.238 −42.25 25 000 29.46 −18.85 −42.56 −31.98
XI(360) 500 150 0.959 −42.53 25 000 29.46 −17.03 −45.50 −33.09
XII(540) 5000 150 1.358 −40.94 25 000 29.47 −18.80 −42.20 −31.94

Table 6. Coexistence points for TIP4P and SPC/E models from free
energy calculations (and thermodynamic integration).

Model Phases T (K) p (bar)

SPC/E Ih–II 150 −444
SPC/E II–VI 150 25 270
SPC/E liquid–II 250 5 000
SPC/E liquid–VI 225 20 690
SPC/E VI–VIII 225 57 860
SPC/E liquid–VIII 225 57 500
SPC/E liquid–VII 443 103 520
SPC/E liquid–Ih 211 500
SPC/E liquid–Ic 210 500
SPC/E liquid–XI 187 500

TIP4P liquid–Ih 228.8 500
TIP4P Ih–II 150 3 041
TIP4P II–VI 150 6 215
TIP4P II–V 152.6 5 000
TIP4P II–III 180.3 5 000
TIP4P liquid–III 196.6 5 000
TIP4P liquid–V 204.1 5 000
TIP4P liquid–VI 225 8 940
TIP4P VI–VIII 225 57 290
TIP4P liquid–VII 443 91 940
TIP4P liquid–Ic 228.8 500
TIP4P liquid–XI 192 500
TIP4P liquid–XII 205.0 5 000

phases have the same chemical potential, i.e. the coexistence

points. Given that most of the free energies and equations of

state were obtained either at temperatures of 150 or 225 K and

at pressures of 500 or 5000 bar, we focus the search for the

coexistence points at these temperatures and pressures.

Figure 5 shows the chemical potential as a function

of the pressure at 150 K for ices Ih, II, and VI. For a

given pressure, the phase of lowest chemical potential is the

most stable one. Ice Ih is the stable phase up to 3041

bar. At this pressure, ices Ih and II coexist. Beyond

3041 bar, ice II is the stable phase up to 6215 bar, where

the chemical potentials of ices II and VI are equal. For

higher pressures ice VI is the stable phase. By performing

similar plots, coexistence points between different phases

could be determined. In table 6 these coexistence points

are presented (for TIP4P and SPC/E). The relative stability

between ices Ih and Ic (or between ices V and XII) could

Figure 5. Chemical potential as a function of pressure at 150 K for
ices Ih, II and VI modeled with TIP4P.

not be determined, since the free energy difference between

these solids was smaller than the typical uncertainty of our

free energy calculations (0.05 NkBT ). As to the stability of

ices Ih(Ic) with respect to ice XI (we used the antiferroelectric

version of ice XI of Davidson and Morokuma [231] rather

than the true ferroelectric version), we found that the XI–

Ih transition occurs at 84 K for SPC/E and 18 K for TIP4P

(the proton ordered ice XI being the stable phase at low

temperatures).

The region of the phase diagram corresponding to

5000 bar (figure 6) is the most problematic given that there

are as many as seven phases competing; namely, ices II, III,

IV, V, IX and XII and the liquid. For SPC/E, ice II is clearly

the most stable phase among the solid polymorphs. The liquid

is again the stable phase at high temperatures (beyond 250 K).

For the case of TIP4P, ices V and XII are the solid phases of

lower chemical potential. The free energy difference between

both polymorphs (0.008 NkBT ) is smaller than the error bar

(0.05 NkBT ), so we could not determine which one is the most

stable. Liquid water coexists either with ice XII or with ice V

at 205 K and 5000 bar.

10.5. The phase diagram of water

Once an initial coexistence point has been determined, by

using Gibbs–Duhem integration (either d p/dT or dT/dp)
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Figure 6. Gibbs free energy versus temperature at 5000 bar for different phases of SPC/E (left) and TIP4P (right).

Figure 7. Phase diagram of water as obtained from experiment (center) and from computer simulations for the TIP4P model (left) and for the
SPC/E model (right). The filled circles on the right panel indicate the stability limit of the solid phases in N pT simulations (without
interfaces). Notice the shift of 100 MPa in the right panel.

it is then possible to draw the complete phase diagram.

In certain cases the point where two coexistence lines met

(triple point) was used as the origin of the third coexistence

line emerging from the triple point. The complete phase

diagram of SPC/E and TIP4P is presented in figure 7. As

can be seen SPC/E fails in reproducing the phase diagram

of water (notice for instance that ice Ih is stable for this

model only at negative pressures), whereas TIP4P provides a

qualitatively correct description of the phase diagram (except

for the high pressure region of the phase diagram). The

reason for the failure of SPC/E and success of TIP4P has

been identified recently. The low quadrupole moment of

SPC/E and the high value of the ratio dipole/quadrupole of

this model is the cause of the failure [112, 114]. In fact,

TIP4P provides a quadrupole moment and a dipole/quadrupole

ratio in much better agreement with experiment. The effect

of a quadrupole moment on the vapor–liquid equilibria of

molecular models is well known [232–234]. However it

seems that the role of the quadrupole in water properties

has been overlooked, in spite of some warnings about its

importance [235–237, 218, 238, 239]. Figure 7 illustrates

how the evaluation of the phase diagram of water by computer

simulation is indeed possible.

10.6. Hamiltonian Gibbs–Duhem simulations for water

The liquid–Ih solid coexistence temperatures at p = 1 bar

for TIP4P and SPC/E have been estimated from free energy

calculations to be T = 232 ± 5 and 215 ± 5 K,

respectively. These numbers are in relatively good agreement

with estimates from other authors for TIP4P [22, 23, 187] and

for SPC/E [185, 186, 240, 101]. An interesting question is

whether these two values (for TIP4P and SPC/E) are mutually

consistent. Starting from the SPC/E model and performing

constant pressure Hamiltonian Gibbs–Duhem simulations

(integrating the generalized Clapeyron equation as described

previously) one should recover the melting temperature of the

TIP4P. In fact starting from the SPC/E ice Ih melting point

we obtain T = 232.3 K for TIP4P (see figure 8), in very

good agreement with the result obtained through free energy

calculations.

Once the melting points of ice Ih for TIP4P and SPC/E

seem to be firmly established one could use these values to

estimate (by using Hamiltonian Gibbs–Duhem simulations)

the melting point of another water model, for instance

TIP5P [241]. Obviously, the properties of the final model

should be independent of the reference model. When the

starting model is SPC/E we obtain T = 275 K for TIP5P,

whereas the calculated result using the TIP4P model as a
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Figure 8. Hamiltonian Gibbs–Duhem integration results. Left: melting temperature of ice Ih as a function of the parameter λ connecting the
models SPC/E (λ = 0) and TIP4P (λ = 1). The points were obtained by using Hamiltonian Gibbs–Duhem integration. The dashed line is a
guide to the eye. The horizontal lines correspond to the melting temperatures of SPC/E (dotted line) and TIP4P (dashed–dotted line) as
obtained from free energy calculations. Right: melting temperature of ice Ih for the TIP5P model (λ = 1) obtained from Hamiltonian
Gibbs–Duhem integration starting from SPC/E or TIP4P models. When connecting two water models by Hamiltonian Gibbs–Duhem
integration, the position of the oxygen atom and of the HOH bisector was the same in both models.

Figure 9. Left: melting temperature of ice Ih at 1 bar plotted as a function of the quadrupole moment QT (taken from [112]). QT is defined as
the value of (Qxx − Q yy)/2 of the quadrupolar tensor, where the x axis joins the two H atoms and the y axis is perpendicular to the molecular
plane. Right: density of water at room pressure as a function of temperature as obtained from experiment (filled circles) and from computer
simulations of several water models (lines). The open triangles indicate the melting point of ice Ih for each model.

reference is T = 273 K. The agreement between both

estimates is satisfactory taking into account that the error of

the Gibbs–Duhem integration is about 3 K. This is is further

illustrated in the right panel of figure 8, which shows the

results of the integration. By using Hamiltonian Gibbs–Duhem

integration the melting points of ice Ih for other models of

water were determined. They are presented in table 7. Notice

that most of the water models tend to give low melting points.

For models with three charges (SPC, SPC/E, TIP3P,

TIP4P, TIP4P/Ew, TIP4P/Ice, TIP4P/2005) a correlation

between the melting point and the quadrupole moment has

been found. This is illustrated in figure 9. It is seen that models

with rather low quadrupole moment (TIP3P, SPC, SPC/E)

provide rather low melting points. The melting temperature

of TIP4P is closer to the experimental value. Motivated by

this we have proposed a new modified TIP4P model, with a

higher quadrupole moment, able to reproduce the experimental

melting point of water. We have denoted this new model

Table 7. Melting points obtained from free energy calculations
(TIP4P and SPC/E), Hamiltonian Gibbs–Duhem integration (rest of
the models) [215, 211, 242, 214] and direct fluid–solid coexistence.
The last column is the value of Ts (see text) obtained from
simulations of ice Ih with a free interface. TIP4P-Ew is a water
model proposed by Horn et al [243] and NvdE is a six site model
proposed by Nada and van der Eerden [244].

Model Free energy Direct coexistence Free surface

TIP4P/Ice 272(6) 268(2) 271(1)
TIP4P/2005 252(6) 249(2) 249(3)
TIP4P-Ew 245.5(6) 242(2) 243(2)
TIP4P 232(4) 229(2) 230(2)
TIP5P 274(6) 271(2) —
SPC/E 215(4) 213(2) 217(2)
NvdE 290(3) 288(3) —

as TIP4P/Ice [214]. A second finding was that for three

charge models the temperature at which the maximum in

density occurs at room pressure (TMD) is about 20–25 K
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T (K)

Figure 10. Phase diagram for the TIP4P family. (a) Left panel: fluid–solid equilibria (the lines show the predictions for several TIP4P-like
models and the symbols represent the experimental data). (b) Right panel: vapor–liquid equilibria (the symbols show the predictions for
TIP4P-like models and the lines represent the experimental data).

Figure 11. Left panel: evolution of the total energy (per mole of molecules) in N pT MD simulations of a box containing ice and liquid water
at 1 bar for the TIP4P/2005 model. Right panel: total energy as a function of time obtained at several temperatures by performing MD
simulations of TIP4P/2005 for a block of ice Ih with a free surface.

above the melting temperature [242, 245]. Experimentally,

for water the maximum in density occurs 4◦ above the

melting point. Therefore it is impossible with three charge

models to reproduce simultaneously the melting point and

the TMD. It is likely that the inclusion of quantum effects

and/or polarizability [246–252] may be needed to reproduce

these two properties simultaneously. For this reason we have

proposed the TIP4P/2005, which reproduces the TMD of real

water better than any other water model proposed so far (see

figure 9(b)). An interesting question is to analyze whether

these new models still predict correctly the phase diagram

of water. By using Hamiltonian Gibbs–Duhem integration it

is possible to estimate the phase diagram of a certain water

model, starting from the phase diagram of another reference

model. Thus, by using TIP4P as reference, we have estimated

the complete phase diagrams for TIP4P/Ice and TIP4P/2005.

The obtained phase diagrams are presented in figure 10.

As can be seen these models predict quite well the fluid–

solid equilibria of water, improving the predictions of TIP4P.

TIP4P/2005 yields also an excellent prediction of the vapor–

liquid equilibria.

10.7. Direct coexistence simulations

To estimate the melting point of ice Ih for several water models

by direct coexistence, N pT simulations were performed with

870 molecules and the MD program Gromacs [253, 254]. In

the initial configuration half of them formed ice, and the other

half were in the liquid state. Both phases were in contact, so

that these are direct coexistence simulations.

The evolution of the energy for the TIP4P/2005 model

with time is presented in figure 11. As can be seen, the

energy increases with time for T = 252, 254, 256 K, reaching

a plateau (the plateau indicates the complete melting of the

ice). The energy decreases for T = 242 K, reaching a

plateau (the plateau indicates the complete freezing of the

water). Snapshots of these final configurations can be found

in [189]. At a temperature of 249 K the energy does not

change with time, and the interface is stable after 10 ns.

Therefore, this is the estimate of the melting point by direct

coexistence for TIP4P/2005. Similar runs were performed

for other water models. In table 7 the melting points of

different water models as estimated from direct coexistence

are compared to those obtained from free energy calculations.

27



J. Phys.: Condens. Matter 20 (2008) 153101 Topical Review

Figure 12. Instantaneous configuration of the TIP4P/Ice system at
T = 268 K at the end of a 8 ns run. Although the temperature is well
below the melting point of the model, a quasi-liquid layer is clearly
present in the ice–vacuum interface.

The agreement between both techniques is quite good. Direct

interface simulations have been used by several authors to

estimate melting points or ice growth rates for different water

models [92, 255, 194, 256, 187, 192].

10.8. Melting point as estimated from simulations of the

free surface

In figure 11 the evolution of the total energy of ice Ih

(having a free surface) with time is presented [209]. At

high temperatures, the total energy of the system increases

continuously and then reaches a plateau (that corresponds

to the complete melting of the solid). The behavior at

low temperatures is different. At the beginning (first 1–

2 ns) there is an increase of the energy, but after this

the energy remains approximately constant, apart from the

thermal fluctuations. The analysis of the configurations of the

TIP4P/2005 at T = 245 K shows that the increase of energy

during the first 1 ns is due to the formation of a thin liquid

layer at the surface of ice, which may indicate the onset of

surface melting, mentioned already in the introduction, and

first proposed by Faraday [257]. The formation of a quasi-

liquid layer on the surface of ice below Tm has been found

both in experiment (see [258–262] and references therein)

and in computer simulation for several potential models of

water [263–266, 92], and it has been explained by several

theoretical treatments [258, 260]. By repeating the simulation

at several temperatures it is possible to determine the lowest

temperature at which the block of ice melts T+, and the

highest temperature at which it does not melt T−. By taking

the average of these two temperatures we obtain what we

call Ts = 1/2(T+ + T−). Ts provides an estimate of the

melting point. The values of Ts obtained for water models

are presented in table 7. As can be seen, Ts is identical to

Tm, within the error bar. Thus for ice Ih the presence of

a free surface suppresses superheating and ice melts at the

equilibrium melting temperature (although runs of about 10 ns

or longer may be needed). In figure 12 the final configuration

(after a 8 ns run) obtained for TIP4P/Ice at a temperature well

below the melting point of the model (T = 264 K) is shown.

As can be seen, a quasi-liquid layer is already present in the

system.

Figure 13. Coexistence lines between ices Ih and II as obtained from
Gibbs–Duhem simulations for TIP4P/2005, TIP4P/Ice, SPC/E and
TIP5P models (solid lines). The symbols represent the coexistence
pressures as obtained from the properties of the systems at zero
temperature. For each water model, ice Ih is the stable phase below
the coexistence line (low pressures) and ice II is the stable phase
above the coexistence line (high pressures).

Table 8. Residual internal energy (in kcal mol−1) of several ice
polymorphs at T = 0 K and p = 0 for popular water models. The
results for the most stable phase of each model are presented in bold.

Ice TIP4P/Ice TIP4P/2005 SPC/E TIP5P

Ih −16.465 −15.059 −14.691 −14.128
II −16.268 −14.847 −14.854 −14.162

III −16.140 −14.741 −14.348 −13.320
V −16.049 −14.644 −14.169 −13.101
VI −15.917 −14.513 −13.946 −12.859

10.9. Properties at 0 K

In table 8 the residual internal energies at zero T and p

are given for the TIP4P/Ice, TIP4P/2005, SPC/E and TIP5P

models. For TIP4P/Ice and TIP4P/2005, ice Ih is the structure

with the lowest energy (probably ice XI, which is a proton

ordered version of ice Ih, would have an slightly lower energy,

but it was not considered for this study). However, for SPC/E

and TIP5P the lowest internal energy corresponds to ice II.

Thus, for TIP4P/2005 and TIP4P/Ice ice Ih is the stable phase

at zero pressure and temperature whereas for SPC/E and TIP5P

the stable phase is ice II. From the properties at 0 K it is

simple to locate the Ih–II transition pressure at 0 K (see [267]).

In figure 13 the predicted pressures using the calculations at

0 K are presented (circles). The lines represent the results

obtained from free energy calculations (used to obtain an initial

coexistence point at 150 K) and Gibbs–Duhem integration. It

may be seen that both sets of calculations agree quite well so

both sets of results are mutually consistent (i.e., the estimated

coexistence pressure at 0 K is the same). It is clear that ice

II is more stable than ice Ih at zero temperature and pressure

for the SPC/E and TIP5P models. This example illustrates

how 0 K properties can be used to test for self-consistency in

phase diagram predictions. They are also quite useful to test

the performance of water models [268, 89, 90, 269, 267].
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Figure 14. Left: tetragonal ordered structure of the RPM model. The atoms form an fcc structure, but the ions are ordered. Right: phase
diagram of the RPM model showing the equilibria between vapor and liquid (inverted triangles), fluid and CsCl-like structure (filled circles),
CsCl-like structure and tetragonal (fcc ordered) phase (rhombs), fluid and tetragonal structure (open circles), fluid and fcc disordered structure
(triangles) and ordered–disordered fcc phases (squares).

11. Phase diagram for a primitive model of
electrolytes

Let us now present another example of a phase diagram

calculation for a completely different model, the restricted

primitive model (RPM). The restricted primitive model (RPM)

is one of the simplest models of electrolytes. It this model the

cations are represented by hard spheres of diameter σ having a

charge +q and anions represented by hard spheres of diameter

σ having a charge −q . The model is quite simple and for

this reason it can also be studied theoretically [270, 271]. The

system has vapor–liquid equilibrium [272–274] (in spite of the

absence of dispersive forces). Several solid structures can be

considered [275], the simplest being the CsCl-like structure (a

bcc type of structure with the anions occupying the vertices of

a cube and the cations occupying the center of the unit cell).

Another possible structure is the fcc disordered structure. In

this structure the ions occupy an fcc lattice, but with positional

disorder (cations and anions occupy the lattice points in a

disordered way). At low temperatures it is possible to conceive

a solid structure with an fcc arrangements of the ions, but with

positional order. The symmetry of the phase is tetragonal.

This phase will be labeled as the tetragonal phase [49]. It

is presented in figure 14. Free energy calculations (Einstein

crystal) were performed to determine the free energy of the

CsCl and tetragonal structures. Due to the presence of partial

disorder the Einstein crystal method can not be applied directly

(to a snapshot) to get the free energy of the fcc disordered

structure (although one may suspect that a strategy similar in

spirit to that proposed for the plastic crystal phases can also be

successful here if the external field is able to lead the system

from disordered configurations to an ordered solid without

crossing first order transitions). The RPM system becomes a

hard sphere at infinitely high T for which the free energy is

known (a trivial mixing contribution should be added). For

this reason the free energy of the fluid and of the fcc disordered

solid can be obtained by thermodynamic integration. Exchange

moves (where a cation and an anion exchange their positions)

were used to sample correctly the disorder, both in the fluid and

in the fcc disordered structure.

After computing the free energies, some initial coexis-

tence points were determined, and then by using Gibbs–Duhem

integration the complete phase diagram was computed. The

resulting phase diagram [276, 277, 49, 50] is presented in fig-

ure 14. At high temperatures, freezing leads to the substitution-

ally disordered close-packed structure. By decreasing the tem-

perature this solid structure undergoes an order–disorder transi-

tion transforming into the tetragonal solid. At low temperatures

freezing leads to the cesium chloride structure (CsCl), which

undergoes a phase transition to the tetragonal structure at high

pressures. The tetragonal solid is the stable solid phase at low

temperatures and high densities. In a narrow range of temper-

atures coexistence between the fluid and the tetragonal solid is

observed. Three triple points are found for the model consid-

ered: the usual vapor–liquid–CsCl, the fluid–CsCl–tetragonal

and the fluid–fcc disordered–tetragonal triple point (notice in

figure 14 the narrow range of the fluid–tetragonal solid coexis-

tence line).

Although initially conceived to describe electrolytes and

ionic salts, the RPM has been found to be quite useful to

describe certain colloidal mixtures, consisting in equimolar

mixtures of colloidal particles of equal size, but with charges

of different sign. Thus a colloidal version of the RPM

exists [278]. For these colloidal mixtures, three different solid

phases have been found experimentally, the fcc disordered

solid, the CsCl solid and an fcc ordered structure [279, 280].

The fcc ordered structure was found to be of CuAu type, rather

than the tetragonal structure of figure 14. This difference with

the RPM phase diagram seems to be due to the fact that in

colloidal mixtures the interaction between charged particles is

of Yukawa type rather than being purely Coulombic. This is so

because the interaction between charged particles is screened

by the presence of an ionic atmosphere due to the counter-ions

of the colloids. In fact, when this screening is incorporated in
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Figure 15. Left: phase diagram of the octahedral six patch model. Labels show the region of stability of each phase. The dashed line in the
fluid–sc coexistence region signals the expected fluid–fluid binodal (see [57] for more details). Right: structure of the low density sc solid for
the octahedral anisotropic model.

the potential with a Yukawa type model, the CuAu structure

was found to be stable in a thermodynamic region between the

CsCl and the tetragonal structure [56, 281].

In summary, the RPM has proved to be quite useful in the

description of mixtures of charged colloidal particles. It would

be of interest to determine the phase diagram for a model where

the two spheres of the model present different sizes. This is

usually called the primitive model. In fact the primitive model

(where cations and anions have different sizes) may indeed be

a more general model than RPM, since in real ionic fluids the

size of the ions is usually different. A colloidal realization of

the PM model has been obtained experimentally [279]. Finally,

there is an increasing interest in determining the properties of

ionic liquids. It would be of interest to determine the factors

affecting the melting point of ionic liquids [282] which are

regarded as new solvents [283]. Work in this direction has

appeared recently [284].

12. Phase diagram of a simplified model of globular
proteins

A final example of the application of the techniques described

here is provided by the calculation of the phase diagram of a

simple model of globular proteins. During the last few years

there has been an increasing number of studies of the phase

behavior of globular proteins using very simplified models.

The first studies have been performed using short ranged

isotropic potentials and, even with these very simple models,

it was already possible to reproduce some of the features of the

phase diagram of proteins, e.g. the existence of a metastable

critical point [285]. However, proteins are known to form very

low density crystals, with densities below those of the close-

packed crystals typically formed by isotropic potentials, which

is indicative of highly directional interactions [286]. Further

evidence of the importance of anisotropy in the interactions

among proteins has been recently obtained in a theoretical

study of the fluid–fluid equilibria. This study has shown

that a quantitative agreement with experiments is obtained by

the introduction of anisotropy [287], as opposed to isotropic

models, that only provided a qualitative description. Moreover,

theoretical studies of the phase behavior of anisotropic models

are also acquiring much interest due to the fact that several

experimental groups have recently been able to produce

colloids that are anisotropic either in shape or in their

interactions [288–291]. So far there have been already a few

theoretical studies of the phase behavior of simple anisotropic

models [48, 292–295, 58, 296, 297], although most of them

were concerned with the fluid–fluid equilibria rather than with

the solid–fluid and solid–solid equilibria.

We have used a very simplified model, which consists of

a repulsive core (the Lennard-Jones repulsive core), plus an

attractive tail modulated by Gaussian functions located at some

given positions or patches, which will be specified by some

vectors. The total energy between two interacting particles will

be given by [298, 299, 57]:

V (ri j ,Ωi ,Ω j ) =

{
VLJ(ri j) ri j < σLJ

VLJ(ri j)Vang(̂ri j ,Ωi ,Ω j ) ri j � σLJ

(78)

Vang(̂ri j ,Ωi ,Ω j ) = exp

(
−

θ2
kmin,i j

2σ 2
patchy

)
exp

(
−

θ2
lmin, j i

2σ 2
patchy

)
,

(79)

where VLJ is the Lennard-Jones potential, σpatchy is the standard

deviation of the Gaussian, θk,i j (θl, j i ) is the angle formed

between patches k (l) on atom i ( j ) and the interparticle

vector ri j (r j i ) and kmin (lmin) is the patch that minimizes the

magnitude of this angle. The interaction is a maximum when

both patches are pointing at each other along the interparticle

vector ri j and it will decrease as the particles deviate further

from this equilibrium orientation. We have chosen to study a

model with six patches distributed in an octahedral symmetry,

and a relatively narrow width of the patches (σpatchy = 0.3 rad),

for which it is expected that the low density simple cubic (sc)

crystal becomes stable.

Besides the sc crystal, in which each of a particle’s patches

is pointing at one of its six nearest neighbors (see figure 15),

there are other three solid phases that might be formed with

this model and at this patch width, σpatchy = 0.3 rad. The first

structure is a body centered cubic (bcc) solid, in which each

patch is aligned with the second neighbors. This structure can
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be also seen as two interpenetrating sc lattices that almost do

not interact between each other (similar to the behavior of high

density ice polymorphs). Therefore, a higher density crystal is

obtained with a low penalty in the energy. At high pressures

it is expected that a close packed face centered cubic (fcco)

structure will also appear. In this case the patches will also

be pointing to the second neighbors. This structure exhibits a

much higher energy than both the sc and the bcc solids. Finally,

at high temperatures, it is expected that a plastic phase will

also appear (fccd), i.e. a solid where the center of mass of each

particle is located at the lattice positions of a fcc structure, but

that is orientationally disordered.

Following the procedure described before, the coexistence

point between two phases was computed by imposing the

conditions of equal temperature, pressure and chemical

potential. The free energy of the fluid was computed by

thermodynamic integration. In the case of the fluid, the

equation of state was integrated to very low densities, where

the fluid can be considered to behave as an ideal gas. The

free energy of the solid was computed by Einstein crystal

calculations. Once a coexistence point is known all the

coexistence lines can be traced using the Gibbs–Duhem

method.

The resulting phase diagram is plotted in figure 15. At

high temperatures the fluid freezes into the orientationally

disordered plastic crystal phase (fccd), at intermediate

temperatures into the bcc solid and at low temperatures into

the sc crystal. The sc structure is destabilized at high pressure

by the bcc solid and, at even higher pressures, the ordered fcc

solid becomes stable (fcco). This fcco ordered solid transforms

into a plastic crystal fccd as the temperature increases. There

are three triple points in the phase diagram: the fluid–sc–

bcc, fluid–fccd–bcc and bcc–fccd–fcco. Finally, it is also

worth noting that in the neighborhood of the fluid–sc–bcc

and fluid–fccd–bcc triple points re-entrant melting occurs.

Coexistence points from free energy calculations were found

to be in agreement with those found from direct coexistence

calculations.

In summary, even for a relatively simple model potential,

we have obtained a complex phase diagram with many solid

phases and unusual behavior such as re-entrant melting.

But the most interesting finding is that, even with a very

simple model such as the one described here, it is possible

to reproduce two important features of the phase diagram

of globular proteins, namely, the existence of a metastable

critical point and the stabilization of a low density crystal.

Similar behavior has been found for a primitive model of

water [146, 48, 300]. Studies of nucleation of these models can

be very relevant to understand the crystallization of globular

proteins.

13. Conclusions

In this work we have reviewed the methodology of free

energy calculations and given examples of recent work on

the determination of fluid–solid and solid–solid equilibria by

computer simulations. Free energy calculations are used

to compute initial coexistence points between phases, and

then Gibbs–Duhem integration is used to compute coexistence

lines. Other procedures to estimate fluid–solid equilibria such

as direct coexistence and simulations of the free surface of the

solid have been discussed. The Einstein crystal methodology

and the Einstein molecule approach have been presented

in a rather comprehensive way. Both methodologies yield

identical values of the free energy. It is shown that the

free energy presents a strong N dependence, and that finite

size corrections are needed to estimate properties of solids

in the thermodynamic limit. The issue of the symmetry

of the orientational field in Einstein crystal calculations for

molecular fluids has been discussed. We do hope that the

extensive discussion of all these aspects helps other researchers

in the area to perform free energy calculations and phase

diagram determination. In fact there are at least six areas

where one can predict intense activity in the future. The first

one is the determination of the phase diagram of molecular

fluids. In this work, the procedure to obtain free energies

for water is presented. Besides, free energies and coexistence

points for SPC/E and TIP4P models of water are presented

for the first time. These results lead to the determination of

the full phase diagram for water, performed recently by our

group [110]. The example of water illustrates clearly that phase

diagram calculations for molecular fluids is indeed feasible

nowadays and that it can help to improve current models.

In fact these free energy calculations led to the proposal of

an improved version of TIP4P denoted as TIP4P/2005. This

model is able to describe correctly the phase diagram of

water, the maximum in density of water, the density of the

ice polymorphs including the methane hydrate [301–303], the

vapor–liquid equilibria [304], the surface tension [305], the

diffusion coefficient and the structure of water [215, 306] over

a wide range of temperatures and pressures. The determination

of the phase diagram of TIP4P was a crucial step in the

development of TIP4P/2005. We do not see any difficulty

in performing similar studies to improve potential models

for other molecular fluids. The work on water shows that

melting points obtained from free energy calculations, direct

coexistence simulations and free surface simulations are almost

identical (taking into account the statistical uncertainties and

the slightly different implementations of the potential). The

second area where phase diagram calculations can be useful

is in the study of ionic systems. Here we reviewed the

phase diagram of the RPM model, but it is clear that the

determination of the phase diagram of PM models and of other

models of salts (including probably ionic liquids, which are

becoming increasingly important from a technological point of

view) would be of great interest. Some ionic systems can also

be used to describe charged colloids.

The third area is the area of crystallization of proteins. It

is now clear that models with short range anisotropic forces

can be regarded as primitive models of proteins. In such

models the liquid–liquid separation is metastable with respect

to freezing, and the competition between phase separation and

crystallization is of great interest to understand the presence

or absence of crystallization in proteins. The fourth area is

the study of freezing under confinement due to the interest

in understanding fluid–solid equilibria on the nanometer
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scale [307–309]. The fifth area is the study of the solubility

of salts (or solids in general) in water (or solvents in general),

where the knowledge of the chemical potential of the solute in

the solid phase is required. Very little effort has been devoted

to this problem [143, 147]. Finally, studies on nucleation [120]

should benefit from the knowledge of the equilibrium melting

temperatures. In summary, the study of fluid–solid and solid–

solid equilibria of molecular and complex systems by computer

simulation is now feasible, and the procedures to do it seem

well established. The study of fluid–solid and solid–solid

equilibria by computer simulation can play a central role in

developing potential models for condensed phases and for

providing molecular understanding of a number of phenomena

involving solid and liquid phases. The enormous sensitivity

of phase diagrams to interaction potentials allows us to test

the performance of the different potentials available for a

certain substance, and offers a unique opportunity for their

improvement.
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Appendix A. Partition function of the Einstein
crystal with fixed center of mass

The translational contribution to the partition function of an

Einstein crystal with fixed center of mass is

QCM
Ein,t =

1

h3(N−1)

∫
exp

[
−β

N∑

i=1

p2
i

2m i

]

× δ

(
N∑

i=1

pi

)
dp1 . . . dpN

×

∫
exp

[
−β�E

N∑

i=1

(ri − ri0)
2

]

× δ

(
N∑

i=1

µi (ri − ri0)

)
dr1 . . . drN . (80)

The integral over the space of momenta is not relevant to

compute the free energy and, therefore, we will leave aside this

contribution, that we will include simply as a factor PCM:

PCM =
1

h3(N−1)

∫
exp

[
−β

N∑

i=1

p2
i

2m i

]

× δ

(
N∑

i=1

pi

)
dp1 . . . dpN . (81)

We will focus on the integral over the configurational space:

Z CM
Ein,t =

∫
exp

[
−β�E

N∑

i=1

(ri − ri0)
2

]

× δ

(
N∑

i=1

µi (ri − ri0)

)
dr1 . . . drN . (82)

This integral can be expressed in a simpler way by defining a

change of variable, ri −ri0 = r′
i . The Jacobian of this change of

variable is unity, and the configurational integral can be written

as

Z CM
Ein,t =

∫
exp

[
−β�E

N∑

i=1

(r′
i)

2

]

× δ

(
N∑

i=1

µi r
′
i

)
dr′

1 . . . dr′
N . (83)

The Dirac delta function can be written [310] as

δ

(
N∑

i=1

µi r
′
i

)
=

1

(2π)3

∫
exp

[
ik

(
N∑

i=1

µi r
′
i

)]
dk; (84)

the configurational integral can be written as

Z CM
Ein,t =

1

(2π)3

∫
exp

[
−β�E

N∑

i=1

(
(r′

i )
2 −

ik

β�E

µi r
′
i

)]

× dk dr′
1 . . . dr′

N . (85)

Each term in the summation can be rewritten in a more

convenient form:

(r′
i )

2 −
ik

β�E

µi r
′
i = (r′

i)
2 −

2ik

2β�E

µi r
′
i

+
i2k2µ2

i

4β2�2
E

−
i2k2µ2

i

4β2�2
E

(86)

=

(
r′

i −
ikµi

2β�E

)2

+
k2µ2

i

4β2�2
E

. (87)

Notice that in equations (84)–(86) there is an implicit scalar

product between the vector k and the accompanying vector.

The integral can then be expressed as

Z CM
ein,t =

1

(2π)3

×

∫
exp

[
−β�E

N∑

i=1

((
r′

i −
ikµi

2β�E

)2

+
k2µ2

i

4β2�2
E

)]

× dk dr′
1 . . . dr′

N . (88)

It is now convenient to do another change of variable:

r′′
i = r′

i −
ikµi

2β�E

. (89)
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To compute the Jacobian associated with this transformation,

we will consider the simple case of a system in one dimension

and with two particles. The Jacobian J is given by the

following determinant:

J =

∣∣∣∣∣∣∣∣

∂r′
1

∂r′′
1

∂r′
1

∂r′′
2

∂r′
1

∂k

∂r′
2

∂r′′
1

∂r′
2

∂r′′
2

∂r′
2

∂k

∂k
∂r′′

1

∂k
∂r′′

2

∂k
∂k

∣∣∣∣∣∣∣∣
(90)

J =

∣∣∣∣∣∣∣

1 0 2β�E

iµi

0 1 2β�E

iµi

0 0 1

∣∣∣∣∣∣∣
= 1 (91)

After applying the change of variable, the integral can be

expressed as

Z CM
Ein,t =

1

(2π)3

∫
exp

[
−β�E

N∑

i=1

(
(r′′

i )
2 +

k2µ2
i

4β2�2
E

)]

× dk dr′′
1 . . . dr′′

N . (92)

This integral can be split into two Gaussian integrals:

Z CM
Ein,t =

1

(2π)3

∫
exp

[
−β�E

N∑

i=1

(r′′
i )

2

]
dr′′

1 . . . dr′′
N

×

∫
exp

[
−

k2
∑N

i=1 µ2
i

4β�E

]
dk (93)

whose solution is

Z CM
Ein,t =

1

(2π)3

(
π

β�E

)N3/2
(

4βπ�E∑N
i=1 µ2

i

)3/2

. (94)

Doing a bit of algebra it can be shown that

Z CM
Ein,t =

(
β�E

π

)3/2 (
π

β�E

)N3/2
(

N∑

i=1

µ2
i

)−3/2

(95)

or, more simply,

Z CM
Ein,t =

(
π

β�E

)3(N−1)/2
(

N∑

i=1

µ2
i

)−3/2

. (96)

Summarizing, we have obtained that the partition function of

an Einstein crystal with fixed center of mass is given by

QCM
Ein,t = PCM

(
π

β�E

)3(N−1)/2
(

N∑

i=1

µ2
i

)−3/2

. (97)

When all molecules are identical the reduced mass µi is simply

1/N . Therefore, the previous equation can be simplified to

QCM
Ein,t = PCM

(
π

β�E

)3(N−1)/2

(N)3/2 . (98)

which is the final expression for the free energy of an ideal

Einstein crystal with fixed center of mass. An explicit

expression for PCM is not needed to get the free energy of the

solid since it cancels out with a similar term in equation (46).

However, it is not difficult to obtain PCM by realizing that

equation (81) is formally identical to equation (82) (with µi =
1 and �E = 1/(2m i) and omitting the prefactor h3(N−1)).

A derivation similar to that used to get equation (96) from

equation (82) leads to

PCM =
1

�3(N−1)
N−3/2 (99)

to be compared with

P =
1

�3N
(100)

so that the ratio PCM/P adopts the value �3 N−3/2 . If

equation (99) is replaced into equation (98) one obtains

QCM
Ein,t =

1

�3(N−1)

(
π

β�E

)3(N−1)/2

(101)

which is dimensionless as it should be.

Appendix B. Computing UCM
Ein

within a Monte Carlo
program

The condition of fixing the center of mass of the reference

points is quite useful since it eliminates any divergence of

the integrand of equation (39). A displacement �d of a given

molecule must be accompanied by a displacement (−�d/(N))

of all the molecules of the system (assuming all particles are

identical), so that the center of mass remains in its original

position. In practice, this is not very convenient. It is more

convenient to perform a simulation without the restriction over

the center of mass but keeping track of the position of the center

of mass [139]. Let us denote as ri0 the initial position of the

reference point of molecule i in the perfect lattice, and �RCM

is the difference between the present position of the center of

mass and its initial position. Let us denote by rU
i the actual

position in the simulation (without the restriction in the center

of mass) of the reference atom of molecule i . Let us define

�ri = rU
i − ri0 − �RCM. Let us compute the energy change

when, in a trial move, the random displacement of molecule is

∆i . The energy of the old (prefix old) and new (prefix new)

configurations is given by

U
CM,old
Eins /�E = (�rold

i )2 +
∑

j 	=i

(�rold
j )2

U
CM,new
Eins /�E =

(
r

U,old
i + ∆i − ri0 − �Rold

CM −
∆i

N

)2

+
∑

j 	=i

(
r

U,old
j − r jo − �Rold

CM −
∆i

N

)2

=

(
�rold

i + ∆i −
∆i

N

)2

+
∑

j 	=i

(
�rold

j −
∆i

N

)2

. (102)

We have assumed that all particles have the same mass, so that

a displacement ∆i of one of them leads to a displacement

∆i/N of the center of mass. We have not included the

orientational contribution since it cancels out when computing

the energy change (i.e., the orientational energy is not affected

33
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by the translation of molecule i ). Therefore, the potential

energy change will be given by

�U CM
Eins/�E = 2�rold

i ·∆i − 2�rold
i ·

∆i

N

+

(
N∆i − ∆i

N

)2

+
∑

j 	=i

[(
∆i

N

)2

− 2∆rold
j

∆i

N

]
.

(103)

This equation can be simplified since, as the center of mass is

constrained, it holds that
∑N

i=1 �ri = 0 (in the right-hand side,

the second and last terms cancel out):

�U CM
Eins/�E = 2�rold

i ·∆i +

(
N∆i − ∆i

N

)2

+
∑

j 	=i

(
∆i

N

)2

. (104)

It is easy to show that this expression can also be written as

�U CM
Eins/�E = 2�rold

i ·∆i + ∆
2
i

(
N − 1

N

)
. (105)

In this way, it is possible to perform an MC simulation

without keeping the center of mass fixed, but including this

constraint through the Monte Carlo acceptance rule.

Appendix C. The Frenkel–Ladd expression

In 1984 Frenkel and Ladd derived an expression for the free

energy of a solid. It is not the same as that given by Polson

et al [142] and also presented in this paper. The reason for this

difference is the following.

• 1. The expression used for �A3 by Frenkel and Ladd was

(1/N) ln N (in NkBT units) lower than the correct one.

• 2. The expression used for ACM
Ein-id by Frenkel and Ladd

was (3/N) ln N (in NkBT units) higher than the correct

one.

Taking into account both contributions it turns out that the

Frenkel–Ladd expression gives an energy (in NkBT units)

(2/N) ln N higher than the correct one. Let us describe briefly

the source of these two discrepancies. For �A3 Frenkel and

Ladd used

�AFL
3 = Asol − ACM

sol = kBT (ln(PCM/P) − ln(V )) (106)

instead of

�A3 = Asol − ACM
sol = kBT (ln(PCM/P) − ln(V/N)) (107)

which is the expression to be used when all permutations, N !,
are included in the reference ideal Einstein crystal. The second

discrepancy is due to the fact that the constraint of fixing the

center of mass was implemented by Frenkel and Ladd as

N∑

i=1

(ri − ri0) = 0 (108)

instead of:
N∑

i=1

µi (ri − ri0) = 0 (109)

with µi = 1/N . One can simply say that to fix the center of

mass Frenkel and Ladd used µi = 1 instead of µi = 1/N . It

is simple to analyze the mathematical consequences of this. It

is just enough to look at appendix A, and to see what happens

in the final expression (equation (97)) when µi = 1 is used

instead of µi = 1/N . Then one obtains

QCM
Ein,t = PCM

(
π

β�E

)3(N−1)/2

(N)−3/2 . (110)

By comparing equation (110) (Frenkel–Ladd) with equa-

tion (98) it is simple to see how the Frenkel–Ladd expres-

sion for QCM
Ein,t gives a contribution (in NkBT units) (3/N) ln N

higher than the correct one.

In summary, when all factors are considered, the Frenkel–

Ladd expression gives an energy (in NkBT units) (2/N) ln N

higher than the correct one.
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