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Abstract  

Health monitoring systems for plastic based structures require capability of real time tracking 

changes in response of polymer based structures, related to their time-dependent behavior. The 

paper proposes artificial neural networks as a tool of solving inverse problem appearing within 

time-dependent material characterization, since the conventional methods are computationally 

demanding and cannot operate in a real time mode. Abilities of a Multilayer Perceptron (MLP) and 

a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an 

example of determination of a time-dependent relaxation modulus curve segment from constant 

strain rate tensile test data are investigated. The required modelling data composed of strain rate, 

tensile and related relaxation modulus were generated using existing closed-form solution. Several 

neural networks topologies were tested with respect to the structure of input data and their 

performance was compared to an exponential fitting technique. Selected optimal topologies of 

MLP and RBFN were tested for generalization and robustness on noisy data; performance of all 

the modeling methods with respect to the number of data points in the input vector was analyzed 

as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the 

determination of time dependent relaxation modulus curve segment. Particular topologies 

demonstrate good generalization and robustness capabilities, where the topology of RBFN with 

data provided in parallel proved to be superior compared to other methods. 

Keywords: relaxation modulus, inverse problem, neural network, multilayer 

perceptron, radial basis function neural network, structural health monitoring 
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1 Introduction 

Plastics and plastic based composites are slowly replacing metals in automotive and 

aeronautical industries, which is mainly due to their more favorable strength-to-

weight ratio. However, with all advantages of plastics their use for highly 

demanding engineering applications on which human lives depend, requires exact 

predictions of durability and lifespan of polymeric structures. Unfortunately, 

standardized procedures for this do not exist yet. 

Control of durability of structures made of elastic materials, such as metals, can be 

accomplished by health monitoring systems, that are commercially available. But 

in case of viscoelastic materials including plastics and polymers their time-

dependent properties and effects related to it should be taken into account. In order 

to detect changes in material behavior, its material transfer functions should be 

tracked and calculated based on the response of a structure to external excitations. 

This means that the method used for plastics structures health monitoring should be 

able to comprehend time-dependent material transfer functions that affect structural 

responses. 

One of the most important material transfer functions, which requires monitoring is 

time-dependent relaxation modulus. This transfer function describes process of 

relaxation, which appears as a decrease of stress under condition of constant 

deformation and can be detected as softening of material. Relaxation modulus 

jointly with geometry of the construction determines its stiffness and strength, and 

therefore, should be known for construction purposes. Typically, relaxation 

modulus is determined by tensile tests (ISO 527-1 2012), however, the standardized 

tests do not provide information on time-dependency of the material behavior. 

Measurements of time-dependent relaxation modulus are not standardized and 

require either very long time or according to the principle of time-temperature 

superposition (Ferry, 1980) – measurements at different temperatures. The second 

approach is most widely used, however its drawback is that for each of the 

measurements (segments) at a certain temperature an inverse problem of obtaining 

relaxation modulus from measured stress and applied strain data has to be solved. 

This problem has analytical solution for standard excitations (step and sine), while 

for non-standard or with presence of noise in the read signal it turns into ill-posed 
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inverse problem. Such problems can be solved only numerically by time-

demanding mathematical techniques, e.g., exponential fitting (Saprunov et al., 

2014) or regularization (Tikhonov & Arsenin, 1977). Due to long calculation time, 

these methods are not applicable for structural health monitoring in real time. On 

the other hand, artificial neural networks (NN) have been proven as a suitable tool 

to solve inverse problems and for real-time applications (Xiao et al., 2006). Once 

trained NN are able to deliver results fast, they are capable of parallel calculations 

due to their nature, and they are able to generalize and process noisy data.  

Therefore, the paper proposes artificial neural networks (NN) for obtaining a 

segment of relaxation modulus curve based on the tensile data from constant strain 

rate experiment. This initial step is essential for further application of NN as a tool 

for health monitoring of polymeric structures in automotive, railway, or 

aeronautical applications. Neural network for this purpose should be capable of 

solving inverse problem for obtaining time-dependent material properties in order 

to track qualitatively changes caused by viscoelastic nature of materials from which 

structure is built. Of course, obtaining time-dependent material functions as a prime 

task is not the main purpose of NN because there are many closed-form solutions 

available, see (Saprunov et al., 2014) and references herein.  

As an initial step it is proposed to apply Multilayer Perceptron (MLP) neural 

network with sigmoidal activation function and Radial Basis Function Network 

(RBFN) with Gaussian activation function for solving inverse problem arising 

within characterization of time-dependent properties of viscoelastic materials. As a 

reference method non-linear exponential parametric regression is used.  

Two different topology types with respect to the structure of the input data for MLP 

and RBFN were tested. Optimal number of neurons in hidden layers was chosen 

according to an optimization criterion. For investigating the NN performance we 

have used an example for which the closed-form solution is known (Saprunov et 

al., 2014) and we could generate the NN training data numerically. In order to check 

generalization capabilities and robustness of the networks, the validation of NN 

performance was done on the noisy set of data that were not used for training.  

With the aim to present the capabilities of the NN to estimate the relaxation modulus 

from the measured stress and applied strain data as first in the following sections 
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the problem statement is presented in detail. Then the process of NN 

implementation starting with the training data generation using closed-form 

solution, is followed by the description of the methodology of optimal topologies 

choice and their validation. Results and discussion section presents generalization 

and robustness capabilities of the obtained networks in comparison to the 

exponential fitting numerical technique. 

2 Stress, strain and relaxation modulus 

The following section presents the constitutive relations between strain and stress 

within relaxation process, problem related to determination of relaxation modulus 

and process of data generation. 

2.1 Theory and problem 

Constitutive relation between strain excitation ε(t) and stress response σ(t) in 

relaxation process of a time-dependent material under uniaxial stress state is given 

as: 

 
0

( ) ( ) .

t
ε

σ t E t τ dτ
τ


= −

   (1) 

Here E(t) is a time-dependent relaxation modulus and it is a material function of 

interest. Eq. (1) represents a convolution integral equation that has an analytical 

solution only for standard types of excitation including a step function and a 

harmonic excitation. In the case of other excitation functions, for determination of 

the relaxation modulus E(t) from given strain excitation ε(t) and stress response σ(t), 

application of numerical techniques for solution of the related ill-posed inverse 

problem is required.  

Existing numerical methods of solving ill-posed inverse problems are based on 

adding some disturbance (additional restriction) to the initial problem to turn it into 

close to the original but not ill-posed problem. In mathematics this approach is 

called regularization (Samarskii et al., 2009). The most well known and widely used 

regularization technique is the one introduced by the Russian mathematician 

Tikhonov in 1955 (Tikhonov & Arsenin, 1977). This approach is currently 

prevalent in linear theory of viscoelasticity. It is important to mention that even 
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though Tikhonov regularization technique and its derivatives are widely and 

successfully used in solving ill-posed inverse problems, this group of techniques is 

computationally- and time- demanding, and mathematically challenging and, 

consequently, not suitable for health monitoring of plastics-based structures. Due 

to this, the paper introduces an empirical modeling approach based on artificial 

neural networks, known by their high computational and generalization capabilities, 

and robustness.  

2.2 Modelling data generation 

Data for training neural network should be chosen thoughtfully due to the fact that 

NN can properly function only within the range of data that was covered during its 

training. Training data for this work were generated artificially using closed-form 

solution, which does not represent an inverse problem (Saprunov et al., 2014). Data 

consists of vectors of strain ε, stress σ, time t and corresponding to them vector of 

relaxation modulus E. 

The data generation procedure is schematically shown in Fig. 1 and consists of two 

steps including determination of relaxation modulus E(t) and related stress response 

σ(t) for a given strain excitation ε(t) respectively. To determine the relaxation 

modulus E(t) as first generation of relaxation mechanical spectrum Hi(i) 

representing different engineering materials is performed. Relaxation mechanical 

spectrum Hi(i) is a characteristic of a polymeric material and constitutes its transfer 

function. It describes contributions of groups of molecules of different size/length 

to the overall response of a material to an external excitation. 

Magnitudes of relaxation spectrum lines Hi(i) were determined according to the 

Gaussian distribution: 

 

( )
2

exp
2

( ) ,
2

i

i i

G

τ μ

H τ i=1,...,N
σ π

 −
 −
 
 

=   (2) 

where τi is a response time of a particular material molecular group, µ is a mean 

value of distribution and was taken to be 0, i is a number of molecular group and 

σG is a standard deviation of Gaussian distribution which was varied from 0.4 to 1.6 

with a step of 0.1. N=49 spectrum lines were equally distributed in a logarithmic 
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time scale log (i) with the step 0.5 from value -12 to 12 Table 1. Afterwards, the 

obtained values were normalized according to: 

 
49

1

, .i

i N

j

j

H
h i=1,...,N

H
=

=

=


  (3) 

As a result, l=13 different relaxation spectra for σG[0.4, 1.6] with step 0.1 were 

generated, using parameters displayed in Table 1. The first diagram on the left in 

Fig. 1 shows examples of the three selected relaxation spectra for σG=0.4, 1.0 and 

1.6.  

Knowing equilibrium values of relaxation modulus and its normalized value of 

spectra hi allows one to calculate the whole relaxation modulus E(t) curve according 

to the formula: 

 ( )
49

0 0

1

( ) ,i

t
N

τ

g i

i

E t E E E h e
= −

=

= + −    (4) 

where E0 and Eg are fixed equilibrium and glassy relaxation moduli values. In our 

case the relaxation modulus E(t) was calculated as a segment corresponding to the 

time from 0 to 50 seconds. The number of data points representing E(t) in the time 

interval was varied as n=10, 50 and 100 data points. 

In the next step the stress response σ(t) of the material is calculated by the 

constitutive equation (1) taking into account defined E(t) and excitation strain ε(t). 

Considering a constant strain rate the strain changes according to: 

 ( ) ,ε t k t=    (5) 

where k is a constant strain rate and is taken as 0.1 (ISO 527-1 2012). In this case 

Eq. (1) with incorporation of Eq. (4) and after integration turns into: 

 ( )0 0

1

( ) 1 .i

N t
τ

g i i

i

σ t k E t k E E h τ e
−

=

 
=   +  − − 

 
   (6) 

Eq. (6) allows calculation of stress response σ(t) to constant strain rate input (Eq. 

(5)) using analytical closed-form solution of Eq. (1). Values of the used constants 

and parameters of calculation are given in Table 1. 
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Fig. 1. Training data generation procedure on examples of three materials 

 

Table 1. Parameters of training data generation 

Parameter, [units] Value 

Standard deviation, σG 0.4..1.6, step 0.1 

Number of spectrum lines, N 49 

Step for spectrum lines along logarithmic timescale, [s] 0.5 

Position of the first spectrum line in logarithmic timescale, [s] -12 

Start time of calculation in real timescale, [s] 0 

End time of calculation in real timescale, [s] 50 

Glassy modulus, Eg, [MPa] 1000 

Equilibrium modulus E0, [MPa] 0.1 
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Fig. 2. Target relaxation moduli segments for n=50 data points 

 

The calculated l=13 relaxation moduli for for σG [0.4, 1.6] with step 0.1 are shown 

in Fig. 2. Among the l=13 generated datasets (ε, σ, t; E) ltr=7 curves E(t) marked 

with circular markers and corresponding stress-strain data were taken as training 

data while the remaining lval=6 denoted with solid thin curves were taken as testing 

data to validate the modelling performance of NN. 

In order to investigate how performance of MLP changes in respect to the number 

n=10, 50 and 100 of data points used to represent the curve of relaxation modulus, 

the training data sets with different number of data points were generated. 

Robustness of MLP will be checked on noisy data, therefore relative noise of values 

1, 5, and 10% was added to the values of stress to simulate the real experiment.  
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3. Empirical models for inverse problem solution 

The literature shows that artificial neural networks are widely used for solution of 

inverse problems (Hagan et al., 1996) in a variety of fields including. For example, 

inverse problems appearing in such fields as electromagnetics (Sammany et al., 

2010) (Elshafiey et al., 1994) (Elshafiey et al., 1995), material characterization 

(Czél et al., 2013) (Li et al., 2009) (Li et al., 2008), imaging techniques (Adler & 

Guardo, 1994) (Lampinen & Vehtari, 1999), geology (Baddari et al., 2010) and 

variety of other fields represent a challenge to solve. All of these problems are ill-

posed according to definition of Jacques Hadamard (1902), due to presence of noise 

in measured data, and computationally demanding. Conventional ways of solving 

those inverse problems are not efficient, or are not applicable for particular 

conditions involved, i.e., for on-line monitoring, or in case of high levels of noise 

in input signal. 

These are the reasons why scientists turned to artificial neural networks as a tool 

for solving inverse problems (Hagan et al., 1996). Although used in so many 

different applications there are practically no papers addressing the NN modeling 

of behavior of viscoelastic materials and determination of their time-dependent 

material functions such as relaxation modulus. 

Therefore, in this paper Multilayer Perceptron and Radial Basis Function neural 

networks known as an universal function approximators have been used for 

determination of relaxation modulus segment from constant strain rate tensile 

experiment data. Determination of relaxation modulus from constant strain rate 

experiments was already addressed by number of other researchers that were using 

generalization or parametric regression methods (Tscharnuter et al., 2011) (Knauss 

& Zhao, 2007). Therefore comparison of neural network performance will be made 

with respect to the exponential parametric regression algorithm (nonlinear 

parametric regression) that showed good performance for this problem (Saprunov 

et al. 2014).  
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3.1 Neural Networks types 

3.1.1 Multilayer Perceptron (MLP) 

Multilayer perceptron (MLP) is a feedforward artificial neural network consisting 

of fully interconnected neurons in several layers with non-linear activation 

functions (Haykin 1999) as shown in Fig. 3a. Number of hidden layers as well as 

neurons is arbitrary. 

input layer hidden layers output layer
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Fig. 3. Schematic representation of a) MLP topology, b) RBFN topology 

 

MLP can be trained in a supervised manner with a very popular back propagation 

algorithm (Werbos 1994). 

Output of the network with two hidden layers presented in Fig. 3, a will be: 

 ,
r rp pj ji i j p

p j i

y ω f ω f ω x c c
  

= + +  
  

     (7) 

where α  and β  are numbers of inputs and outputs respectively, indexed by i and 

r; q and m are number of neurons in hidden layers indexed by j and p. Synaptic 

weights are represented by ω  with two indices, where the first one presents the 

neuron accepting the signal for and the second – the neuron sending the signal. 
j

c  

and 
p

c  are weights that are called biases and may not be present in a particular 

structure. 

For solving the stated inverse problem (ε, σ, t) → E, a MLP with classical logistic 

sigmoid activation function was utilized: 
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e
−
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where f(x) is a neuron activation function of parameter x, which in case of neural 

network is presented as weighted and biased sum of values of neuron’s input vectors 

of strain ε, stress σ and time t. The output of a MLP is defined by vector of 

relaxation modulus E. 

Training data was rescaled into the range between 0 and 1. Nguyen-Widrow 

initialization algorithm (Nguyen & Widrow 1990) was used for initialization. It 

chooses initial values of synaptic weights in order to distribute the active region of 

each neuron in the layer approximately evenly across the layer's input space. The 

selection of values contains a degree of randomness, so they are not the same each 

time this function is called (Demuth et al. n.d.). In order to avoid this randomness 

during MLP topology optimization process generator of random number in 

MATLAB is set to default values before initialization function is called. 

There is a variety of training functions available for MLP, however, in order to 

avoid overfitting backpropagation algorithm with Bayesian regularization is chosen 

(Demuth et al. n.d.). More information on Bayesian networks can be found 

elsewhere (MacKay 1992). 

3.1.2 Radial Basis Function Neural Network  

Radial Basis Functions Neural Networks (RBFN) is a type of feedforward neural 

network that utilize radial-basis activation functions and typically consist of 3 layers 

with different roles as shown in Fig. 3b. The input layer is made up of source nodes 

(inputs) that connect network to its environment. The second layer, which is the 

only hidden layer in the RBFN, applies a nonlinear transformation from the input 

space to the hidden space which in the most applications is of high dimensionality. 

The output layer is linear, supplying the response of the network to the input signal. 

Within this work Gaussian Radial Basis activation function was used: 

 

2

2( ) ,

x
s

f x e
−

=   (9) 

where s is the standard deviation of Gaussian distribution. The output of the 

RBFN will be a scalar function of real input vector X consisting of α  

components: 
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1

,
q

r rj j

j

y a f C
=

= − X   (10) 

where q is a number of neurons in a hidden layer, Cj is the center vector of a neuron 

j, f  is a radial basic function of a neuron (Eq.(9)) and aj is the weight of a neuron 

j in the linear output layer. The norm is typically taken in Euclidean space. 

RBFN was formed by consecutive addition of the neurons with Gaussian Radial 

Basis Function in order to satisfy the condition of the error 0.001 (MATLAB 

function newrb), therefore the only topological parameter to be determined is the 

spread (in notation of MATLAB spread equals to log(4) 1.177s s  ) of the 

network. It was varied in wide ranges in order to determine the optimal values of 

spread resulting in good RBFN performance. 

3.1.3 Topologies of NN 

Topology of a neural network defines the way the neurons of particular layer are 

connected, and it is an important factor in network functioning and learning 

(Sammut & Webb 2011).  

In supervised learning the most common topology is the fully connected, at least 

three-layer, feedforward network. In such a network all input values to the network 

are connected to all neurons in the first hidden layer, the outputs of the last hidden 

neurons are connected to all neurons in the output layer, which neurons activation 

function defines the output of the network.  

The number of hidden layers and related number of neurons determines 

computational capabilities of a network. According to universal approximation 

theorem a single hidden layer is sufficient for MLP to compute a uniform 

approximation to a given training set (Haykin 1999). Nevertheless, due to 

complexity of the problem and related poor results of single layered MLP, authors 

selected topology of MLP to two hidden layers with maximum q=m=30 neurons in 

each (see Fig. 3, a). Number of variable parameters provided by such structure is 

more than sufficient for proper training but utilization of training algorithm with 

regularization term will provide network without tendency to overfitting (Sjoberg 

& Ljung 1992). For RBFN number of hidden neurons was determined by the 

algorithm used for neural network creation. 
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Once the number of the hidden layer and the related number of neuron is defined 

the neural network topology is also defined by the way of representation of input 

and related output data. In our case, two different ways of presenting input and 

output data were considered.  

 

The first possibility is to provide data points of one training sample in series one by 

one, (Fig. 4, a) and therefore, provide mapping (εi, σi, ti) → (Ei), while the other 

option is to provide data of the whole training set at once, “in parallel” (Fig. 4, b) 

and mapping (ε, σ)→ (E).  

In case of providing input data in series, the input data vector (εi, σi, ti) is maped 

into the related scalar value (Ei) representing the E at time ti. The training time is 

significantly shorter and it mimics application for real time monitoring, however 

transition between two different training samples represents irregularity in the data. 

Values of time ti in this case is required for introduction of time-dependency into 

the system, which is required for the solution of the stated inverse problem 

described by Eq. (1). 

For parallel feeding strain and stress vectors (ε and σ, respectively) were given as 

inputs and maped into the vector E, representing the complete relaxation modulus 

function E(t). In this case, since the whole strain and stress curves were provided as 

input each data point had its own input neuron (see Fig.4, b). Presenting the input 

data in parallel on one hand slows down the training procedure and results in 

complex topology (input neuron for each data point) but on the other hand provides 

to the network all the information on the curve that is necessary for solving inverse 

problem (all history of material behavior).In this case vector of time is not needed, 

since vectors of strain ε and stress σ fully presented to the network already contain 

all required information on time-dependency. Relaxation modulus values of vector 

E were outputs. Number of output neurons corresponds to the n number of data 

points representing the curve of relaxation modulus E(t). 
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Fig. 4. Schematic representation of topology with data provided a) in series and b) in parallel 

3.2. Exponential parametric regression 

As a reference modeling method an exponential parametric regression referred as 

exponential fitting (Saprunov et al. 2014), was used. The exponential fitting is used 

to represent Eq. (1) in general form: 

 ( )
1

( ) 1 i

N
b t

i

i

σ t c t a e
=

=  + −   (11) 

where i is an index of N spectrum lines. Using Eq. (12) in Eq. (1), taking into 

account Eq. (5) for constant change of strain ε(t) and deriving resulting equation 

with respect to time, relaxation modulus can be obtained in the closed form (Knauss 

& Zhao 2007): 

 
1

1 1
( ) .i

N
b t

i i

i

ε
E t c a b e

k t k =

  
= = − 

  
   (12) 

The unknown coefficients c, ai, bi in Eq. (13) were determined by fitting the stress 

and strain data with Eq. (12) using an optimization criteria of minimum least-

squares error and taking into account constraints caused by physical meaning of 

coefficients: 
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  (13) 

where bi was varied in the window corresponding to changes of relaxation times 

1
i i
λ b=  within the experimental window 

1 i n
t λ t   corresponding to the number 

of measurement points for every i=1,2, …N (Knauss & Zhao 2007). The 

optimization was done using Trust Region method implemented using “lsqcurvefit” 

of MATLAB Optimization Toolbox (Saprunov et al. 2014). 

 

3.3. Measures of modeling performance  

To evaluate and to compare the performance of particular NN and exponential 

fitting modelling the following measures have been used: 

1. Mean square error, MSE, [MPa2] is calculated as follows: 

 

( )
2

1 ,

n
target

ji ji

i

j

E E

MSE
n

=

−

=


  (14) 

where j is an index representing the j-th testing curve Ej(t), Eji is a value of 

the relaxation modulus predicted in the i-th point, Eji
target is a true value of 

the relaxation modulus in the i-th point and n is a number of points 

representing the relaxation modulus Ej(t) curve. The lower MSEj value the 

better performance is. MSEj is calculated for each curve from j=1 to l 

corresponding to the number of curves in the set of the testing set and is 

averaged over the number l of testing curves of curves analyzed.  

2. Rj,0.05, [%] is defined as a percentage of the number n0.05 of data points of 

the Ej(t) curve that are estimated with equal or less than 5% relative error 

This value of 5% relative error was chosen as maximal error acceptable for 

engineering purposes. The data points of a curve Ej(t) which are predicted 

with equal or less than 5% relative error satisfy the following condition: 

 
( )

0.05
: 0.05, 1..

target

i i

i target

i

E E
E i n

E

−
 =   (15) 

The performance measure Rj,0.05 of modelling of particular Ej(t) curve is 

determined as: 
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 0.05

,0.05
100%,

j

n
R

n
=    (16) 

where n is the number of the data representing the Ej(t) curve. The modelling 

performance of particular NN is then characterized as average value R0.05 of 

Rj,0.05 with respect to the number of all analyzed testing curves Ej(t).  

 

With the aim to perform the validation of the modeling performance of NN and 

related choice of an optimal topology in two dimensional space an optimization 

criteria J was defined in such a way that maximization of J leads to an optimal 

performance of the NN. For this purpose the compliment R0.95 of R0.05 was 

introduced by: 

 
0.95 0.05

100% ,R R= −   (17) 

determining a percent of data points that were calculated with error of more than 

5%. 

Then the normalized values R0.95 and MSE in the interval from 0 to 1 are calculated 

as: 

 
0.95 0.95 min

0.95

0.95 max 0.95 min

' ;
j

j

R R
R

R R

−
=

−
  (18) 

 
min

max min

,
j

j

MSE MSE
MSE

MSE MSE

−
 =

−
  (19) 

where R0.95min, R0.95max, and MSEmin, MSEmax are the related minimal and maximal 

values j-th curve. Using the average MSE and R0.95 for the whole training set the 

optimization criteria J is defined by: 

 ( )
2 2

0.95

0.95

( ) ( ' )
, ' 100%.

2

MSE R
J MSE R

  +
  = 
 
 

  (20) 

Function J utilizes Euclidian distance in the space of MSE’ and R0.95’ between the 

optimal zero values of both parameters and current topology as shown in Fig. 5. 

Minimization of the Euclidian distance will correspond to the minimal value of 

function J, which represents the best relaxation module E(t) function 

approximation. 
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Fig. 5. Schematic representation of topology optimization principle 

3.4. Validation procedure 

Validation NN modeling performance and determination of optimal topologies was 

done in three respects: 1) generalization. 2) robustness properties, and 3) 

performance of NN with respect to number of data points in the signal. First two 

are important for application of the NN, the third one is related to convergence of 

optimization algorithm within training. Comparison with exponential fitting for 

robustness and effect of number of data points is done. Data sets representing the 

E(t) curves with n=10, 50 and 100 data points are considered. 

1. Generalization of the particular NN was checked on lval=6 datasets 

representing 6 curves E(t) that were not used for training.  

2. Robustness test of the NN was done based on data sets including data for 

training and validation (ε, σ, t; E) to the stress component of which 1, 5 and 

10% relative noise was added. Noise levels higher than 10% are not 

considered, since errors of measurements caused by sensors will not exceed 

this value.  

3. Mathematical convergence of training algorithm and performance of the 

trained NN were analyzed in respect to number n of data points in the input 

signal. 
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4 Results and Discussion 

Within this section the optimization results and related NN topologies are presented 

and their performance is evaluated with respect to their generalization ability and 

robustness. In addition to this, the influence of the number of data points n used to 

present the E(t) curves is analyzed. The results are then compared with the modeling 

results obtained by the exponential fitting technique (Saprunov et al. 2014).  

4.1 Choice and validation of NN topologies 

All possible variations of maximum 30 neurons in 2 hidden layers (900 iterations) 

were tested and compared based on NN performance measures and introduced 

optimization criteria J presented in chapter 3.2. For RBFN number of hidden 

neurons was determined by the algorithm used for neural network creation. 

Fig. 6 shows the results of NN performance in the plane of MSE and R0.95 for 6 

different topologies of NN obtained by taking into account the defined criterion 

function J (eq. 21). Fig. 6a shows the related results for MLP for various number of 

neurons [q, m] in the two hidden layers and Fig. 6b the results for the RBFN with 

respect to number of data points (n=10, 50 and 100) and way of the presentation 

(serial and parallel) of the input data to the NN.  
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[18 18] in series, 10 datapoints

[24 28] in series, 50 datapoints

[27 23] in series, 100 datapoints

[30 13] in parallel, 10 datapoints
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[76], spread 0.14, in series, 10 datapoints

[356], spread 0.04, in series, 50 datapoints

[681], spread 0.005, in series, 100 datapoints

[4], spread 13, in parallel, 10 datapoints

[5], spread 10, in parallel, 50 datapoints

[5], spread 14, in parallel, 100 datapoints

Performance measures of MLP optimal topologies Performance measures of RBFN optimal topologiesa) b)

 

Fig. 6. Performance parameters in the plane (MSE, R0.95) for the selected optimal topologies of a) 

MLP and b) RBFN  

From the presented points in the plane MSE and R0.95 being closer to the origin of 

the plane (MSE, R0.95) it is visible that neural networks in the case when the data 
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were provided in series performed better than in the case when the data were 

provided in parallel. 

In the following the selected topologies were validated in respect to their 

generalization abilities Robustness and influence of number of data points n used 

to present the E(t). For the purpose of the NN validation the data set representing 

the modeling data of all l=13 curves E(t) was divided into training and testing data 

set. The training data set consisted of the date representing the selected ltr =7 E(t) 

curves while the rest lval=6 was used as testing data. 

4.1.1 Generalization 

To demonstrate the generalization ability of the NN in tables 2 and 3 the values of 

NN performance parameters averaged for the training and validation data sets for 

MLP and RBFN are presented. As measures of performance the defined MSE for 

each selected topology for training and validation data, their absolute difference 

(ΔMSE=|MSEval - MSEtr|) and ratio (MSEval/MSEtr) were used. In addition the 

efficiency R0.05 for training and validation data, as well as their absolute difference 

(ΔR0.05=|R0.05val - R0.05tr|) are presented in the last three columns. 

From the Table 2 it is visible that for MLP, MSE for training and validation data are 

of the same scale and are comparable. NN with both ways of representation of input 

data demonstrated decrease in generalization in respect to number of data points 

n0.05 reconstructed within 5% relative error R0.05 for the highest number of data 

points (n=100) in the data set. Additionally a drop in performance and related 

decrease of generalization ability not detected by R0.05 is evident in decrease of MSE 

for validation set of data in the case of MLP with parallel input and n=50 data points 

in the data set. 

Table 3 presents results of generalization tests for RBFN. Here, on contrary to the 

MLP, better results are obtained for the networks with data presented in parallel , 

while RBFNs with data provided in series show poor performance in respect to 

both, the MSE and the R0.05 parameters. Among RBFNs with data provides in 

parallel the ideal values of R0.05=100% parameter were observed for validation data. 

The related ratio MSEval/MSEtr between training and validation increases up to 32. 

For RBFN this ratio is higher than the maximal ratio for MLP networks, and in 
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general indicates that MLP NNs showed better generalization capability than 

RBFNs. 

Table 2. Comparison of MLP performance on training and validation data 

Input 

type 

Number of 

data 

points, n 

Optimal 

topology 

[q m] 

Training 

data, 

MSEtr, 

MPa2 

Validation 

data, MSEval, 

MPa2 

ΔMSE, 

MPa2 

val

tr

MSE

MSE

, 

[-] 

Training 

data, 

R0.05tr, % 

Validation 

data, 

R0.05val, % 

ΔR0.05,% 

series 10 [18 18] 3.32·10-4 4.77·10-4 1.45·10-4 1.44 100 100 0 

series 50 [24 28] 8.90·10-5 3.22·10-4 2.33·10-4 3.62 100 100 0 

series 100 [27 23] 2.29·10-2 4.00·10-2 1.71·10-2 1.75 100 99.22 0.78 

parallel 10 [30 13] 4.03·10-1 5.14·10-1 1.11·10-1 1.27 100 91.67 8.33 

parallel 50 [22 13] 1.13·10-1 6.12·10-1 4.98·10-1 5.39 100 100 0 

parallel 100 [11 30] 9.54·10-1 2.08 1.13 2.18 99.45 81.86 17.58 

Table 3. Comparison of RBFN performance on training and validation data 

Input 

type 

Number 

of data 

points, n 

Optimal 

topology [q], 

spread 

Training 

data, 

MSEtr, 

MPa2 

Validation 

data, MSEval, 

MPa2 

ΔMSE, 

MPa2 

val

tr

MSE

MSE

, 

[-] 

Training 

data, 

R0.05tr, % 

Validation 

data, 

R0.05val, % 

ΔR0.05,% 

series 10 [76], 0.14 5.48·10-8 3.67 3.67 6.68·107 100 73.6 26.4 

series 50 [356], 0.04 2.99·10-6 2.04·102 2.04·102 6.83·107 100 32.7 67.3 

series 100 [681], 0.005 3.84·10-4 7.59·103 7.59·103 1.98·107 97.9 8.7 89.2 

parallel 10 [4], 13 1.03·10-4 5.12·10-4 4.09·10-4 4.99 100 100 0 

parallel 50 [5], 10 8.33·10-5 2.6·10-3 2.52·10-3 31.23 100 100 0 

parallel 100 [5], 14 8.43·10-5 2.7·10-3 2.62·10-3 32.02 100 100 0 

 

Considering split-sample validation of generalization of MLP and RBFN with two 

different ways of input data representation and 3 different number of data points 

in the set n, MLP showed better generalization abilities in respect to both MSE 

and R0.05. 

4.1.2 Robustness 

To analyze the robustness of NN performance data sets with relative additive noise 

of 1, 5 and 10% were considered in modeling the relation (ε, σ, t) → E. Robustness 

of NN was compared to exponential fitting technique. Since the reference method 

of exponential fitting is sensitive to the width of the spectrum, the whole generated 

data set including data for training and validation was used into analysis. Graphs in 

Fig. 7 show averaged over complete data set l=13 (training and validation) values 
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for MSE and R0.05 for all 6 topologies of each type of NNs and for the exponential 

fitting. 

The best results for noiseless data in terms of average MSE and R0.05 were 

demonstrated by RBFN with data provided in parallel and MLP with data provided 

in series. 

Further the MLP with the data provided in parallel shows the highest robustness for 

the noise level less than 10% and for small number of data points n=10. With 

increase of number of data points RBFN with data provided in parallel becomes 

competitive and overpasses the performance of the MLP. For the n=100 data points 

in the data set in terms of both performance measures RBFN with the data presented 

in parallel is followed by exponential fitting. 

Among the NN tested for robustness RBFN with data provided in parallel for 

number of data points n=50 and 100 showed better results than numerical method 

of non-linear exponential parametric regression. 
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Fig. 7. Upper panel - Average MSE for n= 10, 50 and 100 data points obtained by 

MLP, RBFN and exponential fitting. Bottom panel – Average R0.05 for n= 10, 50 

and 100 data points obtained by MLP, RBFN and exponential fitting  
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4.1.3 Effect of number of data points 

Fig. 8 shows MSE in dependence on the level of additive noise in the input data for 

each of the modeling methods at different number of data points n in the data set. 

The MSE was calculated in the same way as for robustness evaluation. 

For noiseless data trend of increasing MSE with increasing number of data points 

is observed for all methods with exception of MLP. MLP in this case performs the 

best for 50 data points representing relaxation modulus curve. This might be 

explained by the optimal relation between number of free parameters of the network 

and number of data points in the training data. 

We can observe that in the case of using RBFN with parallel input data (Fig. 8, d) 

and exponential fitting for noisy data (Fig. 8, e) the MSE decreases with increase 

of number n of data points, while the opposite trend is detected for all other methods 

applied to the noisy data. 

As presented in Fig. 8 the lowest values of the average MSE are obtained with 10 

data points for both data types using MLP and RBFN with data presented in series.  

Further we can see that NN with input data provided in series demonstrated the 

highest MSE among the compared methods (lowest performance) independently on 

the number of data points. 
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Fig. 8. MSE  in dependence of number of data points representing relaxation modulus curve obtained 

by applying a) MLP with parallel input data, b) MLP with input data in series, c) RBFN with parallel 
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input data, d) RBFN with input data in series, and e) exponential fitting for data with 0, 1, 5 and 

10% added noise 

5 Conclusions 

With the increasing use of polymers in demanding applications requiring control of 

structure health, systems that are not only capable to detect geometrical changes, 

such as cracks, but also changes related to time-dependency of polymers are 

required. The system should be able of determination of time-dependent material 

properties based on external excitation and, therefore to solve an inverse problem. 

Existing numerical techniques cannot be used for real-time application, therefore 

neural networks are suggested. 

The paper proposes artificial neural networks as a tool for solving inverse problem 

appearing within characterization of time-dependent properties of relaxation 

modulus of viscoelastic materials. The simplest case with known closed-form 

solution was considered for obtaining a segment of relaxation modulus from 

constant strain rate tensile test data. 

The investigation showed that MLP and RBFN of different topologies are capable 

of solving the stated problem and shows good generalization capabilities. MLP with 

data provided in series showed better generalization compared with parallel data 

feeding both measures of performance the of MSE and R0.05. Opposite behavior was 

observed for RBFN. 

Considering the robustness, the RBFN with data provided in parallel showed better 

performance compared to the other NNs and exponential fitting for high number of 

data points (n=50 and 100). 

Neural networks demonstrated better performance for datasets with smaller number 

of data points compared to exponential fitting, while the latter works better with 

larger number of data points in a set. This can be attributed to the utilization of non-

linear least square regression algorithm, since small number of data points limit 

number of parameters of the methods that leads to loss of performance. 

Observed decrease of performance of MLPs and RBFN using serial input data, with 

increase of the number of data points can be related to the ratio of free parameters 

of the system (NN) to the number of data points in the full training set. 
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The results show that further development of artificial neural networks, particularly 

RBFN, is promising for application to real-time health polymer structure 

monitoring. Generalization and robustness properties of the network, exceeding 

performance of non-linear parametric exponential regression, as well as possibility 

to operate in a real time are the advantages of NN compared to conventional 

methods used to determine time-dependent mechanical properties from non-

standard experiments. Further investigation should address such problems as 

dynamic loadings, real-time data prediction, precision of detection of time-

dependent changes, training procedure upgrade. 
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