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Abstract

Kinematics of Gleason mechanisms of hypoid and spiral bevel cutting machines is

considered. These mechanisms are designated to install the position and tilt the

head cutter. The tilt of the head cutter with standard blades provides the required

pressure angle. The authors have developed the matrix presentation of kinematics of

these mechanisms and basic equations for the required settings. An example is

presented based on the developed computation procedure.

1. Introduction

The synthesis of hypoid and spiral bevel gears is an important problem that has

been a subject of intensive research by Gleason engineers [1] and Litvin et al. [2].

Gleason engineers have designed machines to cut and grind hypoid and spiral bevel

gears that are widely used in the industry. An ingenious mechanism is used in the

Gleason gear cutting machines. This mechanism provides the required pinion pressure

angle by tilting the head-cutter and thereby reducing the number of different cutter

blades. A short description of the tilt head-cutter mechanism has been given by



Lehmann [3] but the basic equations that are necessary for the settings have not

been presented. The purpose of this paper is to investigate the kinematics of the

tilt-mechanism and to derive the basic equations for the installment of the machine-

tool settings.

Henceforth we will use two coordinate systems, S^ and S. , that are rigidly

connected to link. k. However, only one coordinate system, S^ , is rigidly

connected to the frame of the cutting machine and z is the axis of rotation of

the cradle (Fig. 1.1,a). The head-cutter is pointed to the observer. It is assumed

that vectors s and c are known and they are represented in S . These vectors have

been already determined at the stage of local synthesis [2], Vector s = 0^ 0^ ' is

located in the machine plane zj: =0 and is represented by the row matrix (Fig.

1.1,b)

s = [s cosq -s sinq 0] (1.1)

where s = | 0 0^ | and q determine the magnitude and orientation of vector s.

Vector c is the unit vector of the axis of the tilted head cutter and is

represented in S by the following row matrix (Fig. 1.1,b)

[ĉ ] = [cosp -sinp cosu] (1.2)

*
Here: p is the angle that determines the orientation of vector c , the projection

of vector c on the machine plane; y is the angle that is formed between the axis of

the cradle and the axis of the tilted head-cutter. The orientation of vector c must

satisfy the following requirements: (i) it must be perpendicular to plane P that is

tangent to the root cone of the generated gear (see section A-A in Fig. 1.1,b) and

(ii) the unit normal to the tilted cone of the head cutter must coincide with the



unit normal n to the surfaces of the mating gears (see section B-B in Fig. 1.1,b).

Due to the tilt of the head-cutter it becomes possible to use blades with the same

shape angle i|> for various orientation of the surface unit normal n (section A-A in

Fig. 1.1,b).

The sketch of the mechanism for the installment of the machine-tool settings is

shown in Fig. 1.2. The cradle (1) can be turned about the a-axis of the cutting

machine. The cradle carries the so-called eccentric (2) that can be turned about

the ,b-axis that is mounted on the cradle. The eccentric carries the swivel (3) that

is provided with two joints whose axes are intersected and form angle e. The swivel

can be turned about the c-axis of the eccentric. The cutter spindle (4) is a link

that is also provided with two joints, d and e, whose axes form the same angle e as

the joints of the swivel. The cutter spindle carries the head-cutter that.rotates

about the e-axis in the process of gear generation. Plane P of the blades passes

through the point of intersection of axes d and e. The rotation of the head-cutter

provides the desired velocity of cutting. However, when deriving the equations for

the installment of machine-tool setting, we may assume that the head-cutter and the

cutter spindle are rigidly connected. The tilt mechanism may be als.o represented as

shown in Fig.1.3. The swivel and the head-cutter spindle are interconnected by the

wedge. The relative motion of the cutter spindle with respect to the swivel is

rotation about the d-axis that is perpendicular to the wedge.

It will be shown in section 3 of the paper that the required magnitude and

orientation of position-vector s (Fig. 1.1,b) is provided by the turning of the

cradle and the eccentric. The required orientation of the unit vectors c are

provided with the turn of the swivel and the cutter spindle.



2. Basic Kinematic Equations

The basic kinematic equations represent the machine-tool settings in terms of

given parameters of vectors s and c (Fig. 1.1). The derivation of equations for

settings is based on matrix representation of the coordinate transformation.

The mechanism for the installment of the machine-tool settings is shown in Fig.

1.2. The schematic of the mechanism and the applied coordinate systems are shown in

Fig. 2.1. We consider that the cradle (1), the eccentric (2), the swivel (3) and

the cutter spindle (4) are provided with two rigidly connected coordinate

systems s£ ' and S^ (k = 1,2,3,4). We will use for the coordinate transformation

matrices of two types, G and M, that describe the link geometry, and the relative

motion of interconnected links, respectively. The coordinate transformation from

link 4 to link 0 is represented as follows

'1'

J

(2.1)

Ge.ometry matrix [G ] for links 3 and 4 that are provided with two intersected

axes of revolute joints is represented as follows (Fig. 2. 2, a)

[G

cose

0

(— )sine

0

0

1

0

0

(+)sine

0

cose

0

0

0

0

1.

a = 4,3)

(2.2)

The upper and lower signs correspond to I = 4 and £ = 3, respectively.

Matrix [Ĝ J ] for links 2 and 1, that are provided with two parallel axes of

revolute joints is represented by (Fig. 2.2,b)
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Here: the upper and lower signs correspond to k = 2 and k = 1, respectively.

Matrix [M •* ] is represented by the following equation (Fig. 2.3)

nm

" cos*nra
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0
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0
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(2.4)

Here: n = m - 1; m = 4, 3, 2,1. Equations (2.1) - (2.4) yield

"4i1}' = 321
a31
0

a!2
322
a32
0

a!3

a33
0

a!4~
324
a34
1

(2.5)

where

2 2
a.. = COST(COS ecos* + sin e) - s intense sin*

a.2 = COST cosesin* + sinrcos*

cosisin2e
'13 - cos<j) t) + sinTsinesin<(, t

a!4 = *fcos4>c ~ cos(*c + 4^)]

2 2
a_. = -sinT(cos ecos* + sin e) - cosTCosesin*



a22 = ~s^nTCOSes:i-n(t>t
 + COSTCOSIJ)

sintsinZe
'23 -s (1 - cos*) + cosTsinesiniJ)

c - sin(<J>c

sin2e /, Na =—-T— (1 - cos<|> )
•J 1 £ L

a~2 = ~ sinesin<|>

2 2
a__ = sin ecosij) + cos e

(2.6)

'01 is the cradle angle;

((>„„ is the swivel angle and

Here: T = (<|>

eccentric angle; (j> ro-i -- •-- a-- rs ^ j t

angle. We will also need the coordinate transformation: (i) from

(ii) from S, ' to S^ . Using the matrix equations (2.2) - (2.4), we obtain

= < j > 1 9 is thee T12
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Here:

2 2
b.. = cos<|> (cos ecosA + sin e) - sin<|> cosesin<J>

11 S C S C

t>1 7 = cos<() cosesin* + sin<j> cos*
•L ̂  S C S C

sin2e
13 (1 - cosA )cosA_ + sinA sinesin<j>

C J S C

2 2
b9] = - sin<j> (cos e cos* + sin e) - cos<|> cosesin*

£* 1 S C S . L

b99 = - sin<() cosesinA + cos* cosA
*-£. S L S C

(1 - cosA ) + cosA sinesinA
C S I

sindi sin2eTs
23

'31
sin2e ,. , , \(1 - cos<f,t)

= -sine sin*

2 2
«« = sin ecosA + cos e (2.9)

3. Determination of Machine-Tool Settings

Determination of Cradle Angle and Eccentric Angle

Consider that vector s is given and it is represented in the machine

plane ZQ = 0 as follows

[s] =

s cosq

-s sinq

0

1

(3.1)

where s and q are known values that have been determined at the stage of local

synthesis [2], To determine the eccentric angle and the cradle angle, we use



the following matrix equation

s cosq

-s sinq

0

1

- "4"''
" o"

0

0

1

(3.2)

where [0 0 0 1] are the coordinates of point 0? in S^ . Equations (3.2)

and (2 .7) yield

s cosq s<j> - cos(<{> + <f> ) ]

s sinq = £[sin<|> - sin(<j> + fy )]

(3.3)

(3.4)

where H is a constant - the distance between the centers of the cradle and the

eccentric. After transformations of equations (3.3) and (3.4), we obtain

•- cosq = sin -- sin(<|> (3.5)

-sin -s— (3.6)

Equations (3.5) and (3.6) provide in the area of 0 < (j> < 2n, 0 < «|» • < 2u two

solutions for <J> and <J> represented by the following equations

(3.7)

4>c = q + 90° (3.8)

The two solutions are related as follows



(3.9)

The obtained results show that the required magnitude and orientation of

vector s may be obtained by two combinations of parameters of machine-tool

settings, <J> and cj> . Fig. 3.1 and Fig. 3.2 illustrate the installment of the

cradle angle, <j> , and eccentric angle, <|> , for the cases where a left-hand

pinion and a right-hand pinion are generated. In the practice only the first

solution for the parameters $ and <J> is applied (with 0 < <j> < TV).
G C 6

Determination of Cutter Spindle Angle and Swivel Angle

The combination of the cutter spindel angle, $ , and the swivel

angle, 4> , provides the required orientation of the unit vector c of the

tilted head cutter. The purpose of this section is to derive the equations

that represent 4> and <J> in terms of the components of vector c. The

eccentric angle, cj> , and the cradle angle, <j> , are considered as known at this

stage of derivations. We will use for the derivation of the swivel angle two

alternative techniques.

First Technique Consider that vector c is represented in S by the row

matrix

c = [c c c ] = [c c cosu] (3.10)
~o xo yo zo xo yo

where \i is the angle that is formed by the cradle axis, zfi , and the axis of

the tilted head cutter. The orientation of the axis of the tilted head-cutter

is represented in S» by the elements a^-j, 323» anc* a33* ^ere: al3» a23'

and a-jo are the direction cosines that are formed by axis z, (the head-

cutter axis) and the axes xil1 , y« and zl (see matrix (2.5)).



The cutter spindle angle can be determined from the equation

a33 = cosy (3.11)

Equating equation (3.11) and using the expression for 333 (see equations

(2.6)), we obtain

2 2sin ecos<|> + cos e = cosy (3.12)

Equation (3.11) yields

9 sin

This equation provides two solutions for the cutter spindle angle, <j> ,

considering that the magnitude of y is given. The two solutions for <J> are

related as follows

(3.14)

In the practice only the first solution for 4>£ (0 < <|>£ ' < TT) is used. The

derivation of the swivel angle is based on equations

a!3 = cxo> a23 = cyo

Using the expressions for aio and a?T (see equations (2.6)), we obtain

cosTsin2e (1 _ COS(() ) + sinTsinesin<!)h = c (3.16)
£* L C XO

10



sinTsin2e , . , \ , . . . , -> ,-,x= (1 - cos<}> ) + cosTsinesin<j> = c (3.17)

where T = d> +d> +0.T c Tg Tg

We may transform equations (3.16) and (3.17) and represent them as a system of

two pseudo-linear equations in the unknowns COST and sini as follows

a,. COST + a.^sinT = b.

COST - a s i n T = b (3.18)

Here:

2 »t
a = a22 = sin2esin y- ; a12 = a21 = sinesin<j>;

b. = c , b0 = c (3.19)I xo 2 yo

The solution of equation system (3.18) for the unknowns is

a l lb l + a!2b2 ACOST = 5 5 = A
all + a!211 ^ (3.20)

321bl " a l l b 2 .
sinT = 2 2 =

all + a!2

or

t an l=-L—- (3.20,a)
2 B

Then we obtain that

1 I



= T ~ (3.21)

Second Technique

Consider that vector c is represented in coordinate system S. that is

rigidly connected to the eccentric and is given by the row matrix

[C2] = tcx2 Cy2 Cz2]

Here:

Ic2] = (3.22)

where l^jf) 1 represents the coordinate transformation from S_ to S- and

is given by (see equation (2.7))

20 J l 02

COS(<|)

)<

0

0

0

1

(3.23)

The unit vector of the axis of tilted head-cutter is represented in S by
i *•

its direction cosines b^, b2^ and b^ (see matrix (2.9)). The determination

of the cutter spindle angle, <J» , and the swivel angle, ij> , is based on thec s

following equations

b!3 = Cx2' b23 ~ Cy2' z2
(3.24)

12



Equation b^o = c o provides the sane solution for <b as it has been

represented by equation (3.12). Using the remaining two equations

b!3 = Cx2» b23 = Cy2

we obtain after transformations the following system of two pseudo-linear

equations in the unknowns cos<}> and sin<(>

m, . cosij) + m,j sin<J> = n. (3.25)

m?1 cosij) + m_2 sincfi = n. (3.26)

Here:

m. . =—s— (1 - cos<J> ), m.- = sinesin<()

cy2

The solution of equations (3.25) and (3.26) for the unknowns cos$ and sin<j>s s

yields

mll nl + ml?n2
^~i - |2_^=C (3.27)

mll + m!2

ml? nl ~ mll n712 l - H •? = D (3.28)
n12

, ^ . . .
where m. . + m „ = 4sin esin -s— cos -z

13



or

tan 1 - C
D (3.29)

Numerical Example

The input data in the discussed example is adopted from literature [2]

and is represented in coordinate system Ŝ 1' as follows (length units in mm):

s = [133.09 cos(84.033°); -133.09sin(84.033° ) ; 0]

c = [0.1085; -0.1157; 0.9874]; I = 222.25; e = 15°

cosn = c = 0.9874z

The following computations has been performed for the Gleason Cutting

Machine. #116. Equations (3.7) and (3.8) provide the data for the eccentric

angle, <|>p, and the cradle angle, $ . Equation (3.13) provides the data for the

cutter spinde angle, 4,̂ . Equations (3.21), (3.20) and (3.19) provide the data

for the swivel angle, <j> . Alternative equations (3.27) and (3.28) for
S

determination of <j> may be also used.
S

The final results of computations are represented in the following table

TABLE 1

Eccentric
Angle, c|>e

73.57°

Cradle Angle,

*c

137.25°

Cutter
Spindle Angle,

*t

35.7175°

Swivel
Angle,

*s

268.10°

14



Conclusion

The kinematics of the Gleason's mechanism for the installment of the

machine-tool settings has been investigated.

The basic euations for the determination of the eccentric angle, cradle

angle, cutter spindle angle and the swivel angle for the gear cutting machine

have been developed. These equations provide the required magnitude and

orientation of position-vector s and the orientation of unit vector c of the

axis of the tilted head-cutter axis (Fig. 1.1,b).

A numerical example that illustrates the proposed computation procedure

has been represented.

15



Nomenclature

c Unit vector of tilted head-cutter axis

£ Machine constant

P Angle determining the projection of cutter axis on machine plane

q Basic cradle angle determining location of cutter axis

s Radial setting for pinion head-cutter axis

y Angle of head-cutter axis inclined with cradle axis

e Wedge angle

4> Cradle angle

<|>0 Eccentric angle
JC

<j> Swivel angle
S

4> Cutter spindle angle
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Fig.3.2
Basic Settings for Right-Hand Pinion
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