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ABSTRACT 

Blade tip timing (BTT) includes a number of uncertainties that 
discourage its use. One of the main ones is the shift in the 
equilibrium position of the blade tip due to steady (non-

oscillatory) bending and/or twisting of the blade, and axial 
movement of the bladed disk (blisk)-shaft system. This results 
in a shift in the effective measurement position of the probe 
relative to the blade chord, resulting in errors in the tip 
vibration measurement which can translate to a huge error in 
the corresponding stress estimate, which relies on calibration 
against finite element (FE) models. Previous experimentally 
validated research by the authors introduced a method for 
quantifying steady movement of a single type (axial, lean, or 
untwist), using BTT data from not more than two probes. In 
this paper, a development of the previous method is presented 
that provides a solution for the case of simultaneous types of 
blade steady movements. Additional probes are used for 
determining the direction, but these can be placed at any 
angular positions. The developed method is validated using a 
BTT simulator of a blisk, and accurate results obtained. The 
simultaneous axial and lean movements can be accurately 
determined when the untwist is negligible, and an uncertainty 
level can be specified when the untwist is not negligible.  The 
untwist itself can be calculated accurately in all cases of 
simultaneous movements. Guidelines for the use of the method 
in different scenarios are provided. 
 

NOMENCLATURE 

 

Blisk Bladed disk 

BTT Blade tip timing 

CFF Circumferential Fourier Fit DOF Degree of freedom 

EO Engine Order 
FE Finite element 
NSMS Non-Intrusive Stress Measurement System 

OPR Once per revolution probe 

SGs Strain gauges 𝑑𝑗 Blade tip displacement at probe 𝑗 EO𝑚 Engine order, 𝑚 = 1, …   𝑀 𝑗 Probe number 𝑙 Distance between probe and intersection point 
M Number of excitation frequencies 𝑛 Revolution number 𝑁buff Number of buffers for averaging 𝑁P Number of probes 𝑁𝑃|min Minimum number of probes 𝑜 Origin point 𝑃𝑗 The mean displacement value at probe 𝑗 𝑅 Blade tip radius 𝑆 Magnitude of combined axial-lean movement 𝑡 Time 𝑡det Detected arrival time of blade tip 𝑡exp Expected arrival time of blade tip 
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x, y, z Cartesian coordinates 𝑋𝑟 Carrington’s cross correlation factor 𝑧min, 𝑧max Axial positions of blade tip edges 𝛼𝑗 Probe angle relative to OPR 𝛽𝑖 Blade angle relative to OPR ∆𝑃𝑗 Change in probe offset ∆𝑃𝑢 Change in probe offset due to only untwist ∆𝑧c Distance between probe and twisting centre ∆𝑧p Axial distance between probes ∅ Blade chord line angle ∅𝑆 Axial-Lean movement angle 𝜓 Untwist angle 𝜔𝑚 Vibration frequency 𝑚 = 1, …   𝑀 𝛺 Rotating speed (rad/s) 

1. INTRODUCTION 

Excessive blade vibration results in blade failure during 
operation. Measurement of blade vibration (amplitude and 
frequency) makes it possible to avoid such failures and protect 
different components [1]. It also provides the designers of 
bladed assembly components in turbomachinery applications 
with the information that is necessary for determining the limits 
posed by the harsh operating conditions (high speed, 
temperature, and pressure), and to improve the design 
accordingly [2]. Two types of blade vibration can occur: 1) 
synchronous (Integral EO) which results from non-uniform 
pressure distributions due to stators and/or irregularities in the 
casing, 2) asynchronous (non-integral EO), which results from 
rotating stall and/or aerodynamic instabilities [3].  

Strain gauges (SGs) are the most commonly used devices for 
monitoring blade vibration, providing direct information about 
the blades stresses [4]. However, their attachment to the blades 
may affect the blade dynamics.  Also, the measurements are 
limited to a few blades and require considerable 
instrumentation since the signals have to be transmitted via 
telemetry or a slip ring [3]. The SG service life is short, making 
it unsuitable for long-term measurements [5]. Another blade 
vibration measurement method which has limitations similar to 
SGs is the frequency modulated grid system, which uses small 
permanent magnets attached to the blades tips [6]. In contrast to 
these methods, BTT provides an advanced blade vibration 
technique while fulfilling the requirements of a low cost and 
effective vibration measurement system [7], [3]. 

The principle of BTT systems is to use a number of probes 
(generally optical probes) mounted on the casing, with laser 
light beams focusing onto the passing blades tips. When a blade 
tip intersects with the light beam, the light is reflected back to a 
photo sensor and light intensity rises at a high rate. The time at 
which a blade tip passes within the range of a probe is called 
arrival time. In case of no vibration and/or steady blade 
movements, the arrival time would be only dependant on the 

rotational speed and angular positions of both the blade and the 
probe (this is called the “expected arrival time”). However, in 
normal cases, the blade arrival times are dependent on the 
vibration (amplitude and frequency), and the steady (non-

oscillatory) movement (its type and rate), experienced by the 
blade [7]. Consequently, the blades will pass the probes earlier 
or later than the expected time, and the difference between the 
actual and expected arrival times of a blade at a given probe is a 
measure of the instantaneous tip displacement over and above 
the rigid body rotational motion.  Such displacements (“BTT 
data”) are processed by a BTT algorithm for frequency, 
amplitude and phase information. Since BTT measurements 
refer to the blade tip, their conversion to stress information at 
critical points on the blade requires prior calibration against 
strain gauge (SG) measurements or finite element (FE) 
simulations. 

Pioneering work on BTT started 50 years ago [3]. It was first 
known as Non-Intrusive Stress Measurement System (NSMS) 
[8]–[10], then it has been subjected to many developments with 
regard to both the instrumentation/data acquisition aspect, and 
the BTT data analysis algorithms aspect.  During the last two 
decades, a considerable development for the data analysis 
algorithms of the current BTT technology has been done started 
by the work of Heath [11]–[13], and then Dimitriadis et al. 
developed  the Auto-regressive methods [14]–[16]. Another 
method which is considered as a standard method used in a 
leading aero-engine company has been presented by Russhard 
[17], it is known as multi-frequency sine fitting with 
preparation method. It involves the preparation of data to 
separate integral from non-integral vibration components. Other 
attempts include the recent improvement has been done by 
Rigosi et al. [18] to the early two-parameter plot method 
introduced by Heath [12], in addition to the work of Jun Lin et 
al. [19] for monitoring multi-mode vibration signals. Moreover, 
different techniques have been produced inside industry and 
kept confidential, or have been published with little data, like 
the circumferential Fourier Fit (CFF) method [20]. 

The correlation process between the measured BTT 
displacements and FE predictions involves a number of 
uncertainties relating to measurement, data processing/analysis, 
and FE modelling [21], [22]. The change in the equilibrium 
position of the blade tip as a result of steady (non-oscillatory) 
movement of the blades is one of the major causes of 
uncertainty in BTT measurements. With reference to Figure 1, 
the three principal types of steady movements of the blade tip 
are: 

 Axial shift, where the direction of movement of the 

blade tip chord line is perpendicular to the plane of 

rotation (Figure 1a); 

 Blade lean, where the blade tip is moving perpendicular 

to the blade chord line (Figure 1b), 
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 Blade untwist, where the blade is twisting around an 

axis parallel to the longitudinal axis of the blade as 

shown in Figure 1c. 

Such steady movement is typically caused by variations in 
thermal and centrifugal loading conditions that are associated 
with changes in the rotational speed. 

The BTT measurement uncertainty introduced by such steady 
movement is the result of the shift in the effective measurement 
(sensing) positions of the BTT probes relative to the blade tip. 
This deviation from the nominal measurement position 
manifests itself as a “DC” error in the BTT data which affects 
the accuracy of the amplitude and frequency output by the BTT 
algorithm, since the amplitudes of vibration at the original and 
effective measurement positions may be significantly different.  
This, in turn, can have a significant impact on the stress 
estimate (based on the pre-determined calibration factor linking 
the stress values of the blisk to the tip deflection). Moreover, 
the new measurement point might have minimal amplitude of 
vibration of a certain mode shape which results in that mode 
being missed. Sometimes, the blade may be completely missed 
from measurements due to position shift if the probe placed 
close to the edges [23].   
 

It is important to note that the effect of steady movements is 
neglected in the current BTT data algorithms, while some of 
them consider only the effect of angular position offsets of the 
probes which are independent of the rotational speed. As for the 
determination of the steady movement itself, the methods that 
have been proposed typically require additional equipment or 
are restricted to certain types of blades [24]–[28]. A few 
attempts have been published about the identification and 
quantification of blade steady movements and their effect on 
BTT measurements. Some of these attempts require the use of 
additional probes and may be predictions of the mode shapes to 
determine the probe sensing positions due to steady movements 
such as the one described in [24], and the method presented by 
Twerdochlip et al. [25] for the determination of blade untwist 
under synchronous dynamic conditions.  This method depends 
on the measurement of blade passing signals using two pairs of 
fixed sensors.  The signals from both pairs are then evaluated to 
distinguish between blade untwist and synchronous vibration. 
Other methods use additional equipment such as the one 
presented by Hatcher Jr et al. [26] which uses an image capture 
device for capturing the blade tip simultaneously with the 
detected arrival time, with the sensing position being located 
either manually or using image processing. Kominsky [27] 
introduced a method for the calculation of the blade untwist 
angle by measuring the intensity of light reflected from the 
blade using optical fibres. The method proposed by Olivier 
Jousselin [28] extracted the shifted measurement position in 
case of lean, axial shift, or untwist, but was limited to shrouded 
turbine blades since the method depended on special geometric 
features associated with such components. Moreover, neither 

experimental nor simulated data validation was presented for 
the method of [28]. 

A novel method has been presented by the authors [23] for the 
determination of individual blade steady movements (axial 
shift, blade lean, and blade untwist) using BTT data. This 
method depends on the extraction of the change in the average 
values of BTT displacements measured by only one or two 
probes, depending on the type of movement, and then linking it 
to the blade movement by means of geometrical relations. The 
work in [23] included preliminary validation using a novel BTT 
simulator of a blisk.  Experimental validation tests using 
measurements from both a laboratory test rig and real engines 
were then undertaken and their results are presented in [29]. 
Despite the proven validity of the method in [23], [29], it was 
devised for each individual type of movement occurring 
separately (as in Figures 1a-c).  However, in most real engine 
measurements it is usual to find these movements occurring 
simultaneously.  Thus, a development of the authors’ previous 
method [23], [29] is essential in order for it to be applicable to 
all movement situations, and to quantify both the magnitude 
and direction of such movements accurately. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Types of blade tip steady movements. (a) Axial shift, 
(b) Blade lean, (c) Blade untwist, (d) Simultaneous movements. 
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This paper therefore presents a new development of the above 
mentioned method [23], [29] that is aimed towards the 
determination of steady movements that are a combination of 
more than one type of the basic steady movements, as 
illustrated in Figure 1d. The new methods are validated using 
the blisk modal model simulator [23]. The following sections 
include an explanation of BTT systems, the problem of BTT 
measurement position errors, and a description of the developed 
method for the determination of simultaneous steady 
movements.  A brief description of the simulator and the blisk 
FE model used in the validation process is then presented.  This 
is then followed by a discussion of the results of the method, 
and the conclusions of the work. 

2. EFFECT OF STEADY MOVEMENTS ON BTT 
MEASUREMENTS 

In order to understand the influence of steady movements on 
BTT displacement measurements, consider the blisk shown in 
Figure 2 which is rotating about the z-axis. The expected arrival 
time 𝑡𝑒𝑥𝑝 of the tip of the shown blade (blade no. i) at probe 
no. 𝑗 is dependent on the rotational speed 𝛺, which is assumed 
constant during every cycle of rotation, and can be calculated 
from the OPR signal probe as follows 

 𝑡exp,𝑗 = 𝑡OPR,𝑛 + (𝛼𝑗 − 𝛽𝑖)/𝛺 (1) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 𝑡OPR,𝑛 is the start time of revolution no. n, 𝛼𝑗 is the 
angular position (in x-y plane) of the probe 𝑗 relative to the 
OPR probe, and 𝛽𝑖 is the angular position of the nominal 
sensing point on the tip of the undeformed blade relative to the 
OPR reference feature on the shaft (see Figure 2). The actual 

(detected) arrival time 𝑡det would be either greater, or less than 
the expected time depending on the vibration behaviour of the 
blade.  The tip displacement of the blade as it passes probe 𝑗 is 
then estimated as follows 

 𝑑𝑗 = 𝛺 ∗ (𝑡exp − 𝑡det) ∗ 𝑅 
 

(2) 

where 𝑅 is the tip radius measured from the centre of rotation. 

The instantaneous tip displacements 𝑑𝑗 of a given blade 
observed by probe no. j determined from the above formula are 
assumed to follow the following variation in the time domain 
[29]: 

𝑑𝑗 = 𝑃𝑗 + ∑ (𝑎1𝑚 sin(EO𝑚𝛺𝑡𝑗) + 𝑎2𝑚 cos(EO𝑚𝛺𝑡𝑗))𝑀
𝑚=1 + noise  (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where, 𝜔𝑚 = EO𝑚𝛺, 𝑚 = 1 … 𝑀, is a generic frequency 
component, and EO𝑚 is the associated engine order (EO).  The 
harmonic components can be either synchronous (EO𝑚 integer) 

Figure 2: Typical arrangement for measuring 𝑡exp,𝑗 using once-per-
revolution (OPR) probe [29]. 

Figure 3: Probe offset (a) Constant offset, (b) Variable offset. 
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or non-synchronous (EO𝑚 non-integer). 𝑡𝑗 in eq. (3) represents 
the sampling time according to the assumptions made in the 
BTT algorithm used. 𝑃𝑗 is the steady offset resulting from the 
positional (fixing) errors of the probes and/or blades, in 
addition to the blade steady movements.  Positional errors and 
blade steady movements introduce errors in 𝑡exp,𝑗 (eq. (1)), and 
therefore 𝑑𝑗, which cause 𝑃𝑗.  Positional error in the probes 
affects 𝛼𝑗, whereas positional (fixing) error in the blade affects 𝛽𝑖 (see Figure 2).  Such angular errors are speed-independent, 
and, due to division by 𝛺 in eq. (1) and multiplication by 𝛺 in 
eq. (2), the resulting error in 𝑑𝑗 is also independent of speed 𝛺.  
Hence, the contribution to the mean term 𝑃𝑗 arising purely from 
probe or blade positional offset is independent of speed, as seen 
in Figure 3a.  On the other hand, the shift in sensing position 
introduced by blade steady movements results in a speed-

dependent error in 𝛽𝑖 (Figure 2) which translates into a speed-

dependent mean term 𝑃𝑗, as shown in Figure 3b. 

Starting from this observation, the change in average values of 
BTT displacements at a probe 𝑗 between two different speed 
values can be used to quantify the type and amount of steady 
movement of the blade tip by using the geometrical relations as 
described in the following section. 

3. BLADE STEADY MOVEMENTS DETERMINATION 

Based on previous work for the determination of individual 
type movements (either axial or lean or untwist) [23], [29] it is 
only possible to distinguish between untwist and either axial or 
lean by comparing ∆𝑃𝑗 of two different probes as follows 

If  ∆𝑃1 = ∆𝑃2   Axial or lean 

(4) If  ∆𝑃1 ≠ ∆𝑃2    untwist 

where ∆𝑃1 and ∆𝑃2 are the changes in average values between 
two different rotational speeds at two different probes. The two 
probes have to be placed at different axial positions (𝑧1 ≠ 𝑧2), 
but they can be placed at either the same or different angular 
positions (𝜃1, 𝜃2). The geometrical relations for individual types 
of movements are available in [23], [29]. The following 
sections present a development of this previous method to cater 
for all movement situations. It should be noted that the 
geometrical relations extracted in the following sections are 
based on the chord line of the blade tip regardless of its profile, 
which means that the current method can be used for any blade 
tip profile. 

3.1 Extraction of BTT displacement averages 

As in [23], [29], the first step is the extraction of the speed-

varying offset 𝑃𝑗  as the speed is swept over a large number of 
revolutions.  The method is based on that introduced by 
Russhard [17] for BTT data preparation. The BTT displacement 
data 𝑑𝑗 are divided into a large number of segments (buffers). 

Each buffer consists of a number of points 𝑁buff, where every 
point represents a revolution.  The offset associated with the 
data in each buffer is then computed and this will be the offset 𝑃𝑗 associated with the average rotational speed for the buffer.  𝑃𝑗 for a given buffer is determined by calculating the simple 
arithmetic average of the data in the buffer, except when the 
buffer lies within the resonance region.  In case of BTT data 
with integral EO vibration (eq. (3)), the change in BTT 
displacement values 𝑑𝑗 from a revolution to the next against the 
gradual variation of rotational speed is small (no change for 
constant speed). Thus, a large amount of vibration displacement 
would be included in the extracted offset 𝑃𝑗, which is 
acceptable outside the resonance regions that have low 
amplitude of vibration. However, within the region of 
resonance the buffer averages would change rapidly due to the 
change in vibration amplitude, and then it would conflict with 
the gradual change of 𝑃𝑗 resulting from steady movements. 
Hence, a mask is placed on the resonance region and its 
average values are calculated by linear interpolation between 
those of the buffers just before and after the resonance segment. 

In order to identify the resonance regions to be masked, the 
coherence of the displacement data from a number of probes, 
based on a revolution-by-revolution technique, is examined 
using the cross correlation factor introduced by Carrington [30]. 

 𝑋𝑟 = 2 ∑ ( 𝑑𝑗𝑛 )( 𝑑𝑗𝑛+1 )𝑁P𝑗=1∑ ( 𝑑𝑗𝑛 )2𝑁P𝑗=1 +∑ ( 𝑑𝑗𝑛+1 )2𝑁P𝑗=1  (5) 

where 𝑑𝑗𝑛  is the displacement of a given blade observed by 
probe  𝑗 during revolution 𝑛.  According to [17], the value of 𝑋𝑟2 should be close to 0.99 based on experiments for 
amplitudes in the resonance region of at least 0.1 mm. Also, it 
was reported that the minimum number of probes required for 𝑋𝑟 to be used depends on the number of excitation frequencies 𝑀, and can be calculated as 

 𝑁𝑃|min = 2𝑀 + 2 (6) 

Note that if the number of probes is less than the 𝑁𝑃|min, 𝑋𝑟 
would always give a value of 1 [17]. Now the change in offset 
values ∆𝑃𝑗  can be extracted and employed in different 
geometrical relations to quantify the steady movements of the 
blades tips. Also, the conditions in eq. (4) can be modified for 
generic movement so that they indicate if there is untwist 
movement or not 

If  ∆𝑃1 = ∆𝑃2   No untwist (Axial and/or lean) 

(7a,b) If  ∆𝑃1 ≠ ∆𝑃2   Untwist (other movements may exist) 

3.2 Axial-Lean 

Figure 4 shows a blade tip subjected to simultaneous axial and 
lean movements, which result in a combined movement of a 



 6 Copyright © 2019 by ASME 

 

general direction with unknown angle, in addition to the 
unknown amount of movement. The original equilibrium 
position of the blade tip is represented by the solid line, while 
the dashed line represents the displaced blade tip. Both lines 
have the same angle ∅ with respect to the horizontal line 
parallel to the z-direction (the rotational axis). 𝑧1, 𝑧2, 𝑧min and  𝑧max are the respective axial positions of probes 1, 2, and the 
right and left edges of the blade tip according to the view 
shown in the figure. Points 𝑎 and 𝑏 are the measurement 
positions of probes 1 and 2 along the blade tip before the 
movement, while 𝑎′and 𝑏′ are the new positions of these two 
points after the movement. Hence, 𝑎𝑎′̅̅ ̅̅  and 𝑏𝑏′̅̅ ̅̅  are equal to the 
magnitude of movement 𝑆 and have the same direction ∅𝑆. 
Meanwhile, probes 1 and 2 have two different measurement 
positions (𝑎′′and 𝑏′′) along the blade tip after movement, since 
the original points moved to different axial positions. The 
changes in probes offsets in the direction of rotation (𝛺𝑅) are 
equal to 𝑎𝑎′′̅̅ ̅̅ ̅ and 𝑏𝑏′′̅̅ ̅̅ ̅ which have the same value ∆𝑃. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the triangle (𝑎 − 𝑎′ − 𝑎′′) shown in the top left 
side of Figure 4, the magnitude of movement can be calculated 
as  

 𝑆 = ∆𝑃 cos ∅sin(∅+∅𝑆) (8) 

The calculation of 𝑆 using the last formula depends on the 
value of ∅𝑆, which is also required to identify the direction of 
movement. This means that more information is required, 
which is provided by additional two probes (3 and 4) added at 
axial positions 𝑧3 and 𝑧4 according to the following conditions 

 𝑧3 < 𝑧min 

(9)  𝑧4 > 𝑧max 

Consider now the triangle (𝑐 − 𝑐′ − 𝑑) shown in the top right 
side of Figure 4, in which points 𝑐 and 𝑐′ represent the right 
edge of the blade tip before and after the movement, and point 𝑑 is the intersection point between the extension of the solid 
line and a vertical line passing by point c'.  The following 
formula for ∅𝑆 can be deduced, noting that (𝑐′𝑑) is equal to ∆𝑃 
detected by either probe 1 or 2: 

 ∅𝑆 = tan−1 ( ∆𝑃|𝑧min−𝑧3| − tan ∅) (10) 

In order for the above formula in eq. (10) to be valid, the 
measurements of probe 3 should be monitored over the range of 
rotational speeds to ensure that the steady movement has 
reached a sufficient magnitude for the blade to be detected by 
probe (3). 

According to the direction of movement shown in Figure 4, ∅𝑆 
would have a value between zero (only axial movement) and 90 − ∅ (only lean movement). Knowing the direction of 
movement (∅𝑆), its magnitude 𝑆 can be calculated using eq. (8). 
Note that, eq. (10) can also be used when the blade tip moves 
towards probe 4, however the term 𝑧min − 𝑧3 should be 
replaced by 𝑧max − 𝑧4. Also, it should be noted that ∅𝑆 is 
assumed constant all over the measurements. 

3.3 Axial-Lean-Untwist 

The blade tip shown in Figure 5 is subjected to combined axial-
lean (𝑆), and untwist (𝜓) movements simultaneously. The solid 
and dashed lines represent the original and moved equilibrium 
positions of the tip respectively. Points 𝑎, 𝑏 and 𝑎′, 𝑏′ represent 
the measurement positions of probes 1 and 2 before and after 
movement respectively, point 𝑜 is the intersection point of the 
blade lines before and after movement (it will be the twisting 
centre point in case of no axial-lean movement), and ∆𝑧𝑝 is the 
axial distance between the two probes. As made clear in section 
3.2, the axial-lean type of movement does not change the chord 
line angle. This means that the untwist angle 𝜓 is not affected 

Figure 4: geometry of combined axial-Lean blade tip movement. 
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by other types of movement, and it can be calculated using ∆𝑃 
values from two probes placed at different axial positions and 
the initial chord line stagger angle ∅, based on the triangles (𝑜 − 𝑎 − 𝑎′) and (0 − 𝑏 − 𝑏′) shown in Figure 5 as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 𝜓 = ∅ − tan−1 (𝑙 sin ∅−∆𝑃1𝑙 cos ∅ ) (11) 

and 

 𝑙 = ∆𝑃1∆𝑧𝑝(∆𝑃1−∆𝑃2) cos ∅ (12) 

In Figure 5: 𝑎𝑎′̅̅ ̅̅̅ and 𝑏𝑏′̅̅ ̅̅  are equal to the offset values ∆𝑃1 and ∆𝑃2 of probes 1 and 2 respectively, which are different as per 
condition in eq. (7b); 𝑙 is the distance between points 𝑜 and 𝑎′. 
In contrast to the untwist, axial-lean movement cannot be 
determined using the detected values of ∆𝑃 until the untwist 
shift is reduced or subtracted from the measured data. This can 
only be done if the position of a probe relative to the twisting 
centre ∆𝑧𝑐 is known, for which the amount of probe offset 
resulting from only untwist can be calculated as follows 
(considering the upper part of Figure 5) 

 ∆𝑃𝑢 = ∆𝑧𝑐[tan ∅ − tan(∅ − 𝜓)] (13) 

If the untwist angle is small, it can be neglected and the axial-
lean movement can be determined using the method described 
in section 3.2, and by using the total value of ∆𝑃 from any 

probe. In this case, ∆𝑧𝑐 is assumed as large as possible 
according to the blade dimensions, and the calculated ∆𝑃𝑢 is 
considered as the upper limit of error in the measured ∆𝑃 and 
can therefore be regarded as the uncertainty in the axial-lean 
movement estimation: 

% uncertainty in axial-lean = 100 ∗ ∆𝑃𝑢∆𝑃  (14) 

3.4 Method guidelines 

The flow chart shown in Figure 6 summarizes the main steps of 
using the current method for the determination of blade tip 
steady movements. 

3 VALIDATION OF THE METHOD 

4.1 FE model and BTT simulations 

The simulated data are generated by a BTT modal model 
simulator [23] that uses as input the modal data of a blisk FE 
model.  The modal data are extracted from a one-off modal 
analysis of the blisk that is frozen at a reference angular 
position and fixed at its mounting hole. The simulator 
calculates the coordinates of the FE nodes at each time step by 
the superposition of three different motions: the rigid rotation 
of the undeformed blisk, the prescribed steady motions, and the 
vibration response, which is calculated by the integration of the 
modal differential equations of motion of the system. The 
blades are excited using FE nodal forces in the Cartesian 
coordinate system (x, y, z). Different values and types of engine 
orders (synchronous and asynchronous) can be applied 
simultaneously. A travelling wave excitation can be applied by 
controlling the phase values of forces at all blades, and a certain 
mode shape can be excited by selecting the appropriate number 
of nodal diameters.  The simulator uses the Simulink function 
Hitcrossing to find the blade arrival times at which the 
instantaneous coordinates of a given blade tip’s FE nodes 
coincide with both the angular and axial positions of a probe. 
BTT displacement data are then calculated according to eq. (2).  

The blisk shown in Figure 7 consists of a disk with 40 integrated blades. The disk has an inner radius of 25 mm, 
outer radius of 180 mm, and 16 mm thickness. Each blade has 
a length of 90 mm, thickness of 6 mm, and chord line stagger 
angle (angle between chord line and the normal to the plane of 
rotation) of 60∘. The material is aluminium of density 2750 kg/m³ and Young’s modulus 72 GPa. The geometry of 
the model has been built up using SolidWorks 2014, and then 
exported to ANSYS 15.0 to set up the different properties and 
boundary conditions of the FE model and run the required 
analysis. The mesh was created using the 10-noded solid 
element SOLID187, and then highly refined at the tips of a 
number of blades in order to reduce the gaps between the FE 
nodes which may affect the accuracy of the simulator for the 
considered case of steady movements (ideally, the tip surface 
would have an infinite number of nodes). The total number of 
degrees-of-freedom (DOFs) of the model is 1791261. 
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Figure 5: Axial-Lean-untwist blade tip movement. 
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For the purpose of generating the modal data required by the 
simulator, the blisk was assumed completely fixed at the 
surface of the inside diameter. Table 1 includes the first five 
natural frequencies of the non-rotating blisk, and Figure 8 
shows their corresponding mode shapes. The modal data, as 
well as the coordinates of the nodes at the blade tips, were 
exported to the simulator.  The other inputs to the simulator 
were defined as follows: the travelling wave excitation had an 
amplitude of 1 N and single EO; the rotational speed swept 
from 0 to 250 rev/s; two probes with beams of diameter 0.2 mm were used at angular positions of 10° and 60° 
measured from the positive x-axis (Figure 7) and spaced 6 mm 
apart along the z-axis. Each simulation had a duration of 1.5 s 
each, but the prescribed movements started at 0.5 s and 
increased linearly over the rest of simulation time. The 
vibration response was negligible due to the low amplitude of 
the excitation and the highest speed being 90 Hz below the first 
blisk resonance.  Thus, the detected blade displacements (given 
by eq. (2)) were almost purely the result of the applied steady 
movements.  

Four tests were implemented with different total prescribed 
movements as listed in Table 2.  The simulator generated the 
BTT displacements of a given blade as seen by all the probes 
within the time range of the rotational speed sweep, and then 
the data were processed for the steady offset and the steady 

Mode  No. 1 2 3 4 5 

Type bending bending axial bending bending 

Frequency (Hz) 340.8 340.8 361.5 392.9 393.0 

Nodal diameters 1 1 0 2 2 

Table 1: Natural frequencies of the blisk. 

Figure 6: Method guidelines. 
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Figure 7: Blisk FE model. 
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movement as per method described in section 3. Finally, the 
results were compared to the prescribed values. Test 1 was used 
to validate the method described in section 3.2, while tests 2 − 4 were used to validate the untwist method in section 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Axial shift (mm) Lean (mm) Untwist (degrees) 
1 1 1 0 

2 1 0 5 

3 0 1 5 

4 1 1 5 

 

4.2 Validation results 

Test 1 (Axial-Lean) Axial-lean movements require the use of 
two extra probes as described in section 3.2.  The function of 
these probes is to determine the direction of movement once the 
mean position of the blade tip is detected by one of them. These 
additional probes (“outer probes”) were placed at an angular 

position of 30° relative to the x-axis (Figure 7) and were 
respectively positioned axially by 1 mm to the right, and 1 mm 
to the left, of the blade tip edges.  

The variations of the output BTT displacement of a given blade 
tip detected by the two probes over an increasing number of 
revolutions are shown in Figure 9.  It is clear that the two 
variations have the same rate of change, thus proving the 
condition in eq. (7a). According to the values of both axial and 
lean movement shown in Table 2, the angle ∅𝑆 should be 15° 
and the combined amount of movement in this direction is 1.93 mm. By monitoring the output of the outer two probes, it 
is found that one of them started to detect all the blades 
between revolutions numbers 89 and 90, so the values of ∆𝑃 
are extracted after that time. ∅𝑆 was then determined by 
applying eq. (10), yielding an estimate of 14.82°. Finally, the 
total amount of movement by the end of simulation was 
calculated as 1.92 mm which was 0.5% less than the 
prescribed movement. This error is expected because of the 
small error in direction and also because the prescribed 
movements last to the end of simulation time which is slightly 
greater than the time of the last signal from the probes. 

 

 

 

 

 

 

 

 

 

 

 

Tests 2, 3 (Axial–Untwist, Lean-Untwist) The BTT 
displacement results from tests 2 and 3 at the two probes are 
shown in Figure 10. The data rates of change from the two 
probes are different as expected based on the condition in eq. 
(7b). The untwist angle values relative to the number of 
revolutions are calculated using the method in section 3.3 as 
shown in Figure 11. The final values of calculated untwist 
angles in tests 2 and 3 are 5.03° and 5.01° respectively, which 
are 0.6% and 0.2% more than the prescribed values (Table 2). 

a) b) 

c) 

d) e) 

Figure 8: Blisk mode shapes. (a) First mode, (b) Second mode, (c) 
Third mode, (d) Fourth mode, (e) Fifth mode. 

Figure 9: BTT displacements (test 1). 

Table 2: Prescribed movements for validation tests. 
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Test 4 (Axial-Lean-Untwist) Figure 12 shows the BTT 
displacement values detected by the probes for the prescribed 
combined axial-lean-untwist movement. The changes in probe 
data along the number of revolutions are different, as expected 
from condition in eq. (7b). The untwist angles are calculated 
according to the method in section 3.3, and are shown in Figure 
13. The final angle value is 5.04° (0.8% error). Knowing the 
value of untwist angle, it is possible to use eq. (14) to check the 
uncertainty in the axial-lean movement calculation if untwist is 
ignored. The value of ∆𝑃𝑢 to use in eq. (14) is calculated using 
eq. (13) with ∆𝑧𝑐 (the position of probe 1 relative to the 
twisting centre) assumed to be (𝑧1 − 𝑧min) (see Figure 4), as 
explained at the end of section 3.3. A plot of percentage 
uncertainty for different values of angles and ∆𝑃 is shown in 
Figure 14. It can be seen from this figure that the uncertainty in 
the ∅𝑆 and ∆𝑃1 values (calculated by ignoring the untwist) at 
the level of actual untwist in the last revolution is about 80%.  
According to Figure 14, the proposed method for calculating 
axial-lean movement is considered reasonably reliable for 
untwist angles of up to 2°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 CONCLUSIONS 

A method for the determination of simultaneous blade steady 
movements (i.e. composed of a combination of axial shift, 
blade lean, and blade untwist) has been developed. The method 
depends on the BTT data captured by one or two probes 
according to the types of movement.  Two extra probes are used 
at known axial distances from each end of the blade tip in case 
of combined axial and lean movements in order to determine 
the direction of movement. The changes of the average value of 
the BTT data at the probes were linked to the magnitude and 
direction of the movement via a number of geometrical 
relations.  The method was validated using a modal model 
simulator of a blisk that generated BTT displacement data 
under conditions of prescribed steady movements. Tests were 
implemented for various types of combined movements (axial-
lean, axial-untwist, lean-untwist, axial-lean-untwist), and the 
calculated movements compared with the prescribed values. 
The results prove the validity of the method for the 
determination of combined axial-lean movements in case of no 
or negligible untwist, and also the determination of untwist 

Figure 10: BTT displacement. (a) test 2, (b) test 3. 

Figure 11: Untwist angle. (a) test 2, (b) test 3. 

a) 

b) 
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angles under all circumstances with high level of accuracy.  As 
regards the determination of axial-lean under conditions of 
untwist, this could only be done if the untwist was ignored, but 
an expression for the resulting uncertainty in the calculation 
was established and illustrated.  More developments are 
required in order to calculate the axial-lean movements in case 
of large untwist angles. 

The tests in this paper were conducted with simulated data and 
the displacement data was entirely dominated by the steady 
movement (due to negligible vibration response).  However, the 
work of this paper was developed from the authors’ previous 
work [29], wherein individual axial/lean/untwist steady 
movements were successfully quantified using experimental 
BTT data, and also under resonance conditions. 
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