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 The objective of the present study is to determine the start times and ordering plans for two-
period projects in project-oriented organizations. The following assumptions are made: orders 
can be placed in either of a project’s two consecutive periods; and the same raw materials are 
used, which are ordered at the start of the periods according to their interdependent demands. 
The main innovation of the present research is to develop a model that is mainly based on the 
two-period newsvendor problem, but assumes that demand is interdependent, i.e. it is actually a 
combination of inventory and project management. After presenting the model, numerical meth-
ods are used to approximate the order quantities for each period. Near-optimal solutions of a 
numerical example, in a case study on molding industry, are obtained using a genetic algorithm. 
Results show that the proposed model with interdependent demand provides a better solution 
than independent demand. The model is applicable to large-scale industrial and construction 
projects where the majority of raw materials have of the same nature.  
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1. Introduction 
 
The timely supply of raw materials is vital for successful completion of construction projects. Effective 
coordination with suppliers of key materials ensures not only timely procurement of resources, but also 
reduces the related expenses. Integrated inventory planning is one way to achieve such coordination. 
Another important decision concerning project management is project start times and ordering plans. 
Issues concerning quality, storage, and shortages of raw materials can lead to uncertainty in project 
operations. This in turn leads to further complexity in project management and imposes additional ex-
penses due to suboptimal procurement and storage, along with shortages or excesses in supplies of 
materials. The lifetime of a project can be divided into two phases: 1) The construction phase, during 
which the project is gradually established; and 2) The exploitation phase, when the project becomes 
fully operational. Each phase requires a certain set of raw materials that supply managers are required 
to order at the beginning of the phase. According to Willoughby (1998), the subject of project inventory 
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control is best modeled as a newsvendor problem. Thus, the present study attempts to model the start 
times and ordering plans of projects based on the two-period newsboy problem with demand interde-
pendence. 

2. Literature review 
 
The term “newsvendor” for the single-period stochastic inventory control problem was first introduced 
by Wilson (Geisler, 1963). The single-period stochastic newsvendor (or newsboy) problem is analo-
gous to a simple supply chain consisting of customers (determining demand), a newsvendor (distributer 
of a product) and a main supplier. In this problem, the main objective is to determine the amount of the 
product to order to maximize the profits or minimize the expenses for a single period when demand is 
stochastic.  

2.1 Single-Period Newsvendor Problem 
 
Burnetas et al. (2007) examined a problem involving a supply chain consisting of multiple vendors, 
each with its own demand, and suppliers with service costs and discounts. The objective was to deter-
mine the prices that the maximize supply chain revenues. Wang and Webster (2009) rewrote the ob-
jective function as a risk function with shortage costs and risk factors. They concluded that when supply 
shortage costs are higher than supply surplus costs, optimal orders with a risk-averse attitude will be 
larger than orders with a risk-taking attitude. When shortage costs are lower than threshold values, the 
opposite will be true. Chen and Ho (2011) formulated a newsboy problem with fuzzy demand and 
incremental discounts. They incorporated the Yager ranking method into the fuzzy calculations. Given 
the nonlinearity and complexity of the model, they used the closed-form approach for optimization.  In 
a study by Sana (2012), the above problem was modeled with price-sensitive demand and random sales 
based on a general probability distribution. In another study, Chen and Ho (2013) analyzed a problem 
with quantity discounts and proposed a solution based on fuzzy number optimization theory. They also 
used the Yager ranking method to derive the total costs with different purchase prices as a unique and 
convex nonlinear function. Okyay et al. (2014) formulated a problem with random supply in which 
orders can be fulfilled at times other than the beginning of a period. This approach allows supply to be 
independent of demand when required. 
 
In studies by Kamburowski (2014, 2015), a newsboy problem was modeled under worst-case and best-
case scenarios with demand skew. The author proposed a tool for determining best-case and worst-case 
order quantities when only the first moments of the demand are known. Pal et al. (2015) formulated a 
newsvendor problem in which customers can reject low-quality products and holding costs depend on 
order and inventory quantities. Alwan et al. (2016) formulated a newsvendor problem with correlated 
demand. They compared the performance of a traditional approach for the implementation of the prob-
lem with a dynamic forecast-based approach. The authors showed that a minimum mean squared error 
(MSE) forecast model had better cost savings performance than the traditional approach. The perfor-
mance of this MSE-optimal approach and the traditional approach was also compared with the perfor-
mance of widely used alternative forecasting methods such as the moving average and exponential 
smoothing methods. This article reported that when using alternative forecasting methods, sometimes 
the traditional approach to the newsvendor problem yields better results, and it is better to disregard 
correlations and forecasting. 
2.2 Multi-Period Newsvendor Problem 
 
Perakis and Sood (2004) incorporated the cooperative Nash equilibrium into a multiple-product 
newsvendor problem to model the sellers’ competition. They used game theory and variable inequali-
ties to prove the existence of an equilibrium point for sales. In this problem, the product was assumed 
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to be perishable. The use of this approach was recommended for airlines, the service sector, and indus-
trial retailers. Matsuyama (2006) formulated a multiple-product newsvendor problem with unsatisfied 
demand and unsold quantity in each period. They stated that the order quantity for the next period 
should be lower when there is surplus inventory and should be higher when demand remains unsatis-
fied. This model was based on the ratio of the quantity held to the quantity sold and the ratio of the 
quantity to be sold at the start of the next period to the unsatisfied demand of the current period.  Behret 
and Kahraman (2010) analyzed a multi-period newsvendor problem with fuzzy demand, fuzzy inven-
tory and shortage costs. The objective was to determine the best order periods and the best order quan-
tities to minimize the fuzzy expected total costs. Ding and Gao (2014) considered a (σ, S) policy for a 
multi-product problem with uncertain demand estimated by experts. They optimized orders based on 
uncertainty theory, and considered variant setup costs depending on the joint or individual status of 
orders.  

 

2.3 Multi-Product Newsvendor Problem 
 
Zhang (2010) formulated a multi-product newsvendor problem with supplier discounts and budget con-
straints and then optimized the problem using the Lagrangian relaxation algorithm and mixed integer 
nonlinear programming. Zhang and Du (2010) examined a multi-product newsvendor problem in which 
the operation can be outsourced to the supplier with two strategies, zero and non-zero wait times. They 
then used a binary heuristic algorithm in linear time to optimize the problem. In another study, Zhang 
and Hua (2010) examined a multi-product newsvendor problem with three strategies: fixed price con-
tracts; multi-option contracts; and portfolio contracts (combination of fixed price and option contracts), 
all had budget constraints, and the problem was optimized using a new solution of linear complexity 
based on an assumption of continuous demand. Huang et al. (2011) formulated a competitive multiple-
product newsvendor problem with partial product substitution and a relationship between the demand 
for two products. They found that competition always leads to higher inventory levels. They also used 
a recursive algorithm to determine the expected profit for each product based on effective demand 
estimates.  
 
Hanasusanto et al. (2015) developed a risk-averse multi-dimensional newsvendor model for multiple 
products with strongly correlated demand. This problem was tailored for demand with strong depend-
ence on mostly unknown future fashion trends whose distribution (called multimodal distribution) is in 
the form of spatially separated clusters of probability mass. This work was based on the assumption 
that distributional ambiguity will be addressed by minimization of the worst-case risks of order portfo-
lios for all distributions compatible with the assumed modality. The NP-hard complexity of this prob-
lem was proven. An efficient, accurate, and conservative numerical solution was developed based on 
quadratic decision rules. It was also shown that a solution that disregards ambiguity or multimodality 
may be unstable and fail to exhibit adequate quality and robustness under stress tests. 
 
Orders for different periods show some inter-period dependency, which has been addressed in recent 
studies such as Hanasusanto et al. (2015), Alwan et al. (2016) and Okyay et al. (2014).  Table 1 sum-
marizes the literature dedicated to the inventory control and newsvendor problem. The approach most 
suitable for project start times and the order planning is the multi-period newsvendor problem formu-
lated by Matsuyama (2006), in which interdependency of demands for different periods is disregarded. 
Thus, the present study focuses on incorporation of interdependency into the two-period newsvendor 
problem approach. The objective is to determine start times and ordering plans for two-period projects 
with interdependent demands in project-oriented organizations. The resulting formulations are appli-
cable to large-scale projects where a majority of the raw materials are of the same nature. 
 
 
 
 



 122

Table 1 
Classification of the literature.  

Reference 

Fuzzy 

Single period 

M
ulti period 

M
ulti product 

R
isk 

D
em

and 

Product Market Discount 

Perakis and Sood (2004)   1   Independent Perishable Competitive  
Matsuyama (2006)   1   Independent    
Burnetas et al. (2007)  1    Independent   Incremental 
Wang and Webster (2009)  1   1 Independent    
Behret and Kahraman 
(2010) 

1  1   Independent    

Zhang (2010)    1  Independent   All-unit 
Zhang and Du (2010)    1  Independent    
Zhang and Hua (2010)    1  Independent    
Chen and Ho (2011) 1 1    Independent    
Huang et al. (2011)    1  Independent    
Sana (2012)  1    Independent    
Chen and Ho (2013) 1 1    Independent    
Ding and Gao (2014)    1  Independent    
Kamburowski (2014)  1    Independent    
Okyay et al. (2014)  1    Independent    
Kamburowski (2015)  1    Independent    
Pal and Sana (2015)  1    Independent    
Hanasusanto et al. (2015)   1 1 1 Interdependent    
Alwan et al. (2016)  1    Interdependent    

Summary 3 8 4 6 1 Independent 15 
Interdependent 2 1 Perishable 1 Competitive 1 All-Unit 

Present study   1   Interdependent  Demand+Scheduling+Genetic Algorithm  
 

The rest of this article is organized as follows:  Section 3 describes the mathematical formulation of 
ordering based on an interdependent multi-period newsvendor problem. In section 4, a genetic algo-
rithm is used to solve a numerical example of the problem. In the last section we present conclusions 
and suggestions for future research. Fig. 1 shows the step-by-step process of implementation of the 
conceptual model. 

 
 

 
 

Fig. 1. Process of implementation of the conceptual model 
 
3. Problem Statement 
 
In project-oriented organizations, where multiple projects are often ready to start at a given time, ef-
fective start times and ordering plans can ensure proper availability of raw materials, which leads to 

Run Genetic algorithm and determine start times scheduling project and Computing 
the optimal initial inventory between periods (Section 4)

Defining the parameters and multivariate distribution function 
in interdependent demand in multiperiod newsvendor.
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minimum costs of shortages and storage and maximum profit. Failure in these tasks may cause avoid-
able delays in projects and impose unexpected costs and penalties on organizations. 
 
A review of the literature indicates that the formulations of Matsuyama (2006) are the best choice for 
application to this problem, since they can be generalized for the order policies of interest. In the present 
study, a multiple-product newsvendor problem is modeled, considering unsatisfied demand, unsold 
quantities, and interdependency of demand for different periods. When there are unsold goods, the 
demand for the next period will be lower; when a portion of the demand remains unsatisfied, the de-
mand for the next period will be higher. The model is applicable to large-scale industrial and construc-
tion projects where the majority of raw materials are of the same nature. 
 
This problem is modeled based on the following assumptions: 
 
 Each project has one domain and two planning periods. 
 There is only a single product (projects require only one type of raw material). 
 In each project, the demand for a period depends on the demand for the other period. 
 Demands for independent periods are independent random variables. 
 Surplus supplies of a period will be used in the next period. 
 Out-of-stock supplies of a period will be procured in the next period or will be lost. 
 The only objective is to maximize the mean profit from the planned periods. 
 The distribution of the demand of each project in each period has a normal distribution. 
 The joint distribution of the demands of each project in two periods has a bivariate normal distri-

bution. 
 
For every known plan, the mean value of the profit function is evaluated according to the interdepend-
ence of project demand, and the order quantities are optimized at the beginning of the periods accord-
ingly. Since the resulting problem is NP-hard (Geiger, 2017; Yuan et al., 2007), the plan will be ob-
tained by a genetic algorithm. 
 
3.1 Model Parameters 
 
Sets of Indices: 
 

I   : Set of projects, 
J   : Set of planning periods ie J ={1,2}, 
S   : The set of states. 

 
Parameters: 

jq
 
: Sell price of the product in the jth period, 

  jp
 

: Buy price of the product in the jth period, 

  js
 

: Product holding cost in the jth period, 

  jC
 

: Setup cost in the jth period, 


 
: Shortage penalty (per unit) in the jth period, 

  id
 

: Duration of the ih projects, 
 m

 
: Number of periods, 

  ijx
 

: Demand of the ith project in the jth period, 

 ( 1),ij i jf x x   
: Joint density function of the ith project for demands in the jth and j+1th periods, 

ij : Average of demand of the ith project in the jth period,  
2
ij : Variance of demand of the ith project in the jth period, 
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 : Correlation of demand of the ith project in the jth period and j+1th periods, 

jx
 

: Total demands in the jth period, 

 1,j jf x x   
: Joint density function of demands in the jth period and j+1th period, 

j : Average of demand of in the jth period,  
2
j : Variance of demand of in the jth period, 


 
: Percentage of the excess inventory to be transferred to the next period, 


 
: Percentage of the inventory shortage to be transferred to the next period, 


 
: Percentage of the sell price in the jth period to be transferred to the next period, 

L
 
: The minimum demand in the jth period, 

N
 
: The maximum demand in the jth period. 

 
Genetic Algorithm Parameters:  

 
n : The population number in Genetic Algorithm, 
a  : The selection operator fraction in Genetic Algorithm, 
b  : The crossover operator fraction in Genetic Algorithm, 
c  : The mutation operator fraction in Genetic Algorithm, 
r : The random Number in Genetic Algorithm, 

 
Decision variables:  

 
Inventory: 

 
jl
 
: The inventory level in the jth period. 

jsh   : The profit function in the jth period in state s, 

jh
 
: The profit function in the jth period, 

H
 
: The expected value of (mean) total profit in the second period, 

௝݇, ௝݇
ᇱ, ,ܣ  ,Auxiliary variables in differentiation of ℎ௝௦ : ܤ

 
Project scheduling:  

 
iS 

 
: The start time of the ith project, If the start time of project in first period then 1,iS   otherwise if the 

start time of project in second period then 2.iS    
 

3.2 The mathematical model of the inventory problem 
 
The demand of the project i for the raw material in the period j is a random variable (   ijx ) with a joint 

normal distribution and depends on the start time, as shown in Eq.  (1): 

 
where ijx can take values if 0iS    that is start time of each project. Since the demand for the raw 
materials required for the projects is assumed to be independent, the total demand in the jth period is 
equal to the sum of the demand for raw materials in each project, which is a normal random variable 
(Eq.  (2)): 

(1)     2 2
( 1) ( 1) ( 1) ( 1)~ , ,, , ,, 1ij i j ij i j ij i j ij i jx x f x x N j           
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(2)  

   
1

2 2 2 2
1 1 1 1 1

1 1 1
1

1

~ ,, , , ,, , , 1, ,

I

j ij
i

I I I I

j j j j ij ij ij ij j j j
i i i i

j

x x j

x x f x x N N j         



    
   



 

 
    

 



   
 

In Table 2,
 
  ijx  denotes the demand of project i for raw material in period j. Note that random variables

  ijx  for project i are interdependent between projects and have a joint distribution of 

 ( 1), 1ij i jf x x j    
 

Table 2  
Model notation 

Period 2 
)2j (  

Period 1 
)1j (  

Project  

  12x    11x  1PR  
  22x    21x  2PR  
  i2x    i1x  iPR  
  n2x    n1x  nPR  

2
1

2

I

i
i

x x


  1
1

1

I

i
i

x x


  Total demand in the jth period 

 2 2
1 2 1 2 1 2( , ) ~ , , , , .x x N       Joint density function 

  
As previously mentioned, in each project, the demand for raw material in period 1 depends on the 
demand in period 2. So it can be argued that the total demand for raw material in period 1 depends on 
the total demand for raw material in period 2. This dependence is expressed as a bivariate normal ran-
dom variable (Eq.  (3)) (Tran et al., 2016): 

(3)   2 2
1 2 1 2 1 2( , ) ~ , , , , .x x N       

It is assumed that total demand in the jth period varies between L and N and under different conditions, 
the model can take the following states ( 1 2,L x N L x N    ): 
Initial inventory level jl  is between L and N and is higher than demand jx  ( j jL x l N   ). 
In this state, the sale quantity for demand jx and sell price jq  will be ( j jq x ); the unsold quantity will 

be  j jl x . A percentage of the unsold quantity  j jl x   will be stored and transferred to the next 
period, reducing the order quantity. If this period is the last, then the transfer procedure ends. Otherwise, 
the order of the next period will be planned with price 1jP   and setup cost 1jC  . The holding cost will 

be the product of js and a percentage of the unsold quantity, i.e.,  s αj j jl x . The order quantity of 
the next period will be equal to the inventory level of the next period minus a percentage of the surplus 
supply of the previous period, i.e.,  1 αj j jl l x   . 

Initial inventory level jl  is lower than demand jx  ( j jL l x N   ). 
In this state, the sale quantity for inventory level jl  and sell price jq  will be ( j jq l ); the shortage 
penalty will be the product of the shortage penalty (per unit) and the quantity of the shortage, i.e.,

  j jx l  . In this state, the order quantity of the next period will be equal to the inventory level of the 
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next period plus a percentage of the supply shortage of the previous period, i.e.,  1j j jl x l   , and 

will be planned with price 1jP   and setup cost 1jC  .  Also, the transferred percentage of supply shortage 

 j jx l   will be sold at a mixed price that is a factor of the sell price in both periods, i.e., 

 1 21q q   . In this problem, the profit function of each period ( jh ) is a function of the following 
variables: 

  , , , , ,     .j j jh l x j           

In the first period ( 1j  ), the profit function is calculated as follows. This means that when the demand 
is lower than the inventory level, the revenue equals the sale income from meeting the entire demand 
of the period minus the initial inventory cost and setup cost (Matsuyama, 2006): 

   1 1 1 1 1 1 1 1 1 1, , , , .,x l h l x q x p l c         

However, when the demand is higher than the inventory level, the revenue equals the sale income from 
the entire initial inventory minus the initial inventory cost, the setup cost, and the cost of the supply 
shortage (Matsuyama, 2006): 

 
   1 1 1 1 1, , , , ,x l h l x       1 1 1 1 1 1 1q l p l x l c        1 1 1 1 1.q p l x c        

For the second period ( 2j  ), the profit function is divided into four parts, expressed as follows: 
When the demand in period 1 and period 2 is lower than the inventory levels (Eq.  (4)), the total revenue 
equals the revenue of period 1 minus the holding cost for surplus inventory, plus the revenue of period 
2 (which equals the sale income from meeting the entire demand of the period minus the inventory cost 
and the setup cost) (Matsuyama, 2006): 

 

(4)  
1 1 2 2 , x l x l    21 2 1 2 1 2, , , , , , ,h h l l x x      1 1 1 1 1q x p l c     

 1 1 1 2 2s l x q x      2 2 1 1 2p l l x c      

      1 1 1 1 1 1 2 2 2 2 1 1 2, , , , , ,h l x s l x q x p l l x c               
when the demand in period 1 is lower than the inventory level, but the demand in period 2 is higher 
than the inventory level (Eq.  (5)), total revenue equals the revenue of period 1 minus the holding cost 
for the surplus inventory, plus the revenue of period 2 (which equals the sale income from the entire 
initial inventory minus the inventory cost, the setup cost, and the cost of the supply shortage) (Matsu-
yama, 2006): 

 

(5)  

1 1 2 2 , x l x l    

   
      

      

22 2 1 2 1 2 1 1 1 1 1 1 1 1

2 2 2 2 1 1 2 2 2 1 1 1

1 1 1 2 2 2 2 1 1 2 2 2

, , , , , ,

, , , ,

.

,

,

h h l l x x q x p l c s l x

q l p l l x x l c h l x

s l x q l p l l x x l c

    

     

  

    

       

        



 

 
When the demand in period 1 is higher than the inventory level, but the demand in period 2 is lower 
than the inventory level (Eq.  (6)), the total revenue equals the revenue of period 1 plus the income 
from selling the supply shortage of period 1 at a mixed price in period 2, plus the revenue of period 2 
(which equals the sale income from meeting the entire demand of the period minus the inventory cost 
and the setup cost) (Matsuyama, 2006): 

 
  
  
  

1 1 2 2 , x l x l     
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(6)  
  
  
  
  
  

   
       

23 2 1 2 1 2 1 1 1 1 1 1 1

1 2 1 1 2 2 2 2 1 1 2

, , , , , , ,

1

h h l l x x q l p l x l c

q q x l q x p l x l c

    

   

    

        


  

         1 1 1 1 2 1 1 2 2 2 2 1 1 2, , , , , ,1h l x q q x l q x p l x l c                  

When the demand in period 1 is higher than the inventory level, and the demand in period 2 is also 
higher than the inventory level (Eq.  (7)), the total revenue equals the revenue of period 1 plus the 
income from selling the supply shortage of period 1 at a mixed price in period 2, plus the revenue of 
period 2 (which equals the sale income from the entire inventory minus the inventory cost, the setup 
cost, and the cost of the supply shortage) (Matsuyama, 2006): 

(7)  

1 1 2 2 , x l x l     

   
         

24 2 1 2 1 2 1 1 1 1 1 1 1

1 2 1 1 2 2 2 2 1 1 2 2 2

, , , , , , ,

1

h h l l x x q l p l x l c

q q x l q l p l x l x l c

    

    

    

          


  

      
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    

      
 

Given the dependence of the demand of period 2 on the demand of period 1, the mean total profit can 
be obtained by calculating the mathematical expectation of profit in second period: 
 

 
   

   
1 2
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l

l

l l l

h l l x x f x x dx dx h l l x x f x x dx dx

h l l x x f x x dx dx h l l x x f x x dx dx



 

 











   

  
 

 
To obtain optimal values of * *

1 2,l l , the expected value of the profit function must be differentiated with 
respect to * *

1 2,l l  and then equated to zero (Eq. (8) and Eq. (9)): 

(8)   1 2 1 2
1

, , , 0,H l l x x
l





 

(9)   1 2 1 2
2

, , , 0.H l l x x
l





 

The differentiation process is explained in Appendix 1 and gives the joint cumulative distribution of *
1l

as Eq.  (10): 
(10)  

      
  

*
1

1 1 1 2 2*
1 1 2 1 2

1 1 2 2 1 2

1
, .

1 ( )

l q p q q p
F l f x x dx dx

q q q p s p
    

     





     
 

          

Similarly, subjecting Eq.  (9) to the process explained in Appendix 1 gives Eq.  (11): 
(11)  

   
*
2

* 2 2
2 1 2 2 1

2

, .
l q pF l f x x dx dx

q



 


 

 
 

    
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A Hessian matrix (second derivative test) is used to determine whether * *
1 2and l l are maximum, mini-

mum or inflection points (Abramowitz, 1964). The results obtained from the Hessian matrix are given 
in Appendix 2. The determinant of  1 2 1 2, , ,H l l x x  for * *

1 2,l l  is positive and    
*

1 1
*

2 2
2 4 1

1

0  .l l

l lk k F l
l






 


 

Therefore, * *
1 2,l l  are the relative maximums for  * *

1 2 1 2, , ,H l l x x (Dye & Ouyang, 2005). Given the de-
pendence of the demand in the two consecutive periods and its relatively normal behavior, a bivariate 
normal distribution is the best choice for distribution of the demand. Bivariate normal distribution: 

(12)  

   
2 2

1 1 1 1 2 2 2 2

21 2
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1 2 2
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                                  


  

 
Given the presence of the term ( 1 2,L x N L x N    ) in the above distribution, the demand distri-
bution function needs to be truncated in order to give the final demand distribution function. The trun-
cated demand distribution function can be defined as (Singh et al., 2016): 
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The truncated demand distribution function is defined as follows where Eq.  (10) is rewritten as  

   1 2 1 2, ,
a b
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(14) 
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Eq.  (11) is rewritten as: 

(14a) 
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Because computations of * *
1 2,l l  from  

*
1

1 2 1 2,
lN

L L

f x x dx dx   and  
*
2

1 2 2 1,
lN

L L

f x x dx dx   are very hard then 

they can be calculated with the help of the following numerical approach  
 

3.3 Sensitivity analysis 
 
For better examination of the problem’s seven parameters, a sensitivity analysis is performed by dif-
ferentiation. The results of this analysis are given below (Eq. s (15-22)): 
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Eq. (15) and Eq. (16) show that for all 1q , 2q  the value of  1 2 1 2, , ,H l l x x   is ascending and for  , 1p   

the value of  1 2 1 2, , ,H l l x x   is descending in Eq. (17) and Eq. (18).  

The value of other parameters such as  ,  , and   depend on sign of 2 1p s ,   1 2 21q q p     

and 1 2q q  in Eqs. (19-21). Moreover,  1 2 1 2, , ,H l l x x  is ascending whenever they are positive, and 
is descending otherwise in Eqs. (19-21).  

However, the parameter ݌ଶ depends on other parameters and its status is unknown.  1 2 1 2
2

, , ,H l l x x
p



depends on the above terms, which may be positive or negative. 
 

4. Solution method for scheduling project 
 
The objective of the present study is to determine the start times and ordering plans for two-period 
projects in project-oriented organizations. Given the NP-hard complexity of the project start time and 
ordering problem, and the nonlinearity of the model described in Section 3, this model is solved with a 
genetic algorithm, which is one of the most commonly used algorithms for scheduling problems (Hol-
land,1975; Diabat, 2014; Puga et al., 2016). The genetic algorithm developed for the investigated prob-
lem is shown in Fig. 2. 
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                                         Fig. 2. Genetic algorithm for the problem 

 
According to the final model described in section 3, the objective function is defined as follows, 
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 j 
 

 2 2
1 1 1)( , ~ , , , ,jj j j j jx x N       

 j 
 

jL x N   

 i I 
 

{1, 2}iS    and integer 

Each chromosome comprises the start times of the projects is  1 2, , ,l lIChrom S S S    in Fig. 3: 

1S   2S     IS   
Fig. 3. Representation of a chromosome 

 
1. First, random numbers are used to produce a population (n) of chromosomes that meet the following 

condition for iS  (start times) and {1, 2}iS i I    . 
2. Given the iS   values obtained from {1, 2}iS i I    , ijx  takes the value of a defined density func-

tion  2 2
( 1) ( 1) ( 1), ~ , , 1, , .ij i j ij i j ij i jx jx N           (normal distribution function) (Jun & Park, 

2015): 
3. Aggregating the ijx  values gives total demand   jx as follows: 

   1
2 2

1 1( , ~ , , , ,) 1j j j jj jx x N j         
Note that the demand should be jL x N  , otherwise Step 2 must be repeated to produce a new 

chromosome. 
4. Values of * *

1 2,l l  for each chromosome are obtained through Eq. s (14) and (14a). 
5. For each chromosome, * *

1 2,l l values are replaced in the function H  
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6. The values of H for n members are obtained and sorted in descending order (Eq.  (23)). 
7. Selection operator: a fraction ( %a ) of the sorted items remain as part of the future population. 

Another fraction of the items is selected by a competitive selection operation, to be subjected to 
crossover and mutation operators and then undergo the next step (Marinakis  et al., 2008; Lotfi et 
al., 2017). 

8. Crossover operator: A crossover operator is applied to %b of the population. This operator pro-
duces two new members from members l and m by cutting these members based on a randomly 
generated number r and swapping the cut sections. The demand of new chromosomes must remain 
within the defined range; otherwise the objective function will be penalized (Roy & Mula, 2016; 
Lotfi & Amin Nayeri, 2016): 
 

1 | | ,r I   
   1 2 ,, , , nl lChrom S S S      1 2 ,, , , nm m

Chrom S S S      

 1 2 1, , ) ( , , ,lm r r Il mnewchrom S S S S S         

 1 2 1' , , .) ( , ,m llm r r Inewchrom S S S S S         
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9. Mutation operator: A mutation operator is applied to %c  of the population. This operator trans-
forms chromosome i based on a randomly generated number1 | | r I  . Again, the demand of new 
chromosomes must remain within the range defined in Step 1; otherwise, the objective function 
will be penalized (Ghaddar et al., 2016): 

 

   ' '
1 2 1 1(( , , ) , , , ).,lm l mr r r Inewchrom S S S newS S S       

 

10. Substitution: H values of the new population produced in steps 7, 8 and 9 are recalculated, and all 
the values are sorted in descending order of the mean profit function value. 

 
11. Loop and stop conditions: This loop continues until the difference between the best solutions of 
two consecutive iterations becomes lower than a specific value. Otherwise, Step 7 will be repeated; 
ultimately, the chromosome with the highest H value will be obtained (Qiongbing & Lixin, 2016; Si-
vanandam & Deepa, 2007).  

 
5. Numerical example 
 
A case study is studied in Iran Khodro Advance Die (IKAD) that produces dies with a lot of steel for 
Iran Khodro automotive company in one year. It has i=12 projects that are ready to start. All the projects 
have two planning periods (six month (m=2)); their specifications are shown in Table 3. Raw materials 
bought at price  2,3j Uniformp   are sold in these projects with price  9,10j Uniformq  ; the 

holding cost is  1, 2j Uniforms   and the shortage penalty is  1,2Uniform  . 100%   of the 
surplus inventory and 100%   of the inventory shortage will be transferred to the next period. Out-
of-stock materials of period 1 will be sold in period 2 at 60%   of the initial price (the price of period 
1). The demand of the periods have ( 50%   ) interdependence; 144.33L   and 286.67N  . 

 
Table 3  
Specifications of the numerical example 

Project Start time iS   Duration   id  Demand without scheduling    
Period 1 Period 2 

1PR  1S    1  10,1N  0 -50% 

2PR  2S    2  20, 2N   20, 2N  -50% 

3PR  3S    1  40, 4N  0 -50% 

4PR  4S    1  30,3N  0 -50% 

5PR  5S    1  35,3.5N  0 -50% 

6PR  6S    1  45, 4.5N  0 -50% 

7PR  7S    1  50,5N  0 -50% 

8PR  8S    1  43, 4.3N  0 -50% 

9PR  9S    1  90,9N  0 -50% 

10PR  10S    1  20, 2N  0 -50% 

11PR  11S    1  10,1N  0 -50% 

12PR  12S    2  10,1N   10,1N  -50% 

Sell rice 
jq  Uniform(9,10)  

Buy rice 
jp  Uniform(2,3)  

Holding cost 
js  Uniform(1,2)  

Shortage penalty   Uniform(1,2)  
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Tuning algorithm parameters with design of experiment (DOE based on Taguchi algorithm is accom-
plished (Mousavi et al. (2014)): Population size is n = 50; 9%a   of the population, which is trans-
ferred to the next generation; 89%b   of the population, which is subjected to the crossover operator; 
and 2%c   of the population, which is subjected to the mutation operator. The stop condition is 

50iter   or when the difference between the consecutive results is less than 0.01  . The results of 
the algorithm are presented in Table 4 and Fig. 4 and tuning of parameters of Genetic algorithm is 
obtained from design of experiment. The process of finding a near-optimal result with genetic algorithm 
is shown in Fig. 4. 

 
Table 4  
Final results of the genetic algorithm 

Start time ( iS  ) Demand of period 1 

1ix  
Demand of period 2 

2ix  
  

1 1S     10,1N  0 -50% 

2 1S     20, 2N   20, 2N  -50% 

3 2S    0  40, 4N  -50% 

4 2S    0  30,3N  -50% 

5 2S    0  35,3.5N  -50% 

6 2S    0  45, 4.5N  -50% 

7 1S     50,5N  0 -50% 

8 1S     43, 4.3N  0 -50% 

9 1S     90,9N  0 -50% 

10 1S     20, 2N  0 -50% 

11 2S    0  10,1N  -50% 

12 1S     10,1N   10,1N  -50% 

Total demand in the 
jth period  243,11.59N   190, 7.96N  

-50% Joint density func-
tion  243,190,11.59,7.96, 50%N   

Best Solution *
1 243.00l   *

2 198.82l    

Profit * 2992.5H    

 

 
Fig. 4. The final solution of the genetic algorithm 
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(24)      2 4 1 1 2 2 1 2( 1 ( ))

(10 1 1*10 1*3 1)*(1 3)) 2 0.

k k q q q p s p              

         
  

 
Based on the assumption expressed in Eq. (24) and Eq. (A-8) and the results shown in Table 4 we reach 
the optimum point, and the optimal inventory levels of periods 1 and 2 are *

1 243.00l   and *
2 198.82.l 

The start times of the projects are obtained as shown in Table 3 in column one; and the profit of the 
organizations is * 2992.5H  . Tables 5-7 and Figs. 4-6 show sensitivity analysis of the ratio	,ߙ	,ߚ	ߜ 
that have prooved base on differentiation in Eq. (15), Eq. (17) and Eq. (18). When these parameters 
such as	ߚ ,ߙ and ߜ grow up, as result H  grows up. 

  
Table 5  
Sensitivity analysis of the ratio (ߙ)  

Percentage of excess inventory (ߙ) Profit 
 ∗ܪ

Inventory 
݈ଵ∗ 

Inventory 
݈ଶ∗  

20% 2988.2 240.98 189.54 
40% 2988.9 229.32 202.79 
60% 2990.5 240.66 192.59 
80% 2991.3 245.5 189.58 

100% 2992.5 243 194.82 
 

 
Fig. 5. The ratio (ߙ) 

 
Table 6 
Sensitivity analysis of the ratio (ߚ) 

Percentage of inventory shortage (ߚ) Profit 
 ∗ܪ

Inventory 
݈ଵ∗ 

Inventory 
݈ଶ∗  

20% 2983.6 256.17 194.66 
40% 2984.2 254.47 194.82 
60% 2985.9 249.42 197.82 
80% 2988.8 251.39 192.63 

100% 2992.5 243.00 194.82 
 

 

2986
2987
2988
2989
2990
2991
2992
2993

20% 40% 60% 80% 100%

Pr
of

it 

Ration (ߙ)

Profit of organization
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Fig. 6. Chart of the ratio (ߚ) 

 
 
 

Table 7  
Sensitivity analysis of the ratio (ߜ) 

Percentage of sell price (ߜ) Profit 
 ∗ܪ

Inventory 
݈ଵ∗ 

Inventory 
݈ଶ∗  

0% 2992.5 243.00 194.82 
20% 2992.8 235.01 202.79 
40% 2993 243.02 194.72 
60% 2992 233.03 204.93 
80% 2992.9 240.23 197.76 
100% 2992.9 240.02 197.76 

 

 
 

Fig. 7. Chart of the ratio (ߜ) 
 

Table 8 and Fig. 8 show that the proposed model maintained better profit (ܪ) than the method by 
Matsuyama (2006). As a result, a model that takes into account interdependent demand provides a 
better solution than a model based on independent demand.  
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Table 8 
Differences between the proposed model and Matsuyama (2006) 

Pr
ob

le
m

 

jp  jq  js            L  N  

Expected 
Profit of Pro-
posed Model 

 ≠0  
 ( ∗ܪ )

Expected 
Profit of Ma-

tsuyama 
(2006) 
 =0 
 ( ∗ܪ )

Gap 

P1 3 10 1 1 100% 100% 60% -50% 144.33 286.67 2992.52 2856.67 4.76% 
P2 5 15 2 1 100% 100% 60% -40% 200 400 3100.39 3000.39 3.33% 
P3 4 20 2 1 100% 100% 60% -60% 250 500 4256.23 4058.20 4.88% 
P4 6 15 1.5 1 100% 100% 60% -50% 100 200 1236.32 1006.22 22.87% 
P5 5 20 2 1 100% 100% 60% -70% 220 440 3275.23 3025.45 8.26% 
P6 7 25 1.7 1 100% 100% 60% -80% 300 600 5896.23 5536.35 6.50% 

            Mean (Gap) 8.43% 

            Variance 
(Gap) 0.53% 

 
 

 
Fig. 8. Chart of Differences between the proposed model and Matsuyama (2006). 

 
This model can be used in a number of applications, such as procurement of raw materials in projects 
(e.g., construction, bridge-building and molding) where demand of different periods is interdependent. 

 
 

6. Conclusion 
 
Considering the NP-hard complexity of start time and ordering problems for two-period projects, a 
meta-heuristic genetic algorithm was used to solve this stochastic mathematical model. The innovation 
of the present study is the use of a bivariate normal distribution for formulization of interdependence 
of demand of different periods. This increases the complexity of inventory control models like the two-
period newsvendor problem and has received little attention in the literature. Ultimately, the genetic 
algorithm was used to determine the optimal start times and inventory levels of periods based on the 
levels of demand, with the objective of maximizing the mean profit of project-oriented organizations. 
As a result, a model that takes into account the interdependent demand provides a better solution than 
a model based on independent demand.  
 
Possible directions for future research include the development of start time scheduling and ordering 
problems with interdependent demand for n-period projects, fuzzy demand and objective functions, 
perishable materials, multiple products, multiple organizations, competitive environments, risk-in-
volved projects, suppliers with discount policies, and wait times of more than zero. Future studies could 

0
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(2006).
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also consider resource constraints of suppliers and organizations, and use of other metaheuristic algo-
rithms for solutions. 

 
Appendix 1: 
 
Proposition 1 :  

We want to prove       
  

*
1

1 1 1 2 2*
1 1 2 1 2

1 1 2 2 1 2

1
,

1 ( )

l q p q q p
F l f x x dx dx

q q q p s p
    

     





     
 

         and 

   
*
2

* 2 2
2 1 2 2 1

2

, .
l q pF l f x x dx dx

q



 


 

 
 

   

Proof: 
Eq.  (8) is differentiated to determine the optimal point: 

  
   1 2 1 2

1

, , , 0,H l l x x
l





  

  Let      1 2 1 2 2 1 2 1 2 1 2, , , , , , , ,j jH l l x x h l l x x f x x  

 
   

 
2 1

4

1 2 1 2 1 2 1 2 1 2
1

, , , , , , ,j
j p l q l

H l l x x H l l x x dx dx


    

           1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2
1 1 1

, , , , , , , , , , , .j j jH l l x x h l l x x f x x f x x h l l x x
l l l
  

 
  

 

It can be shown that the derivative of 2 jh with respect to 1l is linear: 
  

Let  2 1 2 1 2
1

, , , ,j jk h l l x x
l





  

     1 2 1 2 1 2
1

, , , , ,j jH l l x x k f x x
l





 

 
   

 
2 1

4

1 2 1 2 1 2 1 2 1 2
11 1

, , , , , ,j
j p l q l

H l l x x H l l x x dx dx
l l 

 


       
(A-1) 

   
 

2 1

4

1 2 1 2 1 2
1 1

, , ,j
j p l q l

H l l x x dx dx
l




     
 

   

 

           
2 1

2 1 1

4

1 2 1 2 1 2 1 1 2 2 1 2 1 1 1 2 2 1 2 2
1 1 1 1

[ , , , , , , , , , ]
q l

j j j
j p l q l

H l l x x dx q l H l l q l x q l H l l q l x dx
l l l

  
  

    
 

   

 

           
2 1

2 1 1

4

1 2 1 2 1 1 2 2 1 2 1 1 1 2 2 1 2 2
1 1 1

[ , , , , , , , ]
q l

j j j
j p l q l

k f x x dx q l H l l q l x q l H l l q l x dx
l l

 
  

      

 

 

   
2 1 1

2

1 1 2 1 2 2 1 2 1 2, ,
l l l

l

k f x x dx dx k f x x dx dx


 

    

   
2

1 2 1

3 1 2 1 2 4 1 2 1 2, ,
l

l l l

k f x x dx dx k f x x dx dx
 



     
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     
2

2

1 1 2 1 2 3 1 2 1 2 2 2 1 2 1 2[ , , , , , , ] [ , , ,
l

l

H l l l x H l l l x dx H l l l x




      4 1 2 1 2 2, , , .]H l l l x dx  

 
It can be shown that the following relations hold: 

)A-2( 
)A-3(  

   1 1 2 1 2 3 1 2 1 2, , , , , , 0,H l l l x H l l l x   

   2 1 2 1 2 4 1 2 1 2, , , , , , 0.H l l l x H l l l x   
 
Eq. s (A-2) and (A-3) are established as follows: 

        1 1 2 2 1 2 21 1 2 1 2 1 2, , , , , , , ,H l l q l x h l l l x f l x   
        2 1 2 2 1 2 22 1 2 1 2 1 2, , , , , , , ,H l l q l x h l l l x f l x   
        3 1 2 2 1 2 23 1 2 1 2 1 2, , , , , , , ,H l l q l x h l l l x f l x   
        4 1 2 2 1 2 24 1 2 1 2 1 2, , , , , , . , ,H l l q l x h l l l x f l x   
            1 1 2 1 2 3 1 2 1 2 21 1 2 1 2 23 1 2 1 2 1 2, , , , , , , , , , , , , .H l l l x H l l l x h l l l x h l l l x f l x    

          2 1 2 1 2 4 1 2 1 2 22 1 2 1 2 24 1 2 1 2 1 2, , , , , , , , , , , , , .H l l l x H l l l x h l l l x h l l l x f l x    

Because in Eq. (4) and Eq. (6) gives    21 1 2 1 2 23 1 2 1 2, , , , , , 0h l l l x h l l l x   then 

   1 1 2 1 2 3 1 2 1 2, , , , , , 0,H l l l x H l l l x   and also in Eq. (5) and Eq. (7) gives 

   22 1 2 1 2 24 1 2 1 2, , , , , , 0,h l l l x h l l l x  then    2 1 2 1 2 4 1 2 1 2, , , , , , 0.H l l l x H l l l x   
 
After substituting the above equation into Eq.  (A-1) gives: 

)A-4(  
     

2 1 1

2

1 2 1 2 1 1 2 1 2 2 1 2 1 2
1

, , , , ,
l l l

l

H l l x x k f x x dx dx k f x x dx dx
l



 


 

       

   
2

1 2 1

3 1 2 1 2 4 1 2 1 2, ,
l

l l l

k f x x dx dx k f x x dx dx
 



     

  
       

2 1 1 2

2 1 2 1

1 1 2 1 2 2 1 2 1 2 3 1 2 1 2 4 1 2 1 2, , , ,
l l l l

l l l l

k f x x dx dx k f x x dx dx k f x x dx dx k f x x dx dx
  

  

            

 1 1 2 2, ,k F l l k    
We know from Eqs.  (4-7): 

 1 21 1 2 1 2 1 1 2
1

, , ,,k h l l x x p s p
l

 
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

   

 2 22 1 2 1 2 1 1 2
1

, , ,,k h l l x x p s p
l

 
    


  

    3 23 1 2 1 2 1 1 1 2 2
1

, , , 1 ,k h l l x x q p q q p
l

    
       


  

1 2k k      ,    3 4 ,k k   
By substituting the above equation into Eq.  (A-4), we have: 

               

   

1 2 1 2 1 2 3 4 1 2 2 4 1 3 4 2 4
1

2 4 1 4

, , , ,

0.

H l l x x k k k k F l l k k F l k k F l k
l

k k F l k


        



   

 

Finally   4
1

4 2

kF l
k k

 and proposition is proved.  
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Similarly subjecting Eq. (9) to the process explained in above, 

   
*
2

* 2 2
2 1 2 2 1

2

,
l q pF l f x x dx dx

q








 
 

  is proved. 

Appendix 2: 
 
The aim is to complete the elements of a Hessian matrix (second derivative test). For this purpose, first 
and second derivatives of the mean profit function with respect to 1 2,l l are obtained (Eq.  (A-5)): 

       1 2 1 2 2 4 1 4
1

, , ,,H l l x x k k F l k
l


  


  

       1 2 1 2 2 4 12
1 1

, , ,H l l x x k k F l
l l
 

 
 

  

      1 1 2 2 1 2 1
1

( 1 ( )) ,q q q p s p F l
l

      
        


 

)A-5(  
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     
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1

1 1 2 1 2 1 2 1 2
1 1 1

1 2 1 1 2 2 1 2 2
1

, ,

[ , , ] , 0.

l l

l

F l f x x dx dx f x x dx dx
l l l

f x x dx f l x dx f l x dx
l

 
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 

  

   

  

  
 

  


   



   

  
  

When  2 4 0k k  , the second order derivative will be  * *
1 2 1 22

1

, , , 0H l l x x
l





(Eq.  (A-6)): 

)A-6(       
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*

2 2

* *
1 2 1 2 2 4 12

1 1

, , , 0,l l
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By definition, the second derivative test is expressed as (Eq.  (A-7)): 

)A-7(             2
, det , , , .,xx yy xyM x y H x y f x y f x y f x y    

If  , 0M a b  and  , 0xxf a b  , then  ,a b  is the relative maximum of f , therefore (Eq.  (A-8)) is: 
)A-8(     * *

1 1 2 2, , 0M x y Hm l l l l        

   
*

1 1
*

2 2
2 4 1

1

0  .l l

l lk k F l
l






 


  

 
The determinant of H for * *

1 2,l l  is positive, and    , 0xxf a b   ; therefore * *
1 2,l l  are the relative maximum 

for  * *
1 2 1 2, , ,H l l x x . 
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