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Abstract. We present a new method, using Bayesian estimation, to determine stellar ages and their uncertainties from obser-

vational data and theoretical isochrones. The result for an individual star is obtained as the relative posterior probability density

as function of the age (“G function”). From this can be derived the most probable age and confidence intervals. The convoluted

morphology of isochrones and strong non-linearities make the age determination by any method difficult and susceptible to

statistical biases, and as a result age uncertainties havee often been underestimated in the literature. From simulations we find

that the G functions provide a general, robust and reliable way to quantify age information. Resulting age estimates are at least

as accurate as those obtained with conventional isochrone fitting methods, and in some cases much better, especially when the

observational uncertainties are large. We also find that undetected binaries, on the whole, have a surprisingly small effect on

the age determinations. For a stellar sample, the individual G functions can be combined to derive the star formation history of

the population; this will be developed in a forthcoming paper. For a coeval population the combination simplifies to computing

the product of the individual G functions, and we apply that method to estimate the ages of the two open clusters IC 4651 and

M 67, using Padova isochrones and photometric data from the literature. For IC 4651 we find an estimated age of 1.56±0.03 Gyr,

assuming a true distance modulus of 9.80. For M 67 we find 4.05 ± 0.05 Gyr for true distance modulus 9.48. The small formal

errors of these age estimates do not include the (much larger) uncertainties from calibration and model errors, but illustrate

the statistical power of combining G functions. Our statistical approach to the age determination problem is well suited for the

mass treatment of data resulting from large-scale surveys such as the Gaia mission.

Key words. stars: fundamental parameters – stars: evolution – solar neighbourhood – methods: data analysis –

methods: statistical

1. Introduction

Determination of stellar ages is crucial in observational stud-

ies aiming to understand stellar and galactic evolution (e.g.,

Fuhrmann 2004). The use of theoretical stellar evolutionary

sequences, or equivalently isochrone fitting, is one of the few

methods available for this purpose, and possibly the only one

that can be applied on a large scale to the full range of stellar

ages. When studying evolution on galactic timescales (e.g., the

star formation history and age–metallicity relations of the so-

lar neighbourhood), or the ages of individual field stars, the

method is mainly applied to late A-type, F and G dwarfs,

whose main-sequence life times range from below 1 Gyr up

to the age of the universe. Examples of such studies include

Edvardsson et al. (1993), Gómez et al. (1997), Ng & Bertelli

(1998), Lachaume et al. (1999), Chen et al. (2000), Liu &

Chaboyer (2000), Feltzing et al. (2001), Ibukiyama & Arimoto

(2002), Lastennet & Valls-Gabaud (2002), Laws et al. (2003),

Reddy et al. (2003), Pont & Eyer (2004), and Nordström et al.

(2004).

In spite of the considerable practical importance of ages

determined from isochrones, relatively little attention has been

given to quantifying their statistical reliability in view of the

observational uncertainties. Although it is recognized (e.g.,

Lachaume et al. 1999) that the uncertainties of isochrone ages

are often underestimated in the literature, there has been lit-

tle systematic study of the reasons for this phenomenon, or

of the possible statistical biases introduced by the estimation

procedure. Aspects of the problem were recently discussed by

Pont & Eyer (2004) from the viewpoint of Bayesian probability

theory.

In the present paper we use Bayesian theory to derive stellar

ages based on a comparison of observed data with theoretical

isochrones. The basic assumptions are given in Sect. 2, while in

Sect. 3 we derive the relative posterior probability density G as

function of the age τ. Under the given assumptions the G func-

tion1 specifies the available age information on an individual

star. From this it is possible to assign a unique (most proba-

ble) age to the star, as well as confidence intervals (CI) at any

given confidence level, but for many applications the complete

G function is required rather than a single value or interval for

1 The “G” notation was adopted from Hernandez et al. (2000), see

Sect. 6.1.
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the age. The effects of binaries on the age estimates are also

studied (Sect. 3.8).

In Sect. 4 we contrast the Bayesian age estimates with those

obtained using classical methods of isochrone fitting, where the

uncertainties may be obtained by classical error propagation or

Monte Carlo techniques. The properties of the estimators are

studied by means of numerical simulations.

Section 5 describes the application of the method to the

determination of the ages of nearby field stars, in particular the

sample of more than 13 000 F and G dwarfs by Nordström et al.

(2004). Moreover, we derive the ages of the two open clusters

IC 4651 and M 67 by statistically combining the G functions

for member stars. Finally, in Sect. 6, we discuss the present

method in relation to some other methods described in the liter-

ature, as well as some of the limitations implied by the adopted

model.

2. Problem formulation and assumptions

2.1. Model parameters and observational data

Determination of ages from isochrones depends on compar-

ing observed data with theoretically computed values obtained

from stellar models, where age (τ) is one of the free parame-

ters, but not the only one: at least the initial stellar mass (m) and

initial chemical composition (Z and possibly more parameters)

must also be considered. Quite generally we may summarize

the relevant model parameters in a vector p.

The observational data for a given object are similarly col-

lected in a vector q to which observational uncertainties are at-

tached. Since isochrone fitting is traditionally linked to the HR

or colour–magnitude diagram, the observational data are often

taken to be quantities associated with the axes of the HR dia-

gram, such as log Teff and MV . These are of course derived from

more basic photometric, spectroscopic and astrometric data and

therefore, strictly speaking, not directly observed quantities;

however, in the present context they can be regarded as such.

The theoretical models provide a mapping from the param-

eter space p to the data space q. Determination of stellar ages

is a special case of the inverse problem, i.e., to find a mapping

from q to p, which is possible if dim(q) ≥ dim(p) and the map-

ping is non-degenerate.

In the following, the model parameters are taken to be the

age τ, initial mass m, and initial metallicity, for which we in-

troduce the parameter ζ = log(Z/Z⊙) (with Z⊙ = 0.019). The

helium content (Y) and the mixture of heavier elements are

regarded as known functions of Z, so that the stellar evolu-

tionary models are uniquely labelled by the parameter vector

p = (τ, ζ,m). Similarly, we usually take the observational data

to be q = ([Me/H], log Teff,MV ), although an application us-

ing the colour index (V − I)0 instead of log Teff is given in

Sect. 5.2.2. However, it should be noted that the estimation

method described in Sect. 3 in no way is limited to this par-

ticular choice of variables, but is generally applicable as long

as the model provides a unique mapping from p to q.

The age determination can thus be understood as the prob-

lem to invert the function q(τ, ζ,m), and in particular to calcu-

late τ(q). The problem can basically be approached either by

direct numerical inversion (isochrone fitting), or using proba-

bilistic methods (Bayesian estimation). We discuss variants of

both approaches in Sects. 3 and 4.

2.2. Choice of stellar isochrone data

The function q(τ, ζ,m) is in practice realized by numerical in-

terpolation in a set of pre-computed stellar evolutionary tracks

or isochrones. We have chosen to use the the Padova evolu-

tionary models by Girardi et al. (2000), including convective

overshooting, for all numerical examples and simulations in

this paper. Although any of the recent sets of models (e.g., the

Geneva models, Mowlavi et al. 1998; or the Yonsei-Yale mod-

els, Yi et al. 2003) could in principle equally well have been

used to illustrate and compare age determination methods, our

choice was mainly guided by convenience: the Padova models

cover sufficient ranges in parameter space with a reasonably

dense grid for realistic test cases, and broad-band magnitudes

are provided for every model.

The Padova isochrones span the age interval 0.063 <∼ τ <∼
17.8 Gyr, the metallicity range −1.68 <∼ ζ <∼ +0.20, and initial

masses 0.15M⊙ ≤ m ≤ 7 M⊙. The applications require that

the observational quantities (q) can be computed for any valid

combination of (τ, ζ,m) within these ranges.

2.3. Computing interpolated isochrones

A special interpolation method was devised to calculate

q(τ, ζ,m) while ensuring that no significant artifacts are in-

troduced by the extremely non-linear relation between m and

the quantities along any isochrone. Briefly, we defined a con-

tinuous parameter u along each isochrone by identifying a set

of equivalent evolutionary points: the foot of the isochrone at

m = 0.15 M⊙ (u = 0), the core H exhaustion (u = 1), the

point of maximum Teff before the RGB (u = 2), the start of

the RGB (u = 3), etc. Between these points u was taken to

be proportional to the curve length of the isochrone, using the

(somewhat arbitrary) line element ds2 = dM2
V
+ (20d log Teff)2.

Linear interpolation was then carried out in the (log τ, ζ, u)

space with m regarded as a dependent variable like log Teff

and MV . This procedure ensures that the general morphology

of the isochrones is preserved so that, for example, the interpo-

lated isochrones do not intersect where they should not do so.

2.4. Metallicity parameter

The observational quantity [Me/H] is theoretically related to ζ

through the formula:

[Me/H] = log (Z/Z⊙) − log (X/X⊙)

= ζ − log
[

1 − k
(

10ζ − 1
)] (1)

assuming that Me represents the same mixture of elements

(weighted by atomic weight) as Z. Here k = (Z⊙/X⊙)(1 +
∆Y/∆Z) ≃ 0.094 for X⊙ = 0.708, Z⊙ = 0.019, and

∆Y/∆Z = 2.5 (e.g., Pagel & Portinari 1998). For |ζ | ≪ 1 we

have [Me/H] ≃ 1.094ζ while for ζ <∼ −1 there is an almost con-

stant offset [Me/H] ≃ ζ − 0.04. The actual relation between ζ
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and the observational quantity is much more complicated be-

cause the relative abundances of elements in Z may vary (in

particular the α elements versus other elements). These com-

plications are however beyond the scope of this paper and we

simply assume

[Me/H] ≃ ζ. (2)

This is a reasonable approximation for the present purpose of

exploring the methodology of age determination by isochrones.

In real applications, considering that typical observational un-

certainties in [Me/H] are (at least) of order ±0.1 dex, this rela-

tion is still useful for stars of about solar metallicity, but should

not be used for metal-poor stars.

2.5. Assumed observational errors

In simulations and for illustration purposes we usually assume

the following standard errors, which are fairly representative of

what can be achieved for F and G dwarfs in the solar neighbour-

hood (Nordström et al. 2004): ±0.1 dex in [Me/H], ±0.01 dex

in log Teff , and ±0.1 mag in MV . We call these nominal er-

rors. However, we shall sometimes consider observational er-

rors that are half or twice the nominal ones.

3. Bayesian estimation of stellar ages

3.1. The posterior probability density function

In Bayesian estimation the parameters to be determined (in this

case τ, ζ and m) are regarded as random variables and their

(posterior) joint probability density function is given by

f (τ, ζ,m) ∝ f0(τ, ζ,m) L(τ, ζ,m) (3)

where f0 is the prior probability density of the parame-

ters (Sect. 3.3) and L the likelihood function (Sect. 3.2).

The probability density function (pdf) f is defined such that

f (τ, ζ,m)dτdζdm is the fraction of stars with ages between τ

and τ + dτ, metallicities between ζ and ζ + dζ, and initial

masses between m and m+ dm. The constant of proportionality

in Eq. (3) must be chosen to make
∫ ∫ ∫

f (τ, ζ,m)dτdζdm = 1.

Integrating f with respect to m gives f (τ, ζ), which is the

posterior joint pdf of τ and ζ. This function is of interest when

studying the age–metallicity relation, since it summarizes the

available information concerning these two parameters, given

the observational data. Integrating once more with respect to ζ

gives f (τ), the posterior pdf of τ, which similarly summarizes

the available information concerning the age of the star.

In the next sections we discuss in some detail the two func-

tions L and f0 that together define the posterior probability

density.

3.2. The likelihood function

The likelihood function L equals the probability of getting the

observed data q for given parameters p. Regarded as a function

of p it is not a pdf – for instance, its integral may be infinite.

We assume independent Gaussian observational errors in each
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Fig. 1. HR diagram showing the location of two hypothetical obser-

vations at (log Teff ,MV ) = (3.825, 3.0) and (3.800, 3.0), with nomi-

nal uncertainties as in Sect. 2.5 (error bars show ±1σ). The zero-age

main sequence (ZAMS) and selected isochrones for log(Z/Z⊙) = −0.2

(≃[Me/H]) are also shown. The symbols along the isochrones show

where the initial mass is a multiple of 0.01M⊙. See text for further

explanation.

of the n = dim(q) observed quantities, with standard errors σi.

The likelihood function is then

L(τ, ζ,m) =


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· (5)

A maximum-likelihood (ML) estimate of the stellar parame-

ters (τ, ζ,m) may be obtained by finding the maximum of this

function, which (in the case of Gaussian errors) is equivalent to

minimizing χ2. ML estimators are in general good estimators

and in many cases nearly optimal (Casella & Berger 1990), so

why not simply adopt the ML age estimate?

The difficulty with the ML estimate in the present case has

to do with the complex morphology of the isochrones, i.e., of

the highly non-linear mapping from p to q. Effectively, it means

that more information is needed to make a good estimate of the

age than provided by the likelihood function alone. An illus-

tration is given in Fig. 1, where we consider the hypothetical

observation of two isolated field stars. The observed data are

depicted together with a selection of isochrones. All isochrones

and data are for [Me/H] ≃ ζ = −0.2.

For the left data point (log Teff = 3.825, MV = 3.0) there is

only one isochrone going exactly through the observed point,

namely τ = 2.18 Gyr. This is then the best-fitting age in

terms of the χ2 in Eq. (5) and consequently also the ML es-

timate of the age based on the given data. For the second
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point (log Teff = 3.800, MV = 3.0), there are three distinct

isochrones going exactly through the data point: τ = 2.85, 3.27

and 3.82 Gyr. There are thus three points in parameter space

where χ2 = 0 and where consequently L(p) attains its global

maximum. Which of the three solutions should be chosen? In

the absence of any additional information, a reasonably expe-

rienced astronomer, forced to make a choice, would probably

select the youngest isochrone (2.85 Gyr) as the most reasonable

solution. Why? Because at that age the star would still be in the

slowly evolving stage of core hydrogen burning. If any of

the higher ages were adopted, we would have to assume that

the star is in a more advanced and rapid evolutionary stage,

which is less probable for a (normal) star picked at random2.

This is an example where the astronomer, consciously or not,

makes use of prior information. The Bayesian approach offers

a systematic way to quantify and make use of this information

by means of the prior pdf f0 in Eq. (3).

3.3. Choice of prior distributions

The prior density of the model parameters in Eq. (3) can be

written

f0(τ, ζ,m) = ψ(τ)φ(ζ |τ)ξ(m|ζ, τ) (6)

where ψ(τ) is the a priori star-formation rate (SFR) history,

φ(ζ |τ) the a priori metallicity distribution as function of age,

and ξ(m|ζ, τ) the a priori initial mass function (IMF) as func-

tion of metallicity and age.

To proceed further it is necessary to make specific assump-

tions about the functions ψ, φ and ξ. Inevitably, the end result

will to some extent depend on these assumptions. However, if

the observations are good enough there will only be a weak

such dependence. On the other hand, if the data are poor, it is

important to make only the most non-committal assumptions

concerning the prior statistics. For example, it makes sense to

assume that τ, ζ and τ are independent, so that

f0(τ, ζ,m) = ψ(τ)φ(ζ)ξ(m). (7)

A contrary assumption, e.g. that there is a priori a correlation

between τ and ζ, would clearly be unreasonable if the objective

of the study is to determine a possible age–metallicity relation.

For a similar reason, we assume that the prior SFR ψ(τ) is flat.

The choice of the prior metallicity distribution φ(ζ) is less

obvious. On one hand, the actual metallicity distribution of

nearby field stars is known to be strongly peaked at around

−0.1 ± 0.3 dex (e.g., Nordström et al. 2004), which might in-

deed be a useful a priori assumption e.g. in the absence of any

metallicity measurement at all for a given (field) star. If the true

metallicity happens to be much different from this assumption,

it would of course result in a biased age estimate, but that may

still be preferable to no estimate at all. On the other hand, if a

metallicity measurement is available, one would probably not

2 The assumption that no additional information is available is cru-

cial: for example, if the star is located in a cluster whose HR diagram

clearly outlines one of the older isochrones, one would not hesitate to

assign the corresponding age also to this star.

want to prejudice the age determination by making an addi-

tional assumption about what the metallicity should have been.

Thus, provided a metallicity measurement of adequate preci-

sion is at hand, we think that a flat prior is generally the most

reasonable choice. It could still be debated whether it should

be flat in the logarithmic variable ζ or in the linear variable Z;

we have chosen the former alternative (cf. below). For a more

extensive discussion of the role and importance of the prior dis-

tributions we refer to Pont & Eyer (2004).

For the IMF, finally, there can be no doubt that underlying

star formation processes generate a decreasing function at least

for the relevant mass range (m >∼ 1 M⊙), for which we assume

a power-law

ξ(m) ∝ m−a. (8)

An exponent a of order 2 to 3 would be representative for the

empirical IMF at around 1M⊙ (Kroupa et al. 1993). For the

simulations described below we normally use a = 2.7.

3.4. Calculating the G function

With the assumptions from Sect. 3.3 we find, after inserting

Eq. (6) into Eq. (3) and integrating with respect to m and ζ, that

the posterior pdf of τ can be written

f (τ) ∝ ψ(τ)G(τ) (9)

where

G(τ) ∝
∫ ∫

L(τ, ζ,m)ξ(m) dm dζ. (10)

For the IMF ξ(m) we use Eq. (8). We normalize (10) such that

G(τ) = 1 at its maximum. Comparison with Eq. (3) suggests

that G(τ) can be interpreted as the relative likelihood of τ after

elimination of m and ζ.

Numerically, we evaluate Eq. (10) for each age value (τ j)

as a double sum along a set of isochrones at the required

age that are equidistant in metallicity (ζk). (In practice we

use pre-computed isochrones for a step size of 0.04 dex in ζ,

and consider only those within ±3.5σ[Me/H] of the observed

metallicity.) Let m jkℓ be the initial-mass values along each

isochrone (τ j, ζk); then

G(τ j) ∝
∑

k

∑

ℓ

L(τ j, ζk,m jkℓ)ξ(m jkℓ)(m jkℓ+1 − m jkℓ−1). (11)

Discretization and interpolation errors sometimes produce a

slight raggedness of the computed G function which we elim-

inate by numerical smoothing. This is mainly needed in order

to compute reliably the mode of the G function (Sect. 3.7).

The solid line in Fig. 2 shows the G function for the right

data point in Fig. 1, assuming nominal observational errors

(Sect. 2.5). The dashed and dotted curves show the G func-

tions computed for the same data but assuming half or double

the nominal errors. These functions have a global maximum

around τ = 2.85 Gyr, corresponding to the most probable age

according to the discussion of this example in Sect. 3.2. Around

the alternative age 3.82 Gyr there are lower peaks, suggesting

that this solution is less probable. Around 3.27 Gyr there is no

visible peak at all.
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Fig. 2. Plot of the relative posterior probability density, G(τ), for the

observed data point ([Me/H] = −0.2, log Teff = 3.800, MV = 3.0).

The three curves are for the nominal uncertainties (thick solid line),

half the nominal values (dashed) and twice the nominal (dotted); see

Sect. 2.5. The vertical bars indicate the ages for the three isochrones

in Fig. 1 that go though the observed data point.

This behaviour of the G functions can be understood with

reference to Fig. 1. Along each isochrone in that diagram we

have marked off the models that are equidistant in initial mass

(∆m = 0.01M⊙). From the markings it is clear that the error

ellipse around the observed point covers a much wider range of

masses along the 2.85 Gyr isochrone than along the 3.82 Gyr

isochrone, and a very small mass range for the intermediate

isochrone. When performing the integration over m in Eq. (10)

there is a correspondingly larger contribution to the G function

at τ = 2.85 Gyr than at 3.82 Gyr, and a very small contribu-

tion at the intermediate age. The varying density of markings

reflects the changing speed of stellar evolution. Thus, by per-

forming the integration over m in Eq. (10) we automatically

take into account the different evolutionary time scales.

Note that the assumed IMF has only a marginal impact on

the shape of the G functions compared with the varying speed

of stellar evolution. For example, changing the exponent a in

Eq. (8) from 2.7 to 0 (i.e., a flat IMF) only reduces the sec-

ondary peak in Fig. 2 from 0.59 to 0.45 for the nominal errors.

Similarly the assumed prior in ζ is normally uncritical. For ex-

ample, it could be argued that it is more reasonable to assume a

flat prior density in Z = Z⊙×10ζ than in the logarithmic param-

eter ζ. Using a flat prior in Z implies φ(ζ) ∝ 10ζ . Including this

factor in the integrand of Eq. (10) would reduce the secondary

peak in Fig. 2 from 0.59 to 0.51. The corresponding effects on

the estimated age are on the 1% level for the nominal errors,

but increase quickly with the observational errors.

3.5. Age determination from the G function

Assuming a flat prior pdf in τ we have f (τ) ∝ G(τ) and the

age determination can be entirely based on the G function. As

discussed in Sect. 3.7 we will adopt the mode (maximum) of

the G function, τ̂, as our “best” estimate of a stellar age, based

exclusively on the given observational data.

It may happen that the observed data point falls well out-

side all the isochrones. In this case it is obviously not possible

to infer anything about the age. Although the G function can

still be computed and even may show a well-defined peak, it is

clearly meaningless and should not be used. We adopt (some-

what arbitrarily) the criterion

min
p
χ2 > χ2

0.99 (12)

for such a “no solution” condition. The left hand side is the

minimum of Eq. (5) for any combination of model parameters,

and χ2
0.99

is the 99th percentile value of the chi-square distribu-

tion for dim(q) degrees of freedom – in our case χ2
0.99
= 11.3

for 3 d.o.f. This means that there is less than 1% probability

for a data point falling that far from the isochrones purely by

chance, rather than for some technical or astrophysical reason

(peculiar star, bad data, etc.).

3.6. Confidence intervals

In addition to the single age estimate τ̂ it is often desirable to

provide a confidence interval (CI) at some specified confidence

level 1 − α (say, 68% or 95%). The meaning of the confidence

level is that we expect the true age to be inside the CI in a frac-

tion 1 − α of all the cases. The usual ±1σ is a CI at 68% confi-

dence level if the errors are Gaussian.

Since G(τ) is proportional to the posterior pdf of τ, one

could use the following equation to construct a confidence in-

terval [τ1, τ2] for any given confidence level 1 − α:
∫ τ2

τ1
G(τ) dτ

∫ τmax

τmin
G(τ) dτ

= 1 − α. (13)

Here, τmin, τmax are the extreme ages considered, e.g., as

covered by the isochrones. The fractional area below τ1 and

above τ2 need not be the same, but could be chosen to mini-

mize the length of the confidence interval.

However, we have not adopted this method to compute a

confidence interval, mainly for the following reason. Suppose

that the data give very little information about the age so that

the G function is essentially flat. Then any sub-interval of

length (1 − α)(τmax − τmin) would be a formally correct con-

fidence interval at the chosen confidence level, without carry-

ing any useful information at all, but with an obvious risk of

misinterpretation.

We have therefore adopted a different procedure to derive

a CI from the G function. As suggested in connection with

Eq. (10), G(τ) can be regarded as the relative likelihood func-

tion with G(τ̂) = 1 at the mode τ̂. For any other age, G(τ) is

therefore the likelihood ratio obtained by constraining one pa-

rameter (τ) to a given value. It is well known (e.g., Casella &

Berger 1990) that the likelihood ratio, under certain regularity

conditions, has a simple asymptotic distribution which in our

case suggests that −2 ln G(τ) has a chi-square distribution with

1 degree of freedom. Thus,

1 − α = Pr[G(τ) ≥ Glim] ≃ 2Φ
(√

−2 ln Glim

)

− 1 (14)

where Φ(x) = (2π)−1/2
∫ x

−∞ exp(−t2/2)dt is the standard normal

distribution. The reasoning behind this expression is admittedly
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Fig. 3. Representative locations in the HR diagram used in the

Monte Carlo experiments (Sect. 3.6) to test the validity of the approx-

imation (14). The isochrones are for ζ = −0.2 and τ = 0, 1, 2, . . . ,

8, 10, 12 and 15 Gyr. The points at the centres of the error ellipses

indicate the true observational data, to which independent Gaussian

errors are added with nominal errors. Note the behavior of the points

marked A, B, C and D in Fig. 4.

weak, but we will substantiate the result below by means of

numerical simulations.

Assuming that Eq. (14) holds, we compute for the given

confidence level 1 − α the corresponding value Glim and then

define the CI [τ1, τ2] to be the shortest interval such that

G(τ) < Glim outside the interval. (Since G(τ) can have multi-

ple maxima, it may happen that G(τ) is locally below Glim in-

side the interval as well.) The 68, 90 and 95% confidence levels

correspond respectively to Glim = 0.61, 0.26 and 0.15.

We have made extensive Monte Carlo simulations to test

whether Eq. (14) holds to a reasonable accuracy in practi-

cal situations. For representative points in the HR diagram

(Fig. 3) we generated “observed” data with nominal uncer-

tainties (Sect. 2.5), computed the resulting G functions and

derived the confidence intervals corresponding to Glim =

0.1, 0.2, . . . 0.9. We then counted the number of cases when

the true age fell within the derived confidence interval. Figure 4

shows the fraction of such cases as function of Glim for each set

of 1000 experiments. The solid curve is the theoretically ex-

pected relation from Eq. (14). It is seen that the experiments

follow the theoretical relation rather well for most of the se-

lected points in the HR diagram.

Exceptions are the points marked A and B in Fig. 3, and

to a smaller degree points C and D. The problem at points A

and B can be understood as an effect of the multiply overlap-

ping isochrones on the upper part of the giant branch, especially

when also the uncertainty in metallicity is considered, while

it is not so obvious what happens at C and D. Nevertheless,

we conclude that the simple recipe of using a fixed threshold
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Fig. 4. Results of the Monte Carlo experiments described in Sect. 3.6.

Each circle represents the statistics from 1000 experiments. The ordi-

nate is the fraction of experiments in which the true age falls within

the confidence interval defined by Glim. The solid curve is the relation

expected if −2 ln G follows the chi-square distribution with 1 d.o.f.,

Eq. (14). The experiments follow the theoretical relation rather well

except those for the points marked A, B, C and D in Fig. 3.

value Glim is in general quite reasonable and should produce

realistic confidence intervals under the given assumptions.

In the following we always use a confidence level of 68%

(corresponding to the usual ±1σ for Gaussian errors), or

Glim ≃ 0.6.

It will often happen that G(τ) exceeds Glim at one (or both)

of the extreme ages considered. In that case the confidence in-

terval is correspondingly truncated. Thus, if G(τmin) > Glim

we set τ1 = τmin, while if G(τmax) > Glim we set τ2 = τmax.

Effectively, this means that only an upper or lower bound to

the age can be set at the chosen confidence level, or possibly

no bound at all. In contrast, when the confidence interval is en-

tirely within the considered range (i.e., when τmin < τ1, τ2 <

τmax), we call our age estimate well-defined (Nordström et al.

2004).

Having defined a confidence interval [τ1, τ2] it is also use-

ful to have a measure of the relative precision (ǫ) of the age

estimate. We define

ǫ =
√

τ2/τ1 − 1. (15)

This definition was chosen in order to cope with the whole

range of confidence intervals encountered in practice. For

small ǫ it agrees with any sensible representation of relative

precision, e.g., [τ1, τ2] = [0.99, 1.01] gives ǫ ≃ 0.01. However,

confidence intervals like [0.5, 2.0] are much more typical for

age determinations, and it is then not obvious if the relative

precision should be expressed relative to the lower limit, the
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upper limit, or some mid-point of the confidence interval. In

this particular example our definition leads to a relative preci-

sion of 100% (ǫ = 1.0).

It should be noted that a large value of the relative precision,

e.g. ǫ > 1, does not imply the absence of age information;

for example, [τ1, τ2] = [0, 1] Gyr corresponds to infinite ǫ but

would still provide a very meaningful upper limit on the age.

3.7. Defining the “best” age estimate

from the G function

As already emphasized, we need the complete G function

to characterize the available age information on a given star.

Compressing this to a single age estimate and confidence in-

terval inevitably results in a loss of information. For example,

in Fig. 2, knowing the location of the maximum and 68% con-

fidence interval (i.e., where G > 0.6) may be enough to char-

acterize the main peak, but completely ignores the secondary

maximum. When defining a “best” age estimate the goal should

be to minimize the loss of relevant information in practical

situations.

There are at least three natural choices for computing a

unique age estimate from the G function: the mean value (cen-

tre of gravity of the area under the G curve), the median value

(bisecting the area under the G curve), and the mode (the posi-

tion of the global maximum in G). We compared the behaviour

of the three estimates through Monte Carlo simulations of (ini-

tially) 7080 single stars. A constant SFR was assumed, with

a Kroupa et al. (1993) IMF in the range 0.8−5.4 M⊙ and a

constant metallicity of ζ = −0.2. As it turns out, 4112 of the

stars evolve out of the range of the isochrones, leaving a sam-

ple of 2968 stars. For these we generated observed data [Me/H],

log Teff and MV with errors of 0.1 dex, 0.01 dex and 0.15 mag,

respectively; see Fig. 5. For each star we then calculated the

G function and hence the age estimates corresponding to the

mean, median and mode.

In Fig. 7 we compare the three age estimates with the true

ages for the 2968 stars in the synthetic data set. It is seen that

the mean and median behave similarly while the mode exhibits

a different pattern. The difference between the mode and the

other estimators is mainly due to stars with ages not well-

defined in the sense of Sect. 3.6. These stars often have very

broad G functions that are cut off at the minimum and/or max-

imum isochrone age, which tends to move the mean and me-

dian toward the center of the age interval. The mode, on the

other hand, may be located anywhere in the age interval, but

very often at the extreme ages (producing the “lines” at the top

and bottom of the panel for the mode). Thus, while the mean

and median superficially appear to be better estimates than the

mode (in the sense that there are much fewer such points far

away from the 1:1 line), they tend to be deviously biased to-

wards the middle of the full age range.

Considering only the subset of 937 stars with well-defined

ages, much of these differences between the three estimators

disappear, and this is even more true for the 193 stars that

in addition obtain a relative precision ǫ ≤ 0.2. The left pan-

els in Figs. 8 and 9 show the mode versus true age for these
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Fig. 5. HR diagram for the synthetic sample of 2968 stars generated

as described in the text. The assumed observational uncertainties in

log Teff and MV are indicated in the lower-left corner (in addition there

is a ±0.1 dex uncertainty in metallicity). The isochrones are for 0, 1,

2, ..., 8, 10, 12 and 15 Gyr.

subsets; we do not show the rather similar plots for the mean

and median.

Although it is not easily seen in the scatter plots, there is a

slight bias towards lower ages in all the (sub-) samples and for

all three estimators. To estimate the size of this bias we fitted a

bisector to each scatter plot, i.e., a straight line through the ori-

gin dividing the stars into two equally large groups. For well-

defined ages the bisector slope is between 0.93 and 0.95, de-

pending on the estimator. In the ǫ ≤ 0.2 case the bisector slope

is between 0.95 and 0.98. This 2−7% bias towards lower ages

is caused by the strongly asymmetric non-linearity of the map-

ping from (τ,m) to (log Teff,MV ). For any given position in the

HR diagram above the main sequence, the younger isochrones

in a region around the observed position cover a wider mass in-

terval than the older isochrones on the opposite side (cf. Fig. 1).

There are therefore more young (τ,m) combinations that can

“explain” the observed data than old combinations.

When a single value is required for the estimated age, we

strongly recommend to use the mode rather than the mean or

median, because it avoids the tendency of the latter to assign an

age in the middle of the permitted range. By contrast, the mode

tends to assign an extreme age in such cases, which clearly

signals a bad estimate. Furthermore, when a confidence interval

is computed as in Sect. 3.6, the mode will always be within

that confidence interval, while this (highly desirable!) property

cannot be guaranteed for the mean or median.

Figure 6 is an HR diagram for the 937 stars in the synthetic

sample for which the ages are well-defined. Comparison with

the full synthetic sample in Fig. 5 shows that well-defined ages

are normally obtained for data points that are at least 1−2 stan-

dard deviations above the isochrones for the most extreme ages
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Fig. 6. Same as Fig. 5 but showing only the data for the 937 stars with

well-defined ages according to the criterion in Sect. 3.6. Large dots

show the subset having a relative precision (ǫ) in age better than 20%.

considered. A relative precision better than 20% (large dots in

Fig. 6) is mainly achieved in a band some 1−2 mag above the

zero-age main sequence.

3.8. Influence of undetected binaries

Thus far we have always assumed that we are dealing with

single stars. Binary (and multiple) stars are however the norm

rather than the exception, and it is important to quantify how

this affects the age determinations. Known binary systems can

be removed from a sample or dealt with in other manners, but

a certain fraction of undetected binary systems is unavoidable

in most samples and could pose a problem.

An unresolved secondary affects the observed parameters

of a star in different ways depending on the mass ratio (q =

m2/m1 ≤ 1) of the components and their evolutionary sta-

tus. On or near the main sequence, a small q means that the

primary completely dominates the light and there will be no

perceptible change in the observational data. For systems with

comparable masses the effects may be quite large, and in the

worst case, when q = 1, the MV of a binary system is 0.75 mag

brighter than the corresponding single star. This usually leads

to a (sometimes considerable) overestimation of the age.

To examine the overall statistical effect of unrecognized bi-

naries on the age determination of a stellar sample we used

the synthetic sample from Sect. 3.7 and added a random sec-

ondary to each of the stars. Two cases were considered for

the mass-ratio distribution: in the first case we assumed a de-

creasing pdf f (q) = 1.5 − q, somewhat similar to the empirical

mass-ratio distribution found by Duquennoy & Mayor (1991)

for field F, G and K dwarfs. In the second (worst-case) sce-

nario every star was given an equal-mass companion. For each

system we calculated the total MV and obtained an effective Teff

from the luminosity-weighted mean of T−4
eff

for the two compo-

nents. New age estimates were then computed for each system

as for a single star.

The middle and right panels in Figs. 8–9 show the results of

the age determinations (using the mode) for the two cases of a

decreasing mass-ratio distribution and equal-mass components.

Figure 10 is a histogram of the shift in the estimated age caused

by the presence of the secondary. As expected, the addition of

secondary components usually causes the ages to be overesti-

mated, but the overall statistical effect is surprisingly small, in

particular for the decreasing mass-ratio distribution (note the

logarithmic scale of Fig. 10!). This can perhaps be attributed to

the fact that most of the stars for which useful ages can be de-

termined are located near the main-sequence turn-off point (cf.

Fig. 6), where the age estimate is relatively insensitive to a shift

in MV . In fact, for the high-precision sample (ǫ ≤ 0.2, Fig. 9,

right panel, and the big dots in Fig. 6) the binarity even tends

to make the ages seem a bit too small. The bisector slope in the

middle and right panels of Fig. 9 is 0.97 and 1.13, respectively.

We conclude that the overall effect of (undetected) bina-

ries in a large stellar sample is rather modest, compared with

the typical statistical uncertainties of isochrone ages, unless

there is a high fraction of equal-mass binaries in the sam-

ple. However, any one single age determination may be very

strongly affected by the duplicity of that star.

4. Comparison with age estimates

from conventional isochrone fitting

In this section we compare the Bayesian method of Sect. 3

with more “conventional” methods, which are based on a direct

comparison of the observed data with theoretical isochrones.

A range of techniques may be used for the isochrone fitting,

from simple visual inspection to highly elaborated automatic

procedures, and we therefore start by describing a typical such

procedure and then discuss how the errors are estimated.

For relevant sections of the HR diagram, stellar ages are

conventionally estimated by some variant of the following pro-

cedure. From the set of isochrones for the ζ most closely

matching the observed [Me/H] (or two isochrone sets bracket-

ing the observed value), the isochrone passing through the ob-

served point (T logeff ,MV ) is found by visual or numerical in-

terpolation, and the corresponding age is assigned to the star. If

two isochrone sets are used to bracket the metallicity, a further

interpolation to the observed [Me/H] is required. The procedure

is a simple practical recipe for computing τ(q). As discussed in

Sect. 3.2, the procedure is formally equivalent to minimizing

the χ2 in Eq. (5) or (under the assumption of Gaussian errors)

to ML estimation. If the fitting is made visually it is sometimes

called “chi-by-eye”.

The age ambiguity resulting from overlapping isochrones

can be resolved on the grounds discussed in Sect. 3.2, viz.,

by selecting the younger isochrone. For stars with solar-

metallicity this occurs roughly for log Teff > 3.8 in a band some

1.5−2 mag above the ZAMS; for low-metallicity stars it occurs

at higher temperatures. (We do not consider here evolutionary

stages on and beyond the giant branch, where the overlapping
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Fig. 7. Estimated ages for the synthetic sample of 2968 single stars (same as in Fig. 5) compared with the true values. From left to right, the

mean, median or mode of the G function was taken as an estimate of the stellar age.

Fig. 8. Estimated ages (using the mode of G) for the synthetic sample of 937 stars with well-defined ages, compared with the true ages. The left

panel is for single stars (same sample as in Fig. 6); for the middle and right panels secondary components have been added with two different

mass-ratio distributions (see Sect. 3.8 for details).

becomes much more severe.) It is thus possible to define a

unique inverse function τ(q). A more tricky question is how

to obtain an estimate of the uncertainty of the resulting age.

4.1. Error estimates: The “step method”

If the uncertainties in the observed data are known, it is possi-

ble to derive the uncertainty in the resulting age by examining

how sensitive it is to changes in the observed data. The method

used by Ng & Bertelli (1998, as described in Lachaume et al.

1999) may be representative: from the observed data point qobs

we take a step of one standard deviation in each direction along

each of the three axes; including the original point this gives

a set of seven points in the three-dimensional data space for

which ages are obtained through isochrone fitting. The mean

value of the age estimates is adopted as the final age, and the

scatter among the ages is taken to be the uncertainty of the

mean value. (If some of the seven points fall outside the re-

gion covered by the isochrones, the resulting age estimate may

be considered less reliable.) We refer to this particular method

as the “step method”. Superficially it looks like a reasonable

method, but actually it severely underestimates the uncertainty,

since only the error along one axis is considered at a time.

The effect is readily demonstrated by considering classical

error propagation based on the linearization

τ(qobs + ∆q) = τ(qobs) + ∆τ ≃ τ(qobs) +

3
∑

i=1

∂τ

∂qi

∆qi. (16)

Assuming uncorrelated, centred errors with standard devia-

tions σi, i.e., 〈∆qi∆q j〉 = δi jσ
2
i
, we have

σ2
τ = 〈∆τ2〉 ≃

n
∑

i=1

(

∂τ

∂qi

)2

σ2
i . (17)

On the other hand, also from Eq. (16), we have for the

seven selected points ∆τ = 0, ±(∂τ/∂q1)σ1, ±(∂τ/∂q2)σ2, and

±(∂τ/∂q3)σ3; their scatter (sample standard deviation) is ex-

actly στ/
√

3. Thus, interpreting this scatter as the uncertainty

of τ underestimates the standard error by a factor
√

3, com-

pared with what is obtained from the classical linear error
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Fig. 9. Same as Fig. 8 but for the subsample with relative uncertainty ǫ ≤ 0.2.

Fig. 10. Histogram of the age error for binary systems, when their ages

are determined from the integrated photometry as for single stars. The

full line is for a decreasing mass-ratio distribution (see text), the dotted

for equal-mass binaries. The bin size is 0.25 Gyr.

propagation formula. (The number 3 comes from the dimen-

sionality of q.) A simple expedient to remedy this effect is to

multiply the computed error by
√

3. We call this the “corrected

step method”.

Other factors may however contribute to making the er-

ror estimate unreliable. The strong non-linearity of τ(q) means

that there is in general a neglected contribution to the variance

of τ from truncated terms in the Taylor expansion Eq. (16).

Moreover, in the parts of the HR diagram where the isochrones

overlap, the required choice of τ(q) among the multiple possi-

ble solutions could statistically lead to an underestimation of

the ages and of their uncertainties.

4.2. Error estimates: The Monte Carlo method

Monte Carlo (MC) simulation (Press et al. 1992) is often

prescribed as a reliable and robust tool for error estima-

tion. Indeed, it should effectively remove much of the diffi-

culties caused by local non-linearity (if not by overlapping

isochrones). In the present context the MC technique can be

used as follows. A large number (N) of hypothetical data points

q = qobs+∆q are generated for independent Gaussian errors∆qi

with the assumed standard deviations σi. An age estimate τ(q)

is computed for each point by isochrone fitting and the sample

standard deviation is adopted as the uncertainty of the mean

estimated age. (Alternatively, confidence intervals can be es-

timated.) In contrast to the step method, errors in all dimen-

sions of the data space are considered simultaneously, and non-

linearities of τ(q) are taken into account because data points

several standard deviations from the observed values are also

included in the statistics. Note that some N ∼ 50 experiments

are required for a 10% precision of the error estimate, and some

5000 experiments if 1% precision is aimed at.

4.3. Numerical examples

To compare the performance of our Bayesian estimation with

the conventional isochrone fitting techniques described above,

we have made extensive numerical simulations for the two rep-

resentative cases illustrated in Fig. 1.

In Case 1 we assume the following true stellar model pa-

rameters: m = 1.34 M⊙, ζ = −0.2, τ = 2.18 Gyr. The cor-

responding true values of the observables are [Me/H] = −0.2,

log Teff = 3.825, MV = 3.0, corresponding to the left point in

Fig. 1. The location of the star near the turn-off point should

make the age determination relatively straightforward.

In Case 2 the true parameters are: m = 1.33M⊙,
ζ = −0.2, τ = 2.85 Gyr, corresponding to [Me/H] = −0.2,

log Teff = 3.800, MV = 3.0. This is a region in the HR dia-

gram (right point in Fig. 1) where isochrone overlap may be a

problem.

For each case we generated 1000 synthetic sets of obser-

vational data with the nominal errors (Sect. 2.5). The actual

locations of the data points in the HR diagram are therefore

scattered about the points indicated in Fig. 1 according to the

error bars. An equal number of synthetic data sets were gener-

ated with half and twice the nominal errors. We then applied the

various age determination methods to each data set. Error esti-

mates were obtained as ±1σ, as described in Sects. 4.1 and 4.2,
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Table 1. Results of numerical experiments comparing age determination methods using the step method, the corrected step method, the

Monte Carlo method, and Bayesian estimation. Each line gives summary statistics from 1000 independent sets of synthetic data generated

with the uncertainties specified in the first three columns. All ages are in Gyr. See Sect. 4.3 for further explanation.

Assumed σ in Median τest, ±median στ, (% within CI), [median absolute deviation]

[Me/H] log Teff MV Step method Corrected Monte Carlo Bayesian

Case 1: True age τtrue = 2.18 Gyr

0.05 0.005 0.05 2.19 ± 0.11 (44%) [0.13] ±0.19 (67%) 2.16 ± 0.20 (71%) [0.13] 2.18+0.18
−0.20

(66%) [0.14]

0.10 0.010 0.10 2.15 ± 0.24 (42%) [0.27] ±0.41 (73%) 2.12 ± 0.51 (75%) [0.32] 2.20+0.36
−0.42

(68%) [0.25]

0.20 0.020 0.20 2.05 ± 0.61 (50%) [0.65] ±1.05 (77%) 2.13 ± 1.01 (70%) [0.68] 2.14+0.63
−0.88

(76%) [0.40]

Case 2: True age τtrue = 2.85 Gyr

0.05 0.005 0.05 2.98 ± 0.13 (48%) [0.23] ±0.22 (72%) 3.10 ± 0.49 (68%) [0.27] 2.83+0.21
−0.14

(72%) [0.09]

0.10 0.010 0.10 3.13 ± 0.44 (41%) [0.46] ±0.76 (64%) 3.17 ± 0.65 (64%) [0.47] 2.76+0.36
−0.27

(71%) [0.21]

0.20 0.020 0.20 3.05 ± 0.66 (44%) [0.69] ±1.14 (70%) 3.21 ± 1.10 (69%) [0.70] 2.60+0.61
−0.52

(70%) [0.37]

while for the Bayesian estimate the 68% CI was computed as

in Sect. 3.6.

Results are summarized in Table 1 in the form of the fol-

lowing statistics:

1. The median3 of the estimated ages, τest. This should ideally

equal the true age, τtrue = 2.18 Gyr (Case 1) or 2.85 Gyr

(Case 2). The deviation from these values is the bias of the

estimator.

2. The median of the error estimate στ (or error limits accord-

ing to the CI), indicating the formal precision of the esti-

mator. In the table this statistic is indicated by a ± sign.

3. The percentage of data points for which the true age falls

within the computed error limits. This number, which ide-

ally should be 68%, is given within parentheses in the table.

It indicates whether the preceding error limits are statisti-

cally realistic.

4. The median of the absolute deviation from the true age,

|τest − τtrue |. This indicates the overall accuracy of the esti-

mator, including bias, and is given in square brackets. For

unbiased Gaussian errors, the median absolute deviation

is 0.675σ.

The results in Table 1 show some interesting trends:

– From the median τest (item 1) we see that the bias is pre-

dominantly negative in Case 1 for all estimators, although

quite small (at most −6%). This is consistent with the gen-

eral bias discussed in Sect. 3.7. In Case 2, however, the

step and MC methods produce a positive bias, generally in-

creasing with the observational errors (up to +13%), while

the Bayesian estimate goes in the opposite direction (up

to −9%).

– The percentages in parentheses (item 3) show that all the er-

ror estimates are fairly realistic, except for the uncorrected

3 We consistently use the median for the statistics, as it is much

more robust than the mean value for the sometimes extremely skew

error distributions. The median also has the important advantage of

being invariant with respect to the arbitrary choice of variable consid-

ered, viz., τ rather than log τ.

step method, which (as expected from Sect. 4.1) severly un-

derestimates the errors.

– The corrected step method and MC method perform about

equally well, but the Bayesian method nearly always gives

smaller formal (item 2) and actual (item 4) errors. In the

limit of vanishing observational errors the three methods

should converge, as they clearly do at least in Case 1.

Although it may be hazardous to draw general conclusions

from such a limited comparison, the results support our con-

tention, based on the theoretical arguments in Sect. 3, that

Bayesian estimation provides a more robust and accurate

method for the determination of stellar ages than conventional

isochrone fitting methods. This appears to be the case espe-

cially when the observational uncertainties are relatively large.

5. Application of the Bayesian age estimator

In Sect. 3 we described a general method to estimate the age of

an individual star from the relative posterior probability den-

sity function G(τ), as well as several tests based on simulated

data. In this section we present results obtained by applying

the method to real data, including a limited comparison with

other age estimates obtained by isochrone fitting. The statisti-

cal combination of G functions is briefly discussed in Sect. 5.2,

where the method is applied to the two open clusters IC 4651

and M 67.

5.1. Ages of individual field stars

5.1.1. The Geneva–Copenhagen survey of the Solar

neighbourhood

The most extensive application to date of our method has been

for the Geneva–Copenhagen survey of F and G dwarfs in the

Solar neighbourhood (Nordström et al. 2004). From the to-

tal sample of 16 682 stars, age estimates were obtained for

13 679 stars, of which 11 468 are well-defined according to our

criterion in Sect. 3.6. We refer to that paper for an extensive

discussion of the astrophysical biases that may affect these age
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Fig. 11. A comparison of our age estimates and confidence intervals

with those of Lachaume et al. (1999) for a sample of nearby stars.

Only the stars with well-defined ages from both sources have been

included.

determinations, in addition to the statistical effects addressed

above.

It should be noted that Nordström et al. (2004) found it

necessary to make an empirical adjustment of the temperature

scale for the metal-deficient models ([Fe/H] < −0.3), in order

to obtain agreement with the observed lower main sequence.

No such adjustment has been used in the present paper, which

focuses on the computational techniques.

As an external check, Nordström et al. (2004) compared the

ages derived by the present method with those by Edvardsson

et al. (1993). For the 160 stars in common where our method

gives well-defined ages according to the criterion in Sect. 3.6,

the ages agree well for the oldest stars (∼10 Gyr), while for the

younger stars Edvardsson et al. (1993) obtained slightly higher

ages (by about 20% at 2 Gyr). The scatter about the 1:1 line

in a log τour–log τEdv93 diagram (see their Fig. 8) is 0.12 dex

(≃32%), scarcely more than the ±0.1 dex uncertainty estimated

by Edvardsson et al. (1993) for their data. Given the many im-

provements in stellar models, calibrations and distances since

the earlier study, the overall agreement is quite gratifying.

5.1.2. Comparison with Lachaume et al. (1999)

Apart from the limited comparison with Edvardsson et al.

(1993) described above we have made a more detailed com-

parison for the small sample of nearby stars in Table A1 of

Lachaume et al. (1999). These authors explicitly give for each

star the observational data with assumed uncertainties, as well

as the resulting ages and confidence intervals, which makes a

comparison relatively straightforward. Adopting their observa-

tional data we find that 44 stars have ages that are well-defined

in both sets. The overall agreement is very good (Fig. 11) in

spite of the fact that Lachaume et al. (1999) used the older

isochrone set by Bertelli et al. (1994). An unweighted linear

regression gives

log τLach99 = (−0.027 ± 0.005) + (1.002 ± 0.009) logτour (18)

(where τ is in Gyr), with a scatter of 0.028 dex (7%). Thus our

ages are in the mean about 6% higher than those of Lachaume

et al. In addition, we find that our confidence intervals are sys-

tematically about 10% narrower. Both differences can perhaps

be explained by the same effect as was seen for the Monte Carlo

estimator in Case 1 of Table 1, namely a tendency to underes-

timate the age and overestimate the uncertainty. Equation (2)

in Lachaume et al. (1999) is clearly the analytical equivalent

of the Monte Carlo method of Sect. 4.2, which should there-

fore give comparable results. However, the situation is probably

more complex, as illustrated by Case 2 in our Table 1, where

the biases go in the opposite direction. In any case the very

small scatter shows that the two methods give quite similar re-

sults for this particular sample with rather small observational

uncertainties. This is consistent with the results in Sect. 4.3.

5.2. Ages of open clusters: The combination

of G functions

In an open cluster the population is coeval and the age estimates

of the individual member stars should all be consistent with a

single age. This can be used to test the consistency of age esti-

mates obtained with our method. However, the prior informa-

tion that the stars are coeval can be used much more powerfully

in the Bayesian context, namely to estimate the age of the clus-

ter. Recall that the relative posterior probability density for the

age of an individual star (i) is given by its G function Gi(τ).

Assuming that the n stars in a cluster are all single, members of

the cluster, and coeval, and that their observational data are in-

dependent, it follows that the relative posterior probability den-

sity for the cluster age is simply given by the product
∏

i Gi(τ).

The cluster age and a confidence interval can be derived from

this product as for an individual star.

Determining the age of a cluster can be regarded as a spe-

cial case of the more general (and much more difficult) problem

to determine the star formation history of a stellar population.

In the same sense, taking the product of the G functions solves a

special case of the general integral equation for the SFR as for-

mulated e.g. in Hernandez et al. (2000). While the more general

problem will be addressed in a future paper, we here apply the

simple multiplication method to determine the ages of IC 4651

and M 67, using data from the literature. In these applications

we neglect differential reddening (which is small in these clus-

ters) as well as the radial extent of the clusters (contributing
<∼0.03 mag to the scatter in MV ), i.e., we assume that the same

reddening and distance modulus apply to all stars in the cluster.

5.2.1. The age of the open cluster IC 4651

Meibom (2000) and Meibom et al. (2002) studied the

intermediate-age open cluster IC 4651 in great detail, provid-

ing Strömgren photometry from which individual estimates
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Fig. 12. HR diagram for 23 stars in IC 4651, together with isochrones

at [Me/H] = +0.1 for the best-fitting age 1.56 Gyr (solid line), and

for 1.3 and 1.9 Gyr (dashed). The symbols are: filled circles – well-

defined ages with ǫ ≤ 0.2 (as in panel c of Fig. 13); open circles –

well-defined ages with ǫ > 0.2 (panel b); crosses – not well-defined

ages (panel a).

of log Teff and [Me/H] can be obtained, as well as diagnos-

tics for duplicity [P(χ2)] and membership [P(RV)] based on

multi-epoch radial velocities. From Table 1 in Meibom et al.

(2002) we found 33 stars with P(χ2) ≥ 0.1 and P(RV) ≥ 0.1,

which sample should therefore be relatively clean from (spec-

troscopic) binaries and non-members. Using the calibrations in

Nordström et al. (2004), estimates of log Teff and [Me/H] could

be obtained for 23 of these stars (Holmberg, private comm.), as-

suming a reddening of Eb−y = 0.071 mag (Meibom et al. 2002).

The mean metallicity was found to be [Me/H] = 0.11 ± 0.05,

in good agreement with previous determinations, e.g., Meibom

et al. (2002) who find [Fe/H] = 0.13 ± 0.05.

Meibom et al. (2002) also found a true distance modulus

of 10.03 mag to IC 4651 based on a direct fit to the Hyades

main sequence. In comparison with theoretical isochrones they

found however a better fit for an assumed distance modulus of

9.72−9.80 mag. For calculating MV we assume a true distance

modulus of 9.80 (corresponding to an apparent distance mod-

ulus of 10.105 mag), which we find gives more consistent age

estimates than using 10.03 mag. Figure 12 shows the resulting

HR diagram for the final sample of 23 stars.

Figure 13 shows the G functions for the 23 probable sin-

gle members of IC 4651. The dashed line shows the threshold

Glim = 0.6 used to compute confidence intervals. The curves

are grouped in panels (a)–(c) according to whether the ages are

well-defined and their relative precisions ǫ. In the HR diagram

these are marked by different symbols. The mean value of the

10 best age estimates in panel (c) is 1.70 ± 0.15 Gyr, identical

to the best estimate for the age of IC 4651 by Meibom et al.

(2002).
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Fig. 13. Panels a)–c) show the G functions for the 23 stars in Fig. 12,

subdivided according to the quality of the age estimates: a) – not well-

defined; b) – well-defined with ǫ > 0.2; c) – well-defined with ǫ ≤ 0.2.

Panel d) shows the product of all 23 G functions, normalized to G = 1

at the mode. This combined G function gives an estimated cluster age

of 1.56 ± 0.03 Gyr.

The fourth panel (d) in Fig. 13 shows the re-normalized

product of all 23 G functions. As previously explained, this

product can under certain assumptions be interpreted as the

posterior pdf of the cluster age, and leads to an estimated clus-

ter age of 1.56±0.03 Gyr. However, this result (and in particular

the very small error limits) should not be over-interpreted – for

example, the assumption of independent astrophysical data for

the different stars is clearly violated since we have to assume

a common distance modulus for the cluster. Of the 23 stars,

13 (56%) have confidence intervals for their individual age esti-

mates that include the value 1.56 Gyr, while the expected num-

ber is 68% or 16 ± 4. The individual age estimates are thus

consistent with the derived cluster age.

In Fig. 12 we also plot the isochrones for 1.30, 1.56 and

1.90 Gyr, corresponding to a logarithmic uncertainty interval

of ǫ = 0.2 around the estimated cluster age. As expected, the

10 stars with the best individual age estimates (filled circles)

are mostly located around the turn-off point. However, one of

them (MEI 9745) is conspicuously located ≃0.7 mag above the

main sequence (a binary?), resulting in the highest individual

age estimate (2.6 ± 0.5 Gyr) in the sub-sample. Eliminating

this star gives a mean estimated age of 1.60 ± 0.12 Gyr for the

remaining 9 stars. The situation illustrates a potential source

of bias when combining individual age estimates, namely that

the stars with the most precise age estimates tend to be located

above the main sequence (cf. Fig. 6) and therefore often asso-

ciated with estimated ages that are too high (viz., if they are

scattered from an actual location closer to the main sequence).

The use of G functions helps to eliminate this effect: for in-

stance, in Fig. 13 the combined G function rigorously takes

into account also the four stars where the isochrones only give

an upper limit to the age (panel (a) and the crosses in Fig. 12).
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Fig. 14. HR diagram for 412 stars in the M 67 region, together with

isochrones at [Me/H] = 0.02 for 4.05 Gyr (solid line), 3.4 and 4.9 Gyr

(dashed line). The symbols are: filled circles – well-defined ages with

ǫ ≤ 0.2 (as in panel c of Fig. 15); open circles – well-defined ages with

ǫ > 0.2 (panel b); crosses – not well-defined ages (panel a); small dots

– no solution by Eq. (12).

5.2.2. The age of the open cluster M 67

The data used for IC 4651 are unusually clean, and could there-

fore be considered an “easy” test case. A more challenging test

is offered by M 67. This old (∼4 Gyr), well-studied open cluster

(see Sandquist 2004, and references therein) is known to have

a large binary population as well as a number of blue strag-

glers (Fan et al. 1996), and is at an age where the morphology

of the isochrones near the turn-off point is particularly com-

plex and sensitive to model assumptions (e.g., convective core

overshooting).

Since the Padova isochrones give MI (Cousins) for each

theoretical model, we chose to compute the G functions di-

rectly with q2 = (V−I)0 replacing q2 = log Teff in Eq. (5), rather

than transforming colour indices to effective temperature. We

took V and V − I for 412 stars (some of them probably field

stars) from Laugalys et al. (2004), which appear to be the most

accurate such data currently available for M 67. (That study

gives V in the Vilnius system, which is equivalent to Johnson V

for the range of colours considered; see Straižys 1973.) The

V − I are on the same scale as in Sandquist (2004), and we

adopt as in that paper the metallicity [Fe/H] = 0.02, total inter-

stellar extinction AV = 0.12, and colour excess EV−I = 0.05.

Following Sandquist (see his Fig. 14) we also apply an empir-

ical correction of −0.05 mag to the synthetic (V − I)0 in the

Padova isochrones. In order to get a good fit to the main se-

quence a few magnitudes below the turn-off point, a distance

modulus of (m − M)0 = 9.48 mag was assumed. This is in-

termediate between the value 9.42 given by Laugalys et al.

(2004) and 9.60 from Sandquist (2004), but consistent with
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Fig. 15. A random selection of some 50 G functions for the M 67 data,

subdivided according to the quality of the age estimates as in Fig. 13.

The combined G function in panel (d) gives an estimated cluster age

of 4.05 ± 0.05 Gyr.

both. Figure 14 shows the HR diagram derived with these as-

sumptions.

G functions could be computed for 364 of the 412 stars

(assuming standard errors of 0.1 dex, 0.01 mag and 0.1 mag

in [Me/H], (V − I)0 and MV , respectively); a representative se-

lection of them is shown in Fig. 15. A combined G function was

computed by multiplying together the 364 individual G func-

tions. To avoid numerical underflow and stabilize the result a

constant 0.01 was added to each G function before multiplica-

tion4. The resulting combined G function, shown in panel (d)

of Fig. 15, is very sharp and corresponds to an age estimate

of 4.05 ± 0.05 Gyr, in good agreement with Fan et al. (1996),

who find 4.0 ± 0.5 Gyr and Sandquist (2004), who also find an

age around 4 Gyr. The very small formal error in our estimate

naturally does not include the much bigger uncertainties from

the colour transformation and intrinsic model errors, but illus-

trates the statistical power of the method. In contrast, many of

the individual age estimates are too small, mainly for the blue

straggler population, and as a result the mean value of the indi-

vidual high-precision (ǫ < 0.2) age estimates is only 3.3 Gyr.

Clearly the combined G function provides an extremely robust

estimate of the cluster age even in the presence of all these

complications.

6. Discussion

6.1. The Bayesian method in relation to some other

methods described in the literature

There are age determination methods described in the litera-

ture that more or less resemble our method using G functions.

Here, we briefly discuss how our method differs from these. We

do not consider the several variants of isochrone interpolation

4 Such an ad hoc procedure can be theoretically motivated by the

finite probability (of order ∼0.01) that the star is a non-member or

outlier in some other sense. We have verified that the resulting estimate

of the cluster age is quite insensitive to the value of this constant.

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20042185

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20042185


B. R. Jørgensen and L. Lindegren: Determination of stellar ages from isochrones 141

(including χ2 fitting, Sect. 4) used, e.g., by Twarog (1980),

Edvardsson et al. (1993), Pols et al. (1997), Ng & Bertelli

(1998), Chen et al. (2000), Liu & Chaboyer (2000), Ibukiyama

& Arimoto (2002), and Lastennet & Valls-Gabaud (2002).

The Lachaume et al. (1999) method is in principle equiva-

lent to the Monte Carlo (MC) described in Sect. 2.5. Lachaume

et al. (1999) assume, as we have done, uncorrelated Gaussian

errors in the three observed variables Teff, MV , and [Fe/H],

from which they derive the probability density of the age, P(t),

somewhat similar to our G function.

Note, however, that their Eq. (2) gives P(t) as an inte-

gral over the data space (MV , Teff), neglecting the uncertainty

in [Fe/H], whereas our Eq. (10) gives G as an integral over the

parameter space (ζ,m). The difference is crucial, because it is

only in parameter space that the prior densities (in this case

of m and ζ) can be properly defined, due to the non-unique

inverse transformation from data to parameters. The presence

of the (non-unique) function t(Teff ,MV ) in their Eq. (2) clearly

suggests a problem with their choice of integration variables.

Consequently, theirP(t) does not take into account the different

prior probabilities of finding a star at different locations in the

HR diagram as a result of the varying rate of stellar evolution.

The method used by Reddy et al. (2003) to obtain stellar

ages superficially resembles that of Lachaume et al. (1999), al-

though they use log g as one of the observables instead of MV .

However, in contrast to Lachaume et al. they perform the in-

tegration in the parameter space (Mi, Z), where Mi (our m) is

the initial mass (their Eq. (4)). They consequently avoid the

non-uniqueness problem and effectively compute the posterior

probability density of the age assuming flat priors for Mi and Z.

However, in this calculation they only include the observed

metallicity by selecting insochrones with a metallicity within

0.25 dex of the observed value.

Hernandez et al. (1999, 2000) developed a method to re-

construct the star formation history through inversion of the

HR diagram. This is a related, but from a statistical viewpoint

quite separate problem from the determination of individual

isochrone ages, and one that we will consider in a forthcom-

ing paper. However, in their second paper, the authors intro-

duce an expression (their Eq. (2)) involving a function Gi(t)

of the age (t) of each observed star (i). This is equivalent to

our Eq. (10), except that the latter is generalized to include

any number of observables (our Eqs. (4) and (5)). Although

Hernandez et al. (2000) do not discuss the determination of in-

dividual stellar ages, the possibility is clearly implied by their

observation that Gi(t) “represents the probability that a given

star, i, was actually formed at time t with any mass”, and con-

sequently we have adopted our “G” notation from that paper.

Pont & Eyer (2004) describe a Bayesian approach to the

age determination problem which has much in common with

our method. Their formulation leads to an expression for the

posterior pdf of the age, their Eq. (4), which (apart from minor

differences in the choice of variables) differs from our Eqs. (9)

and (10) only in their inclusion of the Jacobian J(X) under

the double integral. They motivate this factor by the change of

variables in the likelihood function from the observables to the

model parameters. We believe that is incorrect, since the like-

lihood is by definition a function of the model parameters (for

given observed data). Nevertheless, our computation of poste-

rior densities (or G functions) agrees well with that of Pont &

Eyer for selected stars from the Edvardsson et al. (1993) sam-

ple (their Fig. 8), indicating that their Monte Carlo evaluation

leads to results that are practically equivalent to ours. Pont &

Eyer (2004) do not explicitly discuss the choice of age estimate

or the assignment of confidence intervals based on the posterior

density.

6.2. Limitations of the method

The calculation of G functions, on which the age estimation

rests, depends on a complex modelling of the observations in

several steps, each with its associated theoretical and practi-

cal uncertainties. In a Bayesian sense, the adoption of a spe-

cific grid of theoretical models – such as the Padova isochrones

used in this paper – corresponds to the a priori choice of a par-

ticular hypothesis about the nature of the observed stars. We

attempt to obtain age determinations that are as good as possi-

ble within the framework of that particular hypothesis, but it is

clear that the use of an alternative set of physical assumptions

might have led to significantly different age estimates. We have

chosen to neglect most of these problems in order to focus on

the methodology. In applications to real observations, however,

several such issues require more careful discussion than has

been possible in this paper. Specifically for the application to

the Geneva–Copenhagen survey (Sect. 5.1.1), we refer to the

extensive discussion in Nordström et al. (2004). Here, we shall

only add some general remarks concerning the various limita-

tions of the method.

In spite of very considerable progress in the theoretical

modelling of stellar interiors and evolution, standard model

grids still employ highly simplified physical descriptions of the

transport processes (convection, overshooting, diffusion, etc.)

and mass loss, and suffer from some uncertainties in element

abundances. Although the physical simplifications are often

masked by good formal fits to the observed data obtained by

adjusting ad hoc model parameters (such as the mixing-length

parameter), the uncertainties in the underlying physics remain.

For example, although the importance of convective core over-

shooting for the evolution of stars with masses >∼ 1.2M⊙ has

been known for a long time (e.g., Maeder & Mermillion 1981),

the extent of the overshooting, e.g. as function of mass, is still

quite uncertain (VandenBerg & Stetson 2004). Diffusive pro-

cesses, which affect both the evolutionary course and the sur-

face abundances, have only recently become possible to treat

in a self-consistent way (Michaud et al. 2004) and are not yet

included in standard model grids. On the upper main sequence,

mass loss and rotation add to the uncertainties; for example,

accounting for the rotation of O- and early B-type stars could

lead to ages larger by about 25% compared with the use of non-

rotating models (Maeder & Meynet 2000).

As a result of the physical inadequacies normally present

even in solar-type models, Young & Arnett (2005) estimate

that the predictive accuracy of such models is limited to some

5−10% in the main physical parameters (luminosity, radius and

effective temperature) of stars other than the Sun. In terms of
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the position of the main sequence turn-off point, such errors in

the effective temperature would translate into (systematic) age

errors of order 25−100%. Of course, the situation is not quite

so bad for stars around 1 M⊙ and solar metallicity, since all

models are carefully tuned to agree with the accurately known

parameters of the Sun, including its age. However, for increas-

ingly non-solar masses and metallicities, or more evolved stars,

part of these uncertainties and systematic errors certainly come

into play.

In a similar fashion, inadequacies in classical (1D, LTE)

model atmosphere calculations (which provide both the outer

boundary conditions for stellar interior models and the neces-

sary transformations from theoretical to observable quantities

such as colour indices) may be masked by semi-empirical cor-

rections to the theoretical transformations or the use of em-

pirical colour–temperature relations. The next generation of

stellar atmosphere models (see, for example, Asplund 2003;

Hauschildt 2003, and references therein), will no doubt elimi-

nate some of these uncertainties, but do not yet cover more than

a limited range of the stellar parameters.

In the present context, the most embarrassing discrepancies

between theory and observations concern the location of the

subdwarf sequence (cf. Sect. 5.1.1) and the location and slope

of the red giant branch (cf. Fig. 14). In Nordström et al. (2004)

the theoretical isochrones for subdwarfs were corrected by up

to δTeff = −0.022 (at [Fe/H] = −1). If left uncorrected, this

would translate into an over-estimation of the ages (in terms of

the location of the turn-off point) by up to 50%. By empirically

correcting the temperature scale, one can hope that the result-

ing systematic error in the age determinations is substantially

reduced, but this cannot be further quantified since the reasons

for the discrepancy are largely unknown (Lebreton 2001).

Concerning the location of the red giant branch (RGB), dif-

ferent models predict differences in log Teff (for the same age,

metallicity and luminosity) by up to ≃0.015 dex, while uncer-

tainties in the transformation to V − I (for example) may be

∼0.05 mag (Salaris 2002); both correspond to an error in age

by up to a factor 2−3 in either direction. Given these uncertain-

ties, and the sensitivity of its location to metallicity, the RGB

is mainly useful for relative age determination.

Of the many observational effects that influence the age de-

terminations, in addition to those discussed in previous sec-

tions, we briefly mention photometric variability and inter-

stellar extinction. Unless repeated measurements are taken,

the photometric data on a variable star may not be represen-

tative of its average properties. A total amplitude exceeding

0.1 mag may add significant uncertainty to the age determi-

nation, especially if the different colour bands are not observed

simultaneously. Based on the survey part of the Hipparcos and

Tycho Catalogues (ESA 1997), we find that about 5% of the

bright field stars are variable with a peak-to-valley amplitude

>0.1 mag; about half of these are very red giants (V − I >∼ 2.0)

for which reliable ages cannot be estimated anyway. Of the re-

maining, more than half are main-sequence or sub-giant stars

with V − I <∼ 0.7, most relevant for age determination. Thus of

the order 2% of the stars may be affected, including early-type

variables (V − I <∼ 0.0), δ Scuti stars (V − I ≃ 0.30−0.45) and

eclipsing binaries (any V − I).

Interstellar reddening has a very direct impact on the ages

determined for stars near the turn-off point. Moreover, from

photometry alone it is difficult to determine an accurate redden-

ing for individual late-type stars because of its near-degeneracy

with effective temperature. Roughly speaking, an error in V − I

of 0.01 mag corresponds to an age error of the order of 10%.

In clusters, differential reddening and a non-standard extinction

law (e.g., R greater than the standard value 3.1) may contribute

to uncertainties in both colour and absolute magnitude.

In summary, several uncertainties of the theoretical models

and calibrations, as well as observational effects, limit the sys-

tematic accuracy of the age determination, in addition to the

statistical uncertainties and biases discussed in previous sec-

tions. Except for stars that are close to “solar-type” in all its

main parameters, systematic errors caused by model inadequa-

cies can easily reach 10% and more.

Other limitations of the present age determination method

depend on specific implementation details that could, at least in

principle, easily be modified. For example, as was pointed out

in Sect. 2.1, the use of ([Me/H], log Teff, MV ) as “observables”

is to some extent arbitrary and mainly motivated by present

uncertainties in the colour transformations. Given a better un-

derstanding of the latter, which may be achieved with the new

generation of stellar atmosphere models, it will be straightfor-

ward to modify the method to use instead the observed colour

indices in any suitable multi-colour system. This will, in addi-

tion, give a better handle on the correlations among the observ-

ables, which can then be explicitly introduced in the likelihood

function by generalization of Eqs. (4) and (5). In the meantime,

the use of different colour systems may help to quantify the sys-

tematic errors introduced by current model inadequacies, since

a correct model should of course give consistent age determi-

nations in the different systems.

Another limitation of the present implementation is the

range of stellar parameters and evolutionary stages covered

by the Padova isochrones. This can be overcome by the use

of other (existing or future) data sets; in principle the modifi-

cation is straightforward but in practice each set has its own

particularities which require a separate interface to be coded.

Among the several possible extensions, the inclusion of an ad-

ditional parameter for the α-element enhancement is very de-

sirable for a better treatment of metal-deficient stars. To cope

with young populations, it may be desirable to include the pre-

main-sequence phase (the Padova isochrones start at the zero-

age main sequence). These limitations are not important for the

applications discussed in this paper, but in a future implementa-

tion the incorporation of, e.g., the Y2 isochrones (Yi et al. 2003)

would add that flexibility to the method.

7. Conclusions

Conventional methods to determine stellar ages by isochrone

interpolation have a number of weaknesses, most of them re-

lated to the strongly non-linear mapping from stellar model pa-

rameters (including age) to the observable data, and sometimes

manifested in severely underestimated (or overestimated) er-

ror limits. Our alternative approach, founded on Bayesian tech-

niques, avoids or at least takes these weaknesses into account
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by systematically exploring the relevant regions of parameter

space. In practical terms it leads to the calculation of a G func-

tion summarizing the posterior knowledge of an individual stel-

lar age, from which age estimates and confidence intervals can

be derived.

While undetected duplicity may lead to drastically wrong

ages for individual objects, we have found that the statistical

effects of binaries are rather modest, compared with the many

other uncertainties of the age determination, when considering

a stellar sample with a realistic binary frequency and mass ratio

distribution.

Current and planned large-scale observational programmes

in galactic astrophysics, such as the Gaia mission (Perryman

et al. 2001), require highly automated, efficient and robust

methods to classify and characterize large samples of stars, in-

cluding the provision of age estimates. A main conclusion from

the present analysis is that the complex and highly non-linear

morphology of isochrones makes it difficult to assign unique

age estimates, or even to define reasonable confidence inter-

vals, for given observational data except in the most favourable

cases and small observational errors. Moreover, selecting stars

based on the inferred quality of the age estimates will introduce

strong biases towards the more “favourable” age intervals.

The G functions are useful to characterize the age informa-

tion independent of such considerations, and moreover provide

a starting point for estimating the statistical properties of stel-

lar samples, such as the history of star formation rate. Simple

applications are given in Sect. 5.2, where the ages of two open

clusters are robustly derived by combining the G functions for

the individual stars. In a subsequent paper we explore a method

to derive more generally the star formation rate of a population

from the G functions of a stellar sample.
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