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Abstract. The study investigates the sources of fine organic

aerosol (OA) in the boreal forest, based on measurements in-

cluding both filter sampling (PM1) and online methods and

carried out during a one-month campaign held in Hyytiälä,

Finland, in spring 2007. Two aerosol mass spectrometers

(Q-AMS, ToF-AMS) were employed to measure on-line con-

centrations of major non-refractory aerosol species, while the

water extracts of the filter samples were analyzed by nuclear

magnetic resonance (NMR) spectroscopy for organic func-

tional group characterization of the polar organic fraction of

the aerosol. AMS and NMR spectra were processed sepa-

rately by non-negative factorization algorithms, in order to

apportion the main components underlying the submicrome-

ter organic aerosol composition and depict them in terms of

both mass fragmentation patterns and functional group com-

positions.

The NMR results supported the AMS speciation of oxi-

dized organic aerosol (OOA) into two main fractions, which

could be generally labelled as more and less oxidized organ-

ics. The more oxidized component was characterized by a

mass spectrum dominated by the m/z 44 peak, and in parallel

by a NMR spectrum showing aromatic and aliphatic back-

bones highly substituted with oxygenated functional groups

(carbonyls/carboxyls and hydroxyls). Such component, con-

tributing on average 50 % of the OA mass throughout the

observing period, was associated with pollution outbreaks

from the Central Europe. The less oxidized component was

enhanced in concomitance with air masses originating from

the North-to-West sector, in agreement with previous investi-

gations conducted at this site. NMR factor analysis was able

to separate two distinct components under the less oxidized

fraction of OA. One of these NMR-factors was associated

with the formation of terrestrial biogenic secondary organic

aerosol (BSOA), based on the comparison with spectral pro-

files obtained from laboratory experiments of terpenes photo-

oxidation. The second NMR factor associated with western

air masses was linked to biogenic marine sources, and was

enriched in low-molecular weight aliphatic amines. Such

findings provide evidence of at least two independent sources

originating biogenic organic aerosols in Hyytiälä by oxida-

tion and condensation mechanisms: reactive terpenes emit-

ted by the boreal forest and compounds of marine origin,

with the latter relatively more important when predominantly

polar air masses reach the site.

This study is an example of how spectroscopic techniques,

such as proton NMR, can add functional group specificity for

certain chemical features (like aromatics) of OA with respect

to AMS. They can therefore be profitably exploited to com-

plement aerosol mass spectrometric measurements in organic

source apportionment studies.
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1 Introduction

Atmospheric aerosol particles directly impact air quality, vis-

ibility and the radiation balance of the Earth, which in turn

contributes to regulating the climate system on both regional

and global scales (Ravishankara, 2005; IPCC, 2007). Since

organic compounds constitute a large fraction of submicrom-

eter particles mass on the global scale, up to 90 % (Kanaki-

dou et al., 2005; Zhang et al., 2007), their accurate quan-

tification and source apportionment are necessary in order to

determine their role in the above environmental issues and

define efficient abatement strategies.

Secondary organic aerosols (SOA), formed by gas-to-

particle conversion of oxidized vapors, and other oxygenated

organic aerosols formed by chemical ageing of existing par-

ticles (Fuzzi et al., 2006), are expected to contribute to a

large fraction of total organic particulate mass outside ur-

ban areas (Baltensperger et al., 2005; Lanz et al., 2007).

Nevertheless, current estimates of global SOA production

remain inaccurate. They vary by over 2 orders of magni-

tude, because they are not well constrained by organic source

apportionment studies (Simpson et al., 2007). The impor-

tance of biogenic sources is thought to be significant, given

that global emissions of biogenic volatile organic compounds

(BVOCs) are up to ten times greater than those from anthro-

pogenic sources (Calvert, 2002; Atkinson and Arey, 2003;

Guenther et al., 1995). It is estimated that biogenic volatile

organic compound (BVOC) oxidation represents the largest

SOA global source, ranging from 12 to 70 Tg yr−1 (Hallquist

et al., 2009).

Combined experimental and modelling studies have inves-

tigated the formation of SOA from the photo-oxidation of

several simple VOCs, such as alkyl-benzenes and terpenoids,

obtaining a considerable amount of data for controlled (lab-

oratory) conditions (Paulot et al., 2009; Rickard et al., 2009;

Cao et al., 2008; Ng et al., 2007; Song et al., 2007; Johnson et

al., 2004). The evaluation of SOA formation mechanisms in

the field remains challenging because of multiple contribut-

ing sources, variable oxidant concentrations and composi-

tion, and the contribution of background gases and aerosols

(De Gouw and Jimenez, 2009).

The elucidation of SOA chemical composition in ambi-

ent air, believed to encompass several thousands of indi-

vidual compounds (Goldstein and Galbally, 2007), repre-

sents a major challenge for state-of-the-art analytical tech-

niques. The recovery of gas-chromatographic/mass spec-

trometric (GC/MS) techniques with respect to total aerosol

organic carbon (OC) is normally below 15 % (Cahill et

al., 2006). Hence, organic source apportionment methods

based on GC/MS techniques rely on the existence of source-

specific molecular markers that are stable under atmospheric

conditions (Schauer et al., 1996; Claeys et al., 2004). How-

ever, the actual stability of important molecular markers,

such as levoglucosan, has been questioned by recent obser-

vations (Capes et al., 2008).

An alternative approach is based on the integral chemi-

cal features of OC (e.g. mass fragments, functional groups,

elemental ratios, isotopic ratios, ions, etc.) rather than on

individual species. Such a bulk approach has been pro-

posed by using Fourier transform infrared (FTIR) (Russell

et al., 2011) and proton nuclear magnetic resonance (1H-

NMR) spectroscopies (Decesari et al., 2007, 2011). Most

widespread applications exploit aerosol mass spectrometry

(AMS) coupled with multivariate statistical analysis meth-

ods for the decomposition of the mass spectra timeline into

contributions of “factors”, which are considered as proxies

for chemical classes of organic compounds sharing common

formation processes. Several multivariate statistical analy-

sis methods have been applied to deconvolve AMS spectra

of ambient organic particles into a few major components,

e.g. multi component analysis (MCA) (Zhang et al., 2005,

2007), and positive matrix factorization (PMF) (Lanz et al.,

2007; Ulbrich et al., 2009; Paatero et al., 1994). The most

commonly identified PMF-AMS factors have been named

hydrocarbon-like organic aerosol (HOA) and oxygenated or-

ganic aerosol (OOA), and are thought to be strongly linked to

primary and secondary organic aerosol (POA and SOA), re-

spectively. In some environments, OOA are further split into

different types, including a more oxidized type, or OOA1,

and a less oxidized one, OOA2, also called low-volatility

and semivolatile oxidized organic aerosols, LV-OOA and

SV-OOA, on the basis of parallel measurements of particle

volatility and chemical composition (Jimenez et al., 2009).

Even if important insights on OA composition have been

obtained so far, they are often method-dependent, i.e. af-

fected by the sensitivity of the employed methodology to spe-

cific chemical features of aerosol OC. Since each technique

has its own strengths and weaknesses, a complementary ap-

proach is highly recommended.

The present manuscript explores the variability of organic

aerosol composition during an intensive EUCAARI (Kul-

mala et al., 2009; Kerminen et al., 2010) field study held in

spring 2007 in Hyytiälä (Finland), employing 1H-NMR and

AMS characterization methods. The NMR analysis comple-

ments the AMS characterization by providing information

on the functionalities, which are not well speciated by the

AMS. On the other hand, AMS permits OA to be analysed

at a higher time resolution. For the attribution of spectral

fingerprints to natural and anthropogenic sources, use was

made of data acquired during reaction chamber experiments

performed in the SAPHIR facility, Jülich.

2 Experimental

Submicrometer aerosol particles were sampled during a

one-month campaign in spring 2007 at the Finnish Sta-

tion for Measuring Forest Ecosystem-Atmosphere Rela-

tions (SMEAR II, Hari and Kulmala, 2005; http://www.

atm.helsinki.fi/SMEAR/) located in Hyytiälä (61◦51′ N,
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24◦17′ E, 181 m a.s.l.). This forestry station is located in the

middle of a more than 40-yr old Scots pine stand (Pinus

Sylvestris L.), which homogeneously surrounds the site for

several hundreds meters. Tampere is the largest neighbour-

ing city and is situated about 60 km S–SW. Measurements

were carried out from 27 March to 17 May 2007. However,

the present work focuses on the collection period of PM1 fil-

ter samples analyzed by 1H-NMR spectroscopy, i.e. the days

from 29 March to 19 April.

2.1 Aerosol measurements

Atmospheric particles were sampled by a suite of co-located

online instruments throughout the campaign. A twin Dif-

ferential Mobility Particle Sizer (DMPS) continuously mon-

itored the size distribution of submicrometer aerosol parti-

cles and its evolution with a 10 min time resolution (Aalto

et al., 2001). Real-time measurements of the concentra-

tions of non-refractory PM1 aerosol organic matter and inor-

ganic ions including sulphate, nitrate, ammonium and chlo-

ride were performed by two aerosol mass spectrometers run-

ning in parallel: (a) an Aerodyne Quadrupole Aerosol Mass

Spectrometer (Q-AMS), and (b) a High Resolution Time-

of-Flight Aerosol Mass Spectrometer (ToF-AMS). A thor-

ough description of the instruments and associated calibra-

tion and operation procedures is provided elsewhere (Jayne

et al., 2000; Allan et al., 2003; Jimenez et al., 2003; Alfarra et

al., 2006; De Carlo et al., 2006; Canagaratna et al., 2007). A

collection efficiency of 0.5 was used, based on the compar-

ison with DMPS data and on previous experience with the

AMS ambient and laboratory works (Matthew et al., 2008).

Since at the beginning of the campaign, the ToF-AMS suf-

fered from some technical problems only the Q-AMS data

are used here for the absolute concentrations. However, be-

cause of the higher spectral resolution, the ToF-AMS pro-

vided useful data for the interpretation of the presented data

set.

The Q-AMS was operated by alternating between mass

spectrum (MS) and particle time of flight (pTOF) modes

(Jimenez et al., 2003) until the 4 April, and then it was en-

abled to performed also particle flux measurements (Nemitz

et al., 2008). In practice this meant that 30 min of every hour

was spent on flux measurements, and during the remaining

30 min it was alternating between MS, pTOF and jump mass

spectrum (JMS) modes (Crosier et al., 2007). The Q-AMS

data are presented here as 30 min averages.

The so-obtained Q-AMS total mass concentrations were

converted to volume concentrations using the densities re-

ported by Cross et al. (2007). These values compare fairly

well with the volume concentrations derived from the DMPS

data assuming spherical particles. However, it seems that the

AMS/DMPS ratio changed when the AMS was prepared for

flux measurements, being about 0.4 and 0.8 before and after

the 4 April, respectively. The most likely explanation for this

is a bending of the particle inlet, which may have led to the

loss of particles. Ionization efficiency changes are unlikely,

because the air beam signal did not change during this period.

The concentrations of major ionic species in submicrom-

eter particles were also determined by a Particle-into-Liquid

Sampler (PILS; Metrohm Peak Inc) coupled with two ion

chromatographs (IC; Dionex ICS-2000) and using a virtual

impactor (VI; Loo and Cork, 1988) with a cut-off size of

1.3 µm prior to the PILS-ICs system (Orsini et al., 2003).

A high volume sampler (HiVol) working at 850 l min−1

and configured to remove particles with aerodynamic diame-

ter larger than 1 µm was employed from 29 March to 19 April

to collect fine particles on quartz-fiber filters (12 cm diame-

ter, QMA grade). The quartz-fiber filters were washed with

Milli-Q water and heated for 1 h at 800 ◦C before sampling

to reduce blank values. After sampling, lasting on average

10 h, the collected PM1 filters were stored in a fridge at 4 ◦C

until analysis.

Total Carbon (TC) content was measured directly from

small sub-samples of the HiVol filters (about 2 % of sam-

pled area) by evolved gas analysis. Measurements were per-

formed by a Multi N/C 2100 analyser (Analytik Jena, Ger-

many) equipped with a module for solid samples, which

are exposed to increasing temperature (up to 950 ◦C) in a

pure oxygen carrier gas. Under these conditions all car-

bonaceous matter (organic, carbonate and elemental carbon)

is converted into CO2 (Gelencser et al., 2000) and TC is

measured as total evolved CO2 by a non-dispersive infrared

(NDIR) analyser. The remaining portion of each HiVol fil-

ter was extracted with deionized ultra-pure water (Milli-Q)

in a sonication bath for 1 h and the water extract was filtered

on PTFE membranes (pore size: 0.45 µm) in order to remove

suspended particles. Aliquots of the water extracts were used

to determine the water-soluble organic carbon (WSOC) con-

tent by a Multi N/C 2100 total organic carbon analyser (Ana-

lytik Jena, Germany) equipped with a module for liquid sam-

ples. For each sample, parallel measurements of carbonate

carbon and total organic carbon were carried out: the dif-

ference between total soluble carbon and carbonate carbon

results in WSOC (Rinaldi et al., 2007). The difference be-

tween TC and WSOC and carbonate carbon resulted in the

water-insoluble carbon (WINC).

The remaining aliquots of the water extracts were dried un-

der vacuum and re-dissolved in deuterium oxide (D2O) for

functional group characterization by proton-Nuclear Mag-

netic Resonance (1H-NMR) spectroscopy (Decesari et al.,

2000). The 1H-NMR spectra were acquired at 400 MHz with

a Varian Mercury 400 spectrometer in 5 mm probes. Sodium

3-trimethylsilyl-(2,2,3,3-d4) propionate (TSP-d4) was preva-

lently used as referred internal standard, adding 50 µl of

a TSP-d4 0.05 % (by weight) solution in D2O (1.5 µmol H

belonging to the standard in the probe). In some cases,

methanol (MeOH) was used as internal standard (0.5 µmol H)

instead of TSP-d4. 1H-NMR spectroscopy in protic solvents

provides the speciation of hydrogen atoms bound to carbon

atoms. On the basis of the range of frequency shifts (the

www.atmos-chem-phys.net/12/941/2012/ Atmos. Chem. Phys., 12, 941–959, 2012
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chemical shift, ppm) in which the signals occur, they can

be attributed to different H-C-containing functional groups.

Detection limits for an average sampling volume of 500 m3

were of the order of 3 nmol m−3 for each functional groups.

2.2 Factor analysis of AMS and NMR spectral data sets

The time-dependent organic mass spectra from the Q-AMS

measurements were selected for Positive Matrix Factoriza-

tion (PMF). The analysis was performed applying the PMF

Evaluation Tool (Ulbrich et al., 2009) based on version 4.2 of

PMF2 algorithm (Paatero and Tapper, 1994; Paatero, 1997).

Standard data pre-treatment, applying minimum error crite-

ria and down weighting weak variables and m/z 44 related

peaks, was performed as described in Ulbrich et al. (2009).

The PMF analysis was quite difficult due to noisy data se-

ries, a leak of air signal (m/z 28) to organic m/z 29, an elec-

tronic interference problem manifested as a transient series

of peaks with 10 m/z difference, and relatively low variations

in organic oxidation state, at least compared with the 2005

data series (Raatikainen et al., 2010). Zero-averaged noise

was not in itself a problem, merely decreasing the relative er-

ror (Q/Qexp) to a value much lower than one. An additional

explanation for the low Q/Qexp is that original single ion

noise may have been overestimated. To avoid finding a noise

factor, the m/z 29 peak was down weighted by a factor of

five. In order to try to remove the periodic electronic interfer-

ence explicitly, test calculations were performed where one

factor was allowed to vary without the non-negativity con-

straint. This interference was found to vary around zero. To

investigate numerical stability, the PMF solution space was

explored by varying seeds, numbers of factors (1–5), and ro-

tational parameter FPEAK. After this processing, it was very

clear that a good solution could not be found for more than

two factors. Indeed, a two-component PMF analysis, where

the factors were identified as OOA1 and OOA2 provided rea-

sonable solutions having fairly identical concentration time

series and Q/Qexp values for FPEAK values from −0.4 to

0.4. The main difference between these solutions is the frac-

tion of m/z 44 peak (f 44) of OOA2 ranging from 0.00 to

0.08, for FPEAK greater than −0.08 and lower than −0.16,

respectively. Given that zero values for f 44 are not expected,

the solution having OOA2 f 44 = 0.04 and FPEAK = −0.12

was finally selected as the best.

Like the Q-AMS, the ToF-AMS was able to resolve two

factors reliably: OOA1 and OOA2. The additional variance

provided by higher-order solutions did not show any dis-

tinctly new features in the profile spectra and were deemed

to be more indicative of technical issues with the instrument,

such as subtle nonlinearities introduced by thresholding or

signal saturation. It should be noted that PMF analysis has

been performed successfully on datasets subsequently ob-

tained with the same instrument (Allan et al., 2010; Robin-

son et al., 2011). Therefore, the lack of additional fac-

tors should be taken as indicative of the lack of variation

in total mass terms within the dataset, further supporting

the conclusion that OOA1 and OOA2 were the only signif-

icant factors present, limited by the short time period (two

weeks) of Tof-AMS sampling. In the ToF-AMS case, a so-

lution with FPEAK = −0.5 was chosen, as non-negative val-

ues resulted in solutions where the f 44 value of OOA2 was

zero. It should also be borne in mind that many choices of

FPEAK would probably produce valid solutions, while nega-

tive FPEAK values tend to produce factors whose time series

are more distinct but with more similar mass spectra and vice

versa for the positive values (Allan et al., 2010). In the light

of the findings of Morgan et al. (2010) and Ng et al. (2010),

a solution where the f 44 value was non-zero was deemed

more chemically meaningful. In this instance, the OOA1 fac-

tor had an f 44 of 0.17 and an f 43 of 0.09, while OOA2 had

an f 44 of 0.09 and an f 43 of 0.12.

The NMR spectral dataset was also processed by factor

analysis (FA) methodologies, in order to establish contribu-

tions and spectral profiles of major components of WSOC.

It should be noted that the carbon fraction insoluble in wa-

ter (WINC) was not analyzed by NMR in this study. The

raw NMR spectra were subjected to several pre-processing

steps prior to FA, in order to avoid any misleading source

of variability. All the spectra were corrected for the base-

line drift using a polynomial fit of the baseline in blank sam-

ples. After accurate alignment of the spectra using the in-

ternal standards as references for the chemical shift scale

(Tsp-d4 = 0 ppm; methanol = 3.36 ppm), the peaks of con-

taminants identified in blank samples were systematically

removed from the dataset. In order to limit the effect of

possible small variations in NMR peak position, the origi-

nal resolution of the spectra was decreased by binning over

0.03 ppm and 0.01 ppm intervals, that provided matrices of

400 and 200 points, respectively. The resulting spectral

dataset was processed using three different factor analysis al-

gorithms, namely: (1) the PMF 3.0v software using the mul-

tilinear engine algorithm provided by US Environmental Pro-

tection Agency; (2) the non-negative matrix factorization (N-

NMF) software with projected gradient bound-constrained

optimization (Lin et al., 2007) (hereafter “N-NMF-GRA”);

and (3) the multivariate curve resolution-alternating least

squares (MCR-ALS) software (Tauler et al., 1995).

Since PMF also requires uncertainties, an uncertainty ma-

trix was derived here from the noise to signal ratios of the

NMR spectra. Moreover, due to constrains to the number of

variables in the PMF, this algorithm could be applied only to

low-resolution spectra, 200 points, while N-NMR-GRA and

MCR-ALS were employed for the factorization of both 200

and 400 points spectra.

Atmos. Chem. Phys., 12, 941–959, 2012 www.atmos-chem-phys.net/12/941/2012/
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3 Results and discussion

3.1 Concentrations of main submicrometer aerosol

components

3.1.1 On-line measurements results

Between 29 March and 19 April, the air concentrations of the

major aerosol species experienced large variations (Fig. 1).

The highest organics loads were observed at the beginning

of the period, from 29 to 30 March, when sulphate, ni-

trate and ammonium concentrations also peaked, as regis-

tered by the AMS and by the PILS-IC systems. Medium

to relatively high concentrations were recorded in two other

episodes on 10–11 and 15–17 April. During the remain-

ing days, the concentrations of the above aerosol compo-

nents were very low: 0.49 ± 0.54 µg m−3 (organic matter),

0.21 ± 0.14 µg m−3 (sulphate), 0.05 ± 0.05 µg m−3 (nitrate)

and 0.06 ± 0.07 µg m−3 (ammonium) based on the Q-AMS

measurements. On the same days of background conditions,

sodium and chloride ions showed highest concentrations, as

measured by the PILS-IC system (Fig. 1b). The good corre-

lation observed between sodium and chloride concentrations

indicates that they originate mainly from sea salt.

The PM1 potassium ion, often used as stable tracer for

biomass burning plumes (Andreae, 1983; Ma et al., 2003),

showed very high levels in the first period, between 28 and

30 March, and occurred in significant concentrations only

sporadically in the remaining part of the campaign (Fig. 1c).

In order to evaluate whether these concentration time

trends coincided with air masses of particular origin, the

NOAA HYSPLIT model (Hybrid Single-Particle Lagrangian

Integrated Trajectory, http://ready.arl.noaa.gov/HYSPLIT.

php) was used to calculate back-trajectories (BTs) every day

from 29 March to 19 April. A plot of the 48 h backward BTs

at 500 m above ground level and calculated every 4 h, is re-

ported in Fig. 2. The analysis of the BTs showed that higher

PM1 sea salt levels were registered when the site was influ-

enced by air masses originated from the Norwegian Sea and

from the Arctic, while the highest aerosol mass concentra-

tions of sulphate, nitrate, ammonium and organics occurred

in concomitance with continental air masses, which is con-

sistent with previous observations at the Hyytiälä station (Al-

lan et al., 2006; Cavalli et al., 2006; Tunved et al., 2006;

Raatikainen et al., 2010). Figure 3 summarizes the chemical

composition patterns averaged over periods corresponding to

the main BTs typologies observed, i.e.: marine/Arctic (m/A),

continental/modified marine (C/mm), continental from the

West-to-NorthWest sector (C(W–NW)) and continental from

the South-to-SouthWest sector (C(S–SW)).

The particle size distributions as measured by the DMPS

(Fig. 4) appear as well to fit this preliminary classification of

the observation period based on BT typologies. Several new

particle formation episodes were detected throughout the ob-

servation period, except for the first days when C(S–SW)

prevailed and only accumulation mode particles were ob-

served. Freshly formed particles were clearly a significant

source of Aitken mode particles during the experiment, even

in moderately polluted periods as C/mm and C(W–NW).

3.1.2 Off-line analysis results

The PM1 total carbonaceous (TC) mass concentrations

spanned from less than 1 up to 8.5 µg C m−3, as shown by

filter measurements (Fig. 5, upper panel). The sampled car-

bonaceous mass was primarily constituted by polar, oxy-

genated compounds, while the water-soluble organics frac-

tion (WSOC) being generally high, accounted on average for

more than 70 % of the total carbon.

It should be noticed that the constant factor of 1.8 used

here to convert WSOC into WSOM has been selected as the

most appropriate value for non-urban water-soluble organic

aerosol based the results of various previous studies (Aiken et

al., 2008; Decesari et al., 2007; Russell et al., 2003) and those

extrapolated by the AMSs for this data set. The Q-AMS

organics concentrations, averaged over the filter sampling

times, are also reported in Fig. 5 for comparison, showing a

general good correlation (R = 0.93), although during the first

polluted period and the period characterized by maritime air

masses the AMS organic aerosol concentrations appear sig-

nificantly underestimated compared to carbonaceous aerosol

concentrations determined on PM1 filters. A more quanti-

tative comparison will be discussed later in the manuscript,

but the reasons for such discrepancies must be attributed to

the imperfect coverage of the first period characterized by

continental air masses by AMS observations, and to positive

artefacts on the filters on background days (see discussion

below).

The functional group distributions of the NMR-detected

WSOC are also reported in the lower panel of Fig. 5.

Since 1H-NMR spectroscopy is mainly sensitive to pro-

tons attached to carbon atoms (i.e. H-C bonds), H/C ra-

tios based on the stoichiometry expected for each func-

tional group (Tagliavini et al., 2006), were used to con-

vert the concentrations of organic non-exchangeable hy-

drogen atoms into organic carbon concentrations. The

main functional groups identified include: (i) “alkyls”

(HC-C<), i.e. aliphatic groups bound to saturated carbon

atoms, such as methyls/methylenes/methynes; (ii) oxygen-

containing aliphatic groups, like “carbonyls/carboxyls” (HC-

C = O), i.e. alkyls adjacent to unsaturated carbon atoms, and

like “hydroxyls” (HC-O), i.e. alkyls directly attached to oxy-

gen atoms such as alcohols, ethers/esters, and (iii) “aromat-

ics” (H-Ar). In addition, nitrogen- and sulfur-containing

groups, such as “amines” (HC-N), and sulfonic groups (HC-

SO3, such as methane sulfonic acid, “MSA”, were detected.

On average, the WSOC fraction comprising NMR-

detectable organic carbon atoms was 50 %. The missing car-

bon could be due to: (a) the presence of carbons not car-

rying protons, as in compounds containing highly branched

www.atmos-chem-phys.net/12/941/2012/ Atmos. Chem. Phys., 12, 941–959, 2012
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Fig. 1. Time-series (µg m−3) of the non-refractory PM1 species measured by Q-AMS (a). Chloride, sodium, potassium and oxalate ions

particle air mass concentrations as detected by the PILS-IC system (b, c).

chains or fully substituted aryls (Moretti et al., 2008), and

(b) a fraction of WSOC constituted by semi-volatile organics

and VOCs adsorbed on quartz-fiber filters that may be lost

during the evaporation step prior to the NMR measurement.

WSOC concentrations were measured both in the extracts as

well as in the concentrated solutions in order to obtain esti-

mates of possible losses due to evaporation. The replicated

WSOC measurements prior and after the evaporation step,

showed that the carbon fraction lost by the evaporation ac-

counted in average for less than 30 % of the WSOC mass.

Thus it means that overall the detected functional groups rep-

resent the major WSOC composition. On the other hand for

the samples collected in the background regime the evapo-

rative losses resulted particularly increased, reaching up to

70 % of the WSOC mass, indicating a substantial contribu-

tion of semi-volatile organics in such particles. In overall

the amount of carbon fraction lost by evaporation was in-

versely correlated to the amount of WSOC per cm2, point-

ing to positive sampling artefacts. Indeed, adsorption arte-

facts are typically more significant at low carbon loadings

(Cheng et al., 2009). Additional tests by using standard

water-soluble semi-volatile compounds were also performed

to establish their recovery after evaporation, and specifically

with maleic acid, pinic acid, cis-pinonic acid and vanillin. As

expected more significant losses were observed for the alde-

hyde with respect to the acids, showing the former a recov-

ery of 84 % compared to values above 95 % obtained for the

acids. The high recovery found for the semivolatile organic

Atmos. Chem. Phys., 12, 941–959, 2012 www.atmos-chem-phys.net/12/941/2012/
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Fig. 2. Back-trajectory plots (48 h backward, 500 m AGL height) obtained by running the HYSPLIT model every four hours from 28 March

to 21 April. Colours are used for distinct air masses typologies: marine/Arctic (mA), Continental/modified marine (C/mm), Continental from

the W–NW sector and Continental from the S–SW sector.

compound (SVOC) standards indicates that more volatile

compounds (VOC) were responsible for the observed evap-

orative losses. Such compounds were not likely partitioned

on ambient aerosol particles, but became rather adsorbed on

the filter matrix. These observations were also confirmed by

OC measurements performed on a series of back up filters

of PM1 samples collected during the same campaign but at

lower time resolution than those used for this manuscript. In-

deed, the ratio of the back up OC up to the front OC resulted

dramatically increased for samples collected when marine air

masses prevailed. During this period, despite the reduced

aerosol mass loadings, the frequent nucleation events (Fig. 4)

witness a constant supply of condensable vapours probably

from local sources in the forest.

3.2 Oxygenated organic aerosol composition

3.2.1 AMS factors

The time-dependent organic mass spectra recorded by the

two AMSs (Q-AMS and ToF-AMS) were separately pro-

cessed by the PMF methods as described in the experimental

section. Two types of oxygenated organic aerosol (OOA)

groups, namely OOA1 and OOA2, were particularly stable

within all tested solutions and accounted for most of the or-

ganic mass signal in both datasets. Concerning results from

Q-AMS data, the final OOA1 and OOA2 mass spectra are

shown in Fig. 6 and time series in Fig. 7.

The mass spectra of these two OOA components, with the

ions at m/z 44 (CO+

2 ) dominating the OOA type 1 and m/z 43

(mostly C2H3O+) dominating the OOA type 2, closely

match those most commonly isolated in previous studies

(Zhang et al., 2007; Lanz et al., 2007). Overall, they strongly

resemble those found at Hyytiälä in spring 2005 (Raatikainen
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Fig. 3. PM1 chemical composition (Q-AMS) averaged within the

four distinct periods of Fig. 2.

et al., 2010) and in other works performed in mid-latitude

forests (Slowik et al., 2010; Allan et al., 2006) where the

OOA1 represented the more oxidized, aged organic fraction,

and the OOA2 represented the less oxidized, fresher sec-

ondary organics.

Other commonly found organic groups, such as

hydrocarbon-like (HOA) and biomass burning organic

aerosol (BBOA), were not isolated here. On average, the

m/z 57 peak, which is often related to HOA (e.g. Lanz et

al., 2007) and also BBOA (Aiken et al., 2008), is less than

1 % of the total organic signal when that for m/z 44 peak is

11 %. There are a few time periods with higher m/z 57 mass

fractions, however it seem to be too low to be detected by

the PMF method.

Since the unit mass resolution of the Q-AMS prevents an

unambiguous identification of the ions in the mass spectra,

within this dataset the oxygen content of the organic groups

was estimated on the basis of the linear fit between oxy-

gen to carbon atomic ratio (O:C) and their m/z 44/OM peaks
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948 E. Finessi et al.: Determination of the biogenic secondary organic aerosol fraction

 

Fig. 4. Aerosol number size distribution measured by DMPS. Colours coded labels for the BTs distinct periods shown in Fig. 2 are also

reported on the top.

Fig. 5. Upper panel, PM1 filter samples carbonaceous mass concentrations expressed as total carbonaceous (black), water-soluble organics

in (dark brown) in µg C m−3. Q-AMS organics conc. (µg m−3) averaged upon filter sampling times are shown in green. The coverage of

filter sampling times by AMS (percentage) is reported by yellow bars. Lower panel, functional groups distribution of the NMR-detected

WSOC.
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Fig. 6. OOA1 and OOA2 mass spectra (Q-AMS).

(Aiken et al., 2008). The estimated O:C ratios for the OOA1

and OOA2 isolated from the Q-AMS dataset were, respec-

tively, 0.73 and 0.23. These values turned out to be very

close to those obtained by Raatikainen (i.e. 0.77 ± 0.10 and

0.23 ± 0.08), and were also similar to 0.73 and 0.17 averages

from several observations (Ng et al., 2010).

Unfortunately the ToF-AMS data covered mainly the sec-

ond half of the campaign, overlapping with the Q-AMS and

NMR data for a limited time interval, with C(W–NW) and

partially m/A prevailing. Nevertheless the analysis of the

high-resolution ToF-AMS spectra enabled the direct deter-

mination of the molecular ratios within this time interval. El-

emental analysis was performed on the W mode high resolu-

tion data according to Aiken et al. (2007, 2008). On average,

the H:C ratio was estimated to be 1.36, the O:C ratio 0.64 and

the OM:OC ratio 1.97. No statistically significant variation

was found within the measurement period.

3.2.2 NMR factors

A total of seventeen 1H-NMR spectra at 200 points resolu-

tion were subjected to the factorization models mentioned

in the experimental section (PMF, N-NMF-GRA and MCR-

ALS) and the solutions resulting from factors 2 up to 8 were

explored. Within all the models, most of the variance turned

out to be explained by a limited number of factors, the resid-

ual of the order of the baseline noise being for more than 3

factors. The largest drop in the Q/Qexp ratios was registered

between two and three factors, but additional factors contin-

ued to reduce Q/Qexp toward 1 until no strong change in

slope was observable for more than five factors. Beyond five

factors, two or more factors were found to be strongly cor-

related, suggesting that the measurements were not adequate

to differentiate additional independent factors. In the follow-

ing discussion, the analysis is limited to the most simple and

conservative solutions with three and four factors.
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Fig. 7. Q-AMS-factors time series. Labels for the observed distinct

BTs regimes are reported under the time x-axis.

Profiles and loadings resulting for 3- and 4-factor solu-

tions are shown in Figs. 8 and 9. Only profiles from a single

model (MCR-ALS) are reported for sake of clarity. Con-

cerning the factor loadings, the values obtained by the three

models were generally convergent, particularly in the three

factor case (Fig. 9a). Conversely, the 4-factor case appears

more affected by a certain degree of rotational ambiguity of

the models in splitting the F3 and F4 factors, especially for

samples collected on 15 and 16 April (Fig. 9b), with bet-

ter results obtained with higher resolution, 400 points (not

shown).

The isolated NMR factors are described as follows.

– F1: the first factor (hereinafter referred to as “glycols”

factor) is characterized by compounds with hydroxyl (or

ether) linkages and n-butyl chains, showing a spectrum

similar to commercial butyl-glycols. Indeed, the ob-

served signals show a good fit with the H-NMR spec-

tra of ethylene glycol butyl ether and of 2-butoxyethyl

acetate (Sigma-Aldrich online NMR library). Such fac-

tor contributed randomly to the set of samples (Fig. 9)

but was completely absent in blank samples, thus ex-

cluding any filter contaminations prior/post sampling.

Nonetheless positive artefacts or accidental contamina-

tions during the sampling cannot be definitely ruled out.

In fact, glycol ethers are chemicals commonly used in

paints and ethylene glycol butyl ether (butoxy ethanol)

was identified among other VOCs of toxicological inter-

est in urban areas (Gallego et al., 2009). If not labora-

tory contaminants, they may have originated from a lo-

cal source at the sampling site or nearby. Their volatility

is high (>10−1 Torr), being in the VOC regime, hence

if they were atmospheric costituents in Hyytiälä, they

were most probably sampled as adsorption artefacts on

the quartz-fiber filters.

– F2: the second factor (hereinafter referred to as

“HULIS-containing” factor) has spectral features sim-

ilar to those characterizing samples collected in sites

www.atmos-chem-phys.net/12/941/2012/ Atmos. Chem. Phys., 12, 941–959, 2012
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Fig. 8. NMR-factor profiles isolated by applying the MCR-ALS model with a 3-factor solution (a), and a 4-factor solution (b). All factor

profiles are vertically normalized to 1 and are plotted versus the NMR chemical shifts.

impacted by anthropogenic emissions (Fig. 10a), and al-

ready reported in literature (Decesari et al., 2000, 2007).

In terms of functional group distribution, polluted sam-

ples typically show a more pronounced band of aromat-

ics (visible in the range between 6.5–8.5 ppm) with re-

spect to samples collected in remote locations. Besides

this feature, the HULIS-containing factor’s profile re-

tains signals of levoglucosan (visible in the spectral in-

terval between 3.5–4.5 ppm), a well known atmospheric

tracer for biomass combustion emissions. As shown

in Fig. 9, the “HULIS-containing” factor accounted for

most of the signal in the 30 March sample, C(S–SW)

regime, and to a much lesser extent, it contributed to the

less polluted samples collected in the final part of the

campaign, C(W–NW). The concentrations for this fac-

tor were positively correlated (R = 0.99) with those of

potassium ion, pointing again to combustion sources .

This is in agreement with recent results from satellite-

based data coupling aerosol and fires, which assess

wildfires in Eastern Europe with significant impacts on

the fine aerosol load even in the Scandinavian region,

particularly in April (Barnaba et al., 2011). Levoglu-

cosan was actually quantifiable in the NMR spectra

of the 30/3 day and 15/4 night filter samples, and in

these samples the levoglucosan-C accounted for 1.9 %

and 0.7 % of WSOC. The estimated contributions of

Atmos. Chem. Phys., 12, 941–959, 2012 www.atmos-chem-phys.net/12/941/2012/
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biomass smoke to OC obtained by multiplying the lev-

oglucosan concentrations by 7.35 as recommended by

Fine et al. (2002) were 1.64 and 0.11 µg m−3 for the

Hyytiälä samples of 30/3 day and 15/4 night. Such con-

centrations are relevant in absolute terms (Puxbaum

et al., 2007), but they accounted for about 20 % and

only <10 % of OM concentrations estimated for the

two days of the experiment (Fig. 11). They were also

lower than the WSOM fractions apportioned to an-

thropogenic combustion sources by NMR (“HULIS-

containing” compounds). In summary, levoglucosan

data show that biomass burning was significant source

of particulate organic matter in Hyytiälä during the pe-

riods characterized by continental air masses, although

such products did not account for the total WSOC

fraction which was put in relation to anthropogenic

sources by the NMR analysis. The anthropogenically-

influenced WSOC, or “HULIS-containing” factor, must

be considered rather a mix of long-range transported

pollution and wood burning products.

– F3: the third factor (hereinafter referred to as “amines”

factor) included intense peaks attributable to low-

molecular weight alkyl amines, i.e. diethyl and dimethyl

amines (DEA, DMA), and to methane-sulphonic acid

(MSA), overlapping a broad background band in the

aliphatic region (0.5–4.5 ppm). Such compounds (MSA

and di-alkyl amines) have previously been found by

the authors in clean marine OA (Fig. 10b) (Facchini et

al., 2008; Decesari et al., 2011). Moreover, this factor
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Fig. 10. NMR-factors profiles (MCR-ALS) emerging from the Hyytiälä dataset (coloured lines) overlapped with reference spectra (grey

lines). The comparison includes spectral signatures obtained in other field (a), (b) and chamber (c) campaigns. The functional groups

patterns (%) corresponding to each factor are reported on the left.

accounted mainly for the OA composition when con-

centrations reached very low levels during the back-

ground regime (m/A), but it also contributed to the rise

of concentrations during the last days of the sampling

period, C(W–NW). The air mass origin from the At-

lantic during the first two weeks of April, together with

the presence of MSA and di-alkyl amines, suggest that

the “amines” factor can be impacted by biogenic marine

sources.

– F4: the fourth factor (hereinafter referred to as “terpene-

SOA-like” factor) is found prevalently in the samples

collected between 15 and 17 April, C(W–NW) and also,

to a lesser extent, in the 30 March sample (Fig. 9).

Unlike the “HULIS-containing” factor profile, aromatic

protons (H-Ar) are scarcely visible in the “terpene-

SOA-like” factor, except for two weak peaks, also

present in the “glycols” and “amines” profiles, which

may be due to defective splitting. Besides this, main

distinguishing features of this factor is the presence

of single peaks overlapping the background signal in

the region between 0.7–1.8 ppm which comprises non-

functionalized alkyls (HC-C), e.g. methyl or methy-

lene groups. Again, aliphatic alcohols and ethers/esters

(HC-O) also contribute to characterizing the profile of

such “terrestrial biogenic” factor in the range of chem-

ical shifts between 3.3–4.5 ppm. By comparing the

spectral profile of F4 with reference 1H-NMR spec-

tra of ambient and laboratory-generated water-soluble

aerosols, the best match was found with the BSOA

produced in the SAPHIR simulation chamber during

photo-oxidation and ozonolysis of terpene mixtures,

representative of VOCs emitted by conifer tree species

(Fig. 10c). In particular, the closest similarity was found

with BSOA generated with mixtures of monoterpenes

(MT) and sesquiterpenes (SQT), including: α/β-pinene,

limonene, 13-carene, ocimene, β-caryophyllene and α-

farnesene.
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Fig. 11. OM apportionment by factorization of AMS- and NMR-

data. Upper panel: Q-AMS-factor contributions averaged upon fil-

ter sampling times. Lower panel: unaccounted water-soluble and

insoluble OM classes have been included. No data have been re-

ported for NMR samples below detection limits.

The employ of available libraries of H-NMR spectra of

reference compounds and materials (SOA) allows therefore

a precise attribution of the NMR factors to WSOC source

contributions. It should be noted, however, that, contrary

to the “terpene-SOA” factor for which we can compare with

spectra obtained in controlled laboratory conditions, our in-

terpretation of the “HULIS-containing” factor is based on the

similarities with ambient samples collected in polluted ar-

eas, however we do not know how much these fingerprints

are specific for the anthropogenic sources, which certainly

contributed but we do not know the extent. The same pol-

luted conditions may have lead to the accumulation of more,

and more oxidized biogenic SOA. Therefore the HULIS-

containing factor should be considered a “maximum anthro-

pogenic WSOC fraction”, i.e. an upper limit, rather than ex-

clusively anthropogenic.

Finally, it is worth mention that in another forest envi-

ronment, in the British Columbia, Shwartz et al. (2010) em-

ploying FTIR spectroscopic data provided strikingly similar

results about main factors contributing to OM concentra-

tions to those emerging from the present study in the Finnish

boreal forest. Shwartz and coauthors identify one anthro-

pogenic component (“combustion”) and three probable bio-

genic factors, including (a) alcohols, (b) amines and (c) car-

bonylic compounds similar to terpene SOA, providing more

or less the same speciation shown in Fig. 8 of our paper. The

functional group distributions of the American samples are

somewhat different from ours, with a more aliphatic (C-H)

content in the combustion factor compared to the carbonyl-

rich biogenic SOA factor, whereas according to the NMR

analysis of the Finnish samples it is the other way around

(Fig. 10). Such differences can be attributed to the different

recovery of the two techniques (water-insoluble species are

not accounted for by the H-NMR analysis). For this reason,

in absence of collocated measurements, the comparison be-

tween FTIR and NMR organic functional group speciation

methods has to be kept to a qualitative level.

3.2.3 Comparison between AMS and NMR factors for

OA source attribution

Major components underlying the oxygenated organic

aerosol fraction isolated from NMR data were compared to

those apportioned by AMS and averaged upon filter sampling

times (Fig. 11). It should be noted that no filter samples

were collected at night-time during the background period,

and therefore the off-line NMR analyses did not account for

the nocturnal peaks of OOA2 observed by the AMSs in such

conditions.

In order to compare NMR and AMS factor loadings, the

concentration metrics used by the two techniques need to

be homogenized, in an attempt to retrieve equivalent organic

mass concentrations from the organic non-exchangeable hy-

drogen concentrations provided by 1H-NMR analysis. As a

first step, water-soluble organic carbon concentrations com-

prising the NMR factors were derived from hydrogen con-

centrations by using factor-specific H/WSOC ratios. The

latter were extrapolated from WSOC and 1H-NMR mea-

surements for spectral datasets representative for source

types of the OA of interest to the present study. In par-

ticular, H/C molar ratios values of 0.8, 0.9 and 1 were

used for the “terpene-SOA-like”, “amines” and “HULIS-

containing” NMR-factors, respectively, on the basis of the

analysis of laboratory terpene SOA samples, marine aerosols

in clean air masses sampled at the Irish station of Mace Head

(Decesari et al., 2011), and of samples of biomass burn-

ing aerosols (Tagliavini et al., 2006). The WSOC concen-

trations estimated using such H/WSOC factors account for

fully-substituted carbon atoms, which cannot be directly de-

tected by 1H-NMR analysis. However, the sum of WSOC

concentrations derived for the three factors is still lower

than the measured WSOC, primarily because of losses of

volatile compounds during sample preparation. Finally, to

derive equivalent organic matter concentrations, a constant
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Fig. 12. Percentage and absolute concentrations (µg m−3) of the Q-AMS OOAs and filters organic components averaged upon the entire

sampling period and each distinct sub-periods.

conversion factor of 1.8 was used to convert WSOC loadings

into water-soluble organic mass concentrations (µg m−3).

Along with the NMR-detected WSOC components, both the

unaccounted-WSOM and the water-insoluble organic matter

(WIOM) fractions are included in Fig. 11 to facilitate com-

parison with AMS-detected OM. WIOM was derived from

WIOC = 0.9 · TC (assuming an EC fraction of 10 % of TC).

The conversion coefficients 1.8 and 1.4 were used to derive

organic mass concentrations of the unaccounted-WSOM and

WIOM, respectively.

In spite of the evident impact of sampling artefacts on

WSOM concentrations during the background period and

of the imperfect match between AMS observations and fil-

ter collection during the first days of the campaign, the OA

mass concentrations reconstructed by the two independent

techniques were in overall agreement.

Even if the very few time-integrated filter samples cannot

account for the great variability of OA composition observed

by the online methods, when averaging the AMS factors over

the filter sampling times, the OA composition patterns were

comparable to those obtained by off-line measurements. The

comparison between the patterns obtained by the AMS and

NMR techniques is facilitated when looking at the averaged

data over each distinct regime and the entire observing period

(Fig. 12).

Two types of oxygenated organic components attributable

to more and less oxidized organics, respectively, appeared

particularly stable in all tested solutions used for factor anal-

ysis. They accounted for most of the detected mass in both

methodologies and are attributable to a more and a less ox-

idized organic fraction. The more oxidized, aged organic

fraction, represented by the AMS OOA1 and by the NMR

“HULIS-containing” factors, accounted for about 50 % of

the detected organic mass in both cases, when consider-

ing the entire period. This more oxidized fraction shows a

mass spectrum dominated by the m/z 44 (CO+

2 ) peak, and

in parallel a NMR spectrum enriched in oxidized functional

groups, such as carbonyls/carboxyls and hydroxyls. Addi-

tionally, it shows high correlation coefficients with sulphate,

ammonium, nitrate and potassium ions, and particularly con-

tributed to the organic mass during the continental regime

from the South-to-SouthWest sector. Thus, for all the above

reasons, it has been linked to transported pollution, includ-

ing wood burning products. By contrast, the second ma-

jor component, is represented by the AMS OOA2 and by

the NMR factors related to biogenic OA, and greatly con-

tributed to enhancing the OA mass during the marine/Arctic

and C(W–NW) regimes. The fact that only NMR analysis

and not AMS highlighted a biomass burning contribution in

the first, more oxygenated component can be explained by

considering that the Q-AMS operated discontinuously at the

beginning of the campaign when continental air masses were

most clearly seen, resulting in reduced sampling time cov-

erage (less than 50 % for the 30/3 day sample, Fig. 5, upper

panel). It is likely that the Q-AMS did not sample enough

biomass burning products to resolve a biomass burning or-

ganic aerosol (BBOA) factor.

The NMR factor analysis further isolated two distinct

components within the second, less oxidized OA fraction,

namely the “amines” and “terpene-SOA-like” factors. Their

relative concentrations appeared strongly dependent on the

air mass regime. Indeed, when prevalently polar air masses

reached the site (m/A regime), the NMR analysis assigned

about 50 % of WSOC to the “amines” factor. This was
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based on similarities with spectral signatures of aerosol col-

lected in clean marine environments, including MSA and

alkyl amines signals and, therefore could be linked to a bio-

genic OA source of marine origin. By contrast, the “terpene-

SOA-like” factor is related to terrestrial secondary prod-

ucts originating from the gas-to-particle conversion of VOCs

emitted by conifer forests, on the basis of similarities with

BSOA formed in chamber experiments with monoterpenes

plus sesquiterpenes. Overall, a significant fraction of WSOC

can be assigned to the terrestrial biogenic factor throughout

the whole period (about 30 %), indicating a persistent source

active in the area around the sampling site. It was also partic-

ularly enriched during the C(W–NW) regime, reaching up to

50 % of the detected WSOC. The back-trajectories analysis

showed that air masses influencing the site during the C(W–

NW) period originated mainly from North West, undergo-

ing a marine to continental transition over the Scandinavian

forest area. Thus the BSOA enrichment in concomitance to

prevailing C(W–NW) is reasonably connected to the longer

time spent by the clean air masses over the Boreal forest with

respect to that spent by the air masses arriving from North.

This is consistent with previous investigations at Hyytiälä ob-

serving aerosol properties during the marine-to-continental

transition (Allan et al., 2006; Cavalli et al., 2006; Tunved et

al., 2006; Raatikainen et al., 2010). Since a few short pollu-

tion episodes were still detected during this period, a higher

particle concentration may be also considered as a possible

explanation for the BSOA enhancement with respect to low

concentration periods, e.g. by acting as condensation sink for

locally emitted gaseous precursors. However, the same com-

position patterns are not observed during the C(S–SW) pe-

riod, when still high particle concentrations were registered

but the air masses originated from Central Europe. In sum-

mary, the longer time spent over the Boreal forest by the air

masses reaching the site within C(W–NW) remains the most

plausible explanation of the observed BSOA enrichment.

4 Conclusions

Submicrometer organic aerosol observations employing

AMS and NMR spectroscopy were performed in the Finnish

forest environment at Hyytiälä during three weeks of

April 2007 characterized by variable atmospheric conditions

and transport patterns, from very clean background to fairly

polluted regimes. Results from factor analysis applied sepa-

rately on AMS and NMR spectral datasets showed that air

mass origin had a strong impact on organic composition,

in agreement with findings of previous investigations at this

site. Polluted continental air masses were associated with

more oxidized organic aerosols (AMS type “OOA1”) and

NMR-detected water-soluble organic compounds rich of aro-

matic and polysubstituted aliphatic compounds (similar to

HULIS). Such OM component, clearly impacted by com-

bustion sources, but including also more aged compounds

of probable secondary origin, can be considered as the max-

imum anthropogenic fraction of OA. A second component,

shown to be less oxygenated according to AMS analysis,

was strongly enhanced in concomitance with air masses orig-

inating from the North to West sector, i.e. from the Atlantic

Ocean crossing Scandinavia. In such less polluted condi-

tions, NMR analyses found prevalently biogenic contribu-

tions and specifically two distinct factors that were linked to

terrestrial and marine biogenic sources on the basis of sim-

ilarities with spectral fingerprints and back-trajectory analy-

sis. Overall, such terrestrial and marine biogenic components

contributed equally to OA mass (about 30 % each) when av-

eraging over the whole observing period, but showed rel-

ative abundances strongly depending on the North-to-West

air-mass transition. In summary, the findings trace and quan-

tify at least two independent sources originating biogenic

secondary organic aerosols in Hyytiälä through oxidation

and condensation phenomena: a first source involving prod-

ucts of marine origin, which is more important during low

aerosol concentration regimes with predominantly polar air

masses, and a second source involving reactions of locally

emitted terpenes, which becomes more important with in-

creasing time spent by air masses over the Boreal forest.

In this study, we have attempted to illustrate the changes in

chemical composition of particulate organic matter between

air mass types making explicit links to the estimated biogenic

and anthropogenic fractions, as provided by both NMR and

AMS. Although there are clear overlaps between NMR and

AMS chemical classes, the OA mass budget indicates that a

non-negligible fraction of OOA was actually water-insoluble

and eluded NMR characterization. The nature of such “oxy-

genated WIOC” deserves further investigations.

The complementary approach exploited here between in-

dependent source apportionment methods has proven to give

a more complete and accurate picture of organic aerosol vari-

ability, and has provided the opportunity to trace biogenic

SOA in the environment.
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