NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT No. 572

DETERMINATION OF THE CHARACTERISTICS OF TAPERED WINGS

By RAYMOND F. ANDERSON

REPRINT OF REPORT No. g72, ORIGINALLY POBLISHED PEBRUARY 187

AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

2. GENERAL SYMBOLS.

W Weight $=m g$
$g \quad$ Standard acceleration of gravity $=9.80665 \mathrm{~m} / \mathrm{s}^{2}$ or $32.1740 \mathrm{ft} / \mathrm{sec}^{2}$.
$m \quad$ Mass $=\frac{W}{g}$
I Moment of inertia $=m k^{2}$. (Indicate axis of radius of gyration k by proper subscript.)
μ. Coefficient of viscosity

s. AERODYNAMIC SYMBOLS

\boldsymbol{S} Area

S_{w}. Area of wing.
G Gap
b Span
c Chord
A Aspect ratio, $\frac{b^{2}}{S}$
V True air speed
q. Dynamic pressure, $\frac{1}{2} \rho V^{2}$
$L \quad$ Lift, absolute coefficient $C_{L}=\frac{L}{q S}$
$D \quad$ Drag, absolute coefficient $C_{D}=\frac{D}{q S}$
$D_{0} \quad$ Profile drag, absolute coefficient $C_{D_{0}}=\frac{D_{0}}{q S}$
$D_{1} \quad$ Induced drag, absolute coefficient $C_{D_{i}}=\frac{D_{1}}{q S}$
D. Parasite drag, absolute coefficient $C_{D,}=\frac{D_{p}}{q}$
$C \quad$ Cross-wind force, absolute coefficient $C_{C}=\frac{C}{q S}$ 2626°
p $\quad \begin{aligned} & \text { Kinematic viscosity } \\ & \text { Density (mass per unit volume) }\end{aligned}$
Standard density of dry air, $0.12497 \mathrm{~kg}-\mathrm{m}^{-4}-\mathrm{s}^{2}$ at $15^{\circ} \mathrm{C}$ and 760 mm ; or $0.002378 \mathrm{lb}^{-\mathrm{ft}^{-1}} \mathrm{sec}^{2}$
Specific weight of "standard" air, $1.2255 \mathrm{~kg} / \mathrm{m}^{3}$ or $0.07651 \mathrm{lb} / \mathrm{cu} f \mathrm{f}$

DETERMINATION OF THE CHARACTERISTICS OF TAPERED WINGS

By RAYMOND F. ANDERSON
Langley Memorial Aeronautical Laboratory

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

HEADQUARTERS, NAVY BUILDNGG, FASHINGTON, D. C

Created by act of Congress approved March 3, 1015, for the supervision and direction of the scientific study of the problems of fight (U . S. Code, Title 80, Sec. 151). Its membership was Increased to 15 by act approved March 2, 1829. The members are appointed by the President, and serve as such withont compensation.

Vanneyar Buse, Sc. D., Chatrman, Washington, D. C.
Geobge J. Mend, Sc. D., Vice Chairman, Washington, D. C.
Charles G. Abbot, Sc. D., Secretary, Smithsonlan Institution.
Hinky H. Abnold, Msjor General, United States Army, Deputy Chief of Staff, Chief of the Dir Corps, War Department.
Gromez H. Bertr, Major General, United States Army, Acting Chief of tbe Alr Corps, War Department.
Ltiman J. Brigga, Ph. D.,
Director, National Bureau of Standards.
Donald H. Connolly, B. S.
Administrator of Civil Aeronantics.

Robert Fi. Dohmety, M. S., Pittsbnrgh, Pa.
Robmet H. Hincelet, A. B., Assistant Secretary of Commerce.
Jerome C. Huraaker, Sc. D., Cambridge, Mass.
Stoniz M. Kradr, Captaln, United States Navy, Bnrear of Aeronantics, Navy Department.
Francis W. Refichmbrept, Sc. D. Chief, United States Weather Burean.
Join H. Towkrg, Rear Admiral, United States Navy, Chief, Bureau of Aeronantics, Navy Department.
Enwam Wamize Sc. D., Washington, D. O.
Opvilis Werght, Sc. D., Dayton, Ohilo.

Gromar W. Lewis, Director of Aeromautleal Research
S. Patl Johnsion, Coordinator of Research

Johr F. Victory, Secretary
Heney J. Tl. Bum, Engineer-hn-Charge, Langley Memorial Aeronawtical Laboratory, Langley Field, Va.
Smiti J. Deflance, Engineer-in-Charge, 1 me* Aeronautical Laboratory, Moffett Field, Calif.

TECHNTCAL COMMITTEES

AERODTNAMTCS AEROER PLANTA FOR ATRCRAFT AIRCRATMATRLALS	ARRCRAFT STRUCTURES ANRCRAFT ACCIDENTB INVENTIONS AND DESIGNS
Coordination of Research Needs of Muitary and Civil detation	

Allocation of Probleme
Prevention of Duplication
Oonsideration of Inventions
LANGLEY MEMORIAL AERONAUTICAL LABORATORY

AMES AERONAUTICAL LABORATORY moffett pield, calif.

Condnct, under unified controi, for all agencles, of scientific research on the fandamental problems of figbt.
OFFICE OF AERONAUTICAL INTELLIGENCE
wasmington, d. C.
Collection, classification, compilation, and disemination of
II. sclentific and technical information on aeronantics

REPORT No. 572

DETERMINATION OF THE CHARACTERISTICS OF TAPERED WINGS

By Raymond F. Anderson

SUMMARY

Tables and charts for use in determining the characteristics of tapered wings are presented. Theoretical factors are given from which the following eharacteristics of tapered wings may be found: The span lift distribution, the induced-angle-of-attack distribution, the lift-curve slope, the angle of zero lift, the induced drag, the aero-dynamic-center position, and the pitching moment about the aerodynamic center.

The wings considered cover the complete range of taper ratios and a range of aspect ratios from 2 to 20 . The factors given include the effects of sweepback and twist and apply to wings having a straight taper plan form with rounded tips and an elliptical plan form. The general formulas of the usual wing theory are also given from which the characteristics of a wing of any form may be calculated when the section characteristics are known from experiment.

In addition to the tables and charts, test results are given for nine tapered wings, including wings with sweepback and twist. The test results verify the values computed by the methods presented in the first part of the report. A final section is given outlining a method for estimating the lift coefficient at which a tapered wing begins to stall. This method, which should be useful for estimating the maximum lift coefficient of tapered wings, is applied to one of the wings tested.

INTRODUCTION

A large amount of work has been done on the determination of tapered-wing characteristics from airfoil theory. Glauert has given some of the characteristics of wings with straight taper for a limited range of aspect ratios (references 1 and 2). Hueber has given other characteristics of wings with straight taper for a large range of aspect ratios (reference 3). Several other papers have given various characteristics of tapered wings. The data of all the papers, however, Lave been limited by one or more of the following factors: Range of aspect ratio and taper ratio, number of characteristics given, and omission of data on wings with sweepback and twist. In order to provide more complete information, data are given in this report for a large range of aspect ratios, for the complete range
of taper ratios, and for wings with sweepback and twist. As airplane wings are usually rounded at the tips, the data are given for wings with rounded tips.
In addition to the theoretical characteristics, the results of tests of nine tapered wings, including wings with sweepback and twist, and a comparison of some of the test results with theoretical values are presented.

The characteristics are given for wings having a straight taper and rounded tips and for wings having an elliptical plan form, with an aspect-ratio range from 2 to 20. For these wings, formulas are given using factors that are presented in tables and charts. From the formulas and factors the following characteristics of tapered wings may be determined: Span lift distribution, induced-angle-of-attack distribution, lift-curve slope, angle of zero lift, induced drag, aerodynamiccenter position, and pitching moment about the aerodynamic center.

METHOD OF OBTAINING DATA

BASIC CONCEPTS

When obtaining the data used to determine the characteristics of wings, a tapered wing is considered to consist of a series of airfoil sections that may vary in shape, chord length, and in angle of attack from root to tip. Each airfoil section is assumed to have an aerodynamic center through which the lift and drag act and about which the pitching moment is constant.
With the section characteristics as a basis, characteristics of the entire wing are obtained by integration across the span. Formulas for the integrations will first be given for a wing of any shape and zero dihedral; that is, the aerodynamic centers of all the sections along the span lie in a plane which passes through the root chord and which is perpendicular to the plane of symmetry. Wings of particular shape will be considered later and a method for including the effect of dihedral will be given.
For any tapered wing the span lift distribution may be considered to consist of two parts. One part, which will be called the "basic distribution," is the distribution that depends principally on the twist of the wing and occurs when the total lift of the wing is zero; it does not change with the angle of attack of the wing.

The second part of the span lift distribution, which will be called the "additional distribution," is the lift due to change of the wing angle of attack; it is independent of the wing twist and maintains the eame form throughout the reasonably straight part of the lift curve.

In the designation of the characteristics of a wing, lower-case letters will be used for section characteristics and upper-case letters for the characteristics of the entire wing. The basic and additional section lift coefficients are then $c_{b_{b}}$ and $c_{b_{a}}$. A complete list of symbols follows. It is convenient to find the additional lift coefficient for a wing C_{L} of 1 and it is then designated $c_{i_{d 1}}$. The two coefficients are related by $c_{t_{\mathrm{a}}}=C_{L} c_{b_{c 1}}$. The total lift coefficient at any section is found from the basic and additional coefficients from

$$
c_{i_{0}}=c_{b_{0}}+C_{L} c_{b_{a 1}}
$$

where $c_{t_{0}}$ is the lift coefficient perpendicular to the local relative wind at any eection as distinguished from c_{l}, which is perpendicular to the relative wind at a distance. For convenience, however, c_{l} will be used and may be considered equal to $c_{i_{0}}$.

ETMBOLS

A, aspect ratio, b^{2} / S.
b, span.
c, chord at any section along the span.
c_{t}, tip chord (for rounded tips, c_{i} is the fictitious chord obtained by extending the leading and trailing edges to the extreme tip).
c_{2}, chord at root of wing or plane of symmetry.
S, wing area.
β, angle of eweepback, measured between the lateral axie and a line through the aerodynamic centers of the wing sections. (See fig. 1.)
ϵ, aerodynamic twist in degrees from root to tip, measured between the zero-lift directions of the center and tip sections, positive for washin.
x, longitudinal coordinate, parallel to the root chord.
y, lateral coordinate, perpendicular to plane of symmetry.
2, verticel coordinate in the plane of symmetry, perpendicular to the root chord.
$x_{\text {a.e., }} x$ coordinate of wing aerodynamic center.
a, wing lift-curve slope, per degree.
a_{0}, wing sertion lift-curve slope, per degree.
m, wing lift-curve slope, per radian.
m_{0}, wing section lift-curve slope, per radian.
α, angle of attack at any section along the span.
α_{d}, wing angle of attack messured from the chord of the root section.
α_{a}, absolute wing angle of attack measured from the zero-lift direction of the root section.
$\alpha_{6,}$, angle of zero lift of the root section.
$\alpha_{t_{0},}$, angle of zero lift of the tip section.
$\alpha_{(L-0)}$, wing angle of attack for zero lift. α_{t}, section induced angle of attack.
c_{i}, section lift coefficient perpendicular to the distant relative wind.
Subscripts for c_{l} :
0 , refers to section lift coefficient perpendicular to the local relative wind.
b, refers to basic lift ($C_{L}=0$).
a, refers to additional lift (any C_{L}).
$a 1$, refers to additional lift ($C_{L}=1$).
$c_{a_{6}}$, section induced-drag coefficient.
$c_{d_{0}}$, section profile-drag coefficient.
$c_{m_{a, 6},}$, section pitching-moment coefficient about section aerodynamic center.
l, section lift.
$m_{l_{\mathrm{a}}}$, section pitching moment due to additional lift forces.
$M_{i_{0}}$, wing pitching moment due to additional lift forces.
$C_{m_{i_{e}}}$, wing pitching-moment coefficient due to additional lift forces.
$C_{m_{b}}$, wing pitching-moment coefficient due to basic lift forces. .
$C_{m_{z}}$, wing pitching-moment coefficient due to the pitching moments of the wing sections.
$C_{m_{6}, \text {, }}$, wing pitching-moment coefficient about its aerodynamic center.
C_{L}, wing lift coefficient.
C_{D}, wing induced-drag coefficient.

GENERAL PORMULAS

Formulas in terms of the section characteristics.The induced angle of attack at any eection is obtained from c_{l} by

$$
\alpha_{i}=\alpha-\frac{c_{i}}{m_{0}}
$$

The section induced-drag coefficient is obtained from α_{i} and c_{l} from

$$
c_{d_{i}}=\alpha_{f} c_{i}
$$

and the induced-drag coefficient for the entire wing may be obtained by integration across the eemispan from the section values:

$$
\begin{equation*}
C_{D_{\mathrm{t}}}=\frac{2}{S} \int_{0}^{b / 2} \alpha_{c_{\mathrm{c}}} d y \tag{1}
\end{equation*}
$$

In order to obtain the aerodynamic center and the pitching moment of tbe wings, a system of reference axes was used; the origin was at the aerodynamic center of the root section and the axes were as shown in figure 1. The x axis (fig. 1 (a)) is parallel to the root chord, and the y axis (fig. 1 (b)) is perpendicular to the plane of symmetry with positive directions following the vectors. The wing axis is the locus of the aerodynamic centers of the sections and lies in the $x-y$ plane. The lift l and the coefficient c_{l} of any section along the span are represented in figure 1.

A typical section with the aerodynamic center located at a distance x from the y axis has a moment arm of

$$
x \cos \alpha_{2}
$$

and a pitching moment about the lateral axis (fig. 1) due to the additional lift force of

$$
m_{l_{0}}=-x \cos \alpha_{l_{a}} l_{a}
$$

but the lift increment of any section is

$$
l_{a}=c_{l_{1}, q c}
$$

and the pitching moment for the entire wing is obtained from

$$
M_{l_{0}}=-2 q \cos \alpha_{\alpha} \int_{0}^{b / 2} c_{l_{0}} c x d y
$$

(a) Determinastion of twist.

(b) Stralght-tegor wing with rounded tips.

(c) Distorted alliptical wing.

Fiouas 1.-Form of wings.
Pitching-moment coefficients for the entire wing will be based on a chord length of S / b so that

$$
C_{m}=\frac{M b}{q D^{2}}
$$

The pitching-moment coefficient due to the additional lift forces then becomes

$$
C_{m_{l_{e}}}=-\frac{2 b}{S^{2}} \cos \alpha_{1} \int_{0}^{b / 2} c_{t_{e}} c x d y
$$

The additional lift forces have a centroid through which the lift may be considered to act. This point is the aerodynamic center of the wing and its x coordi-
nate will be designated $x_{\text {a.c. }}$. (See fig. 1.) This distance corresponds to d in reference 4 . The term $C_{m_{l}}$. then may also be expressed

$$
C_{m_{l_{\bullet}}}=-\left(x_{a . c .} \cos \alpha_{t}\right) \frac{b}{S} C_{L}
$$

If the previous expression for $C_{m_{l}}$ is used, $x_{a . c .}$ is obtained as a fraction of S / b by

$$
\begin{equation*}
\frac{x_{a, c}}{S / b}=\frac{\frac{2 b}{S^{2}} \int_{0}^{b / 2} c_{c} c x d y}{C_{L}} \tag{2}
\end{equation*}
$$

The moment due to the drag forces has been omitted because it is rclatively small, except for wings with large amounts of sweepback or dihedral.

The pitching moment of the basic lift forces is a couple and is therefore independent of the axis about which it is determined. The lateral axis was used to facilitate computation but, when the pitching moment is used, it is convenient to consider it constant about an axis through the aerodynamic center. According to the method previously used, the pitching-moment coefficient due to the basic lift forces is

$$
\begin{equation*}
C_{m_{L_{0}}}= \pm \frac{2}{S^{2}} b \int_{0}^{b / 2} c_{c_{4}} c x d y \tag{3}
\end{equation*}
$$

The $\cos \alpha_{(L L-0)}$ (the cosine of the angle of zero lift of the wing measured from the root chord) has been omitted because it is practically equal to unity.

In addition to the basic lift forces, the pitching moment of each section also contributes to the pitching moment of the wing, which is obtained by

$$
\begin{equation*}
C_{m_{s}}=\frac{2 b}{S^{2}} \int_{0}^{b / 2} c_{m_{m_{a, c}}} c^{2} d y \tag{4}
\end{equation*}
$$

The total moment about the aerodynamic center is then the sum of the two foregoing parts

$$
C_{m_{x, c .}}=C_{m_{l}}+C_{m_{s}}
$$

Formulas in terms of the coefflients of the Fourier series.-In order to obtain data from the foregoing formulas, the spanwise distribution of the lift coefficient (following Glauert) was expressed as the Fourier scrics:

$$
c_{1}=\frac{4 b}{c} \Sigma A_{n} \sin n \theta
$$

where θ is related to the distance ulong the span (fig. 1) by $y=(-b / 2) \cos \theta$ and only odd values of n are used. When c_{t} is expressed in the foregoing manner, it is possible to obtain the induced angle of attack in the form

$$
\alpha_{i}=\Sigma n A_{n} \frac{\sin n \theta}{\sin \theta}
$$

Also the coefficients A_{n} may be expressed in the form

$$
A_{n}=B_{n} \alpha_{a,}+C_{n} \epsilon
$$

where $\alpha_{a_{s}}$ is the ahsolute angle of attack of the root section; that is, the angle of attack of the root section, measured from its direction of zero lift, and ϵ is the wing twist measured hetween the zero-lift directions of the root and tip sections.

When the preceding expressions for c_{t} and α_{t} are suhstituted in the foregoing formulas, the characteristics are ohtained in terms of the coefficients B_{n} and C_{n}, which in turn are grouped into factors.

From (1) the induced-drag coefficient may he ohtained in the form:

$$
C_{D_{1}}=\frac{C_{L}^{2}}{\pi A u}+C_{L} \epsilon a_{0} v+\left(\epsilon a_{0}\right)^{2} w
$$

where A is the aspect ratio, and

$$
\begin{aligned}
& \frac{1}{u}=\frac{1}{B_{1}^{2}}\left[\sum_{n=3,5,7} n B_{n}^{2}\right]+1 \\
& v=\frac{2}{m_{0} B_{1}}\left[\sum_{n=3}^{n} B_{n}\left(C_{n}-\frac{C_{1}}{B_{1}} B_{n}\right)\right] \\
& w=\frac{\pi A}{m_{0}^{2}}\left[\sum_{n=3.5,7} n\left(C_{n}-\frac{C_{1}}{B_{1}} B_{n}\right)^{2}\right]
\end{aligned}
$$

In the determination of the aerodynamic-center position, the wing axis is considered to he a straight line and the angle of sweephack is β (fig. 1), then

$$
x=|y| \tan \beta
$$

and from (2) the x coordinate of the aerodynamic center is ohtained as
where

$$
\frac{x_{a, c} .}{S / b}=H A \tan \beta
$$

$$
\begin{aligned}
& H=\frac{2}{\pi B_{1}}\left(\frac{B_{1}}{3}+\frac{B_{3}}{5}-\frac{B_{8}}{21}+\frac{B_{7}}{45}+\ldots\right. \\
& \left.\frac{B_{n}}{4}\left\{\frac{\sin [(n-2) \pi / 2]}{(n-2)}-\frac{\sin [(n+2) \pi / 2]}{(n+2)}\right\}\right)
\end{aligned}
$$

From (3) the moment due to the hasic lift forces becomes

$$
C_{m_{l_{0}}}=-G \epsilon a_{0} A \tan \beta
$$

where a_{0} is the section lift-curve slope for the wing and

$$
G=\frac{2 A}{m_{0}}\left[\left(\frac{C_{3}}{5}-\frac{C_{5}}{21}+\frac{C_{7}}{45} \ldots\right)-\frac{C_{1}}{B_{1}}\left(\frac{B_{3}}{5}-\frac{B_{5}}{21}+\frac{B_{7}}{45} \ldots\right)\right]
$$

(The term $C_{m_{i_{0}}}$ is equal to $C_{m_{T}}$ in reference 4.)
Also from equation (4) the pitching luument of the wing due to the pitching moments of the sections is expressed as

$$
C_{m_{z}}=E c_{m_{a}, \varepsilon}
$$

where $c_{m_{\text {c. } . ~}}$ is constant across the span and

$$
E=\frac{2 b}{S^{2}} \int_{0}^{b / 2} c^{2} d y
$$

In addition to the foregoing formulas, the following formulas were ohtained in terms of B_{n} and C_{n} for other
characteristics. The hasic and additional lifts at any point along the span were expressed hy the dimensionless quantities

$$
L_{0}=\frac{4 A}{m_{0}}\left[\sum_{n=3}\left(C_{n}-\frac{C_{1}}{B_{1}} B_{n}\right) \sin n \theta\right]
$$

and
so that

$$
c_{\iota_{0}}=\frac{\epsilon a_{0} S}{c b} L_{0}
$$

and

$$
c_{t_{a 1}}=\frac{S}{c b} L_{a}
$$

The lift-curve slope was ohtained in the form

$$
a=\frac{\pi A B_{1}}{57.3}
$$

By the introduction of the slope for an elliptical wing, a may he expressed

$$
a=f \frac{a_{0}}{1+\frac{57.3 a_{0}}{\pi A}}
$$

where

$$
f=\frac{a}{a_{0}}\left(1+\frac{57.3 a_{0}}{\pi A}\right)
$$

The angle of zero lift was ohtained in the form

$$
\frac{\alpha_{o_{s}}}{\epsilon}=-\frac{C_{1}}{B_{1}}=J
$$

The angle of attack of a wing may then hy given hy

$$
\alpha_{s}=\frac{C_{L}}{a}+\alpha_{\vartheta_{0}}+J \epsilon
$$

where α_{1} is the angle of attack measured from the chord of the root section, and $\alpha_{1_{0}}$, is the angle of zero lift of the root section.

The general formulas and the factors used with them have now heen outlined. The manner of ohtaining the data will he completed hy explaining the method of finding the coefficients B_{n} and C_{n} used in computing the factors.

Determination of the coeffleients of the Fourier series. -The coefficients B_{n} and C_{n} depend on the shapc of the wing. The two wing shapes used are shown on figure 1. Wing (b) has a straight taper plan form with rounded tips and (c) an elliptical plan form. Thè tapered wing is shown with sweepback and the clliptical wing without, hut either wing may or may not have sweepback. The rounded tip of the tapered wing is formed within a trapezoidal tip of length c_{i}, and the taper of the wing is determined hy the tip to root chord ratio c_{t} / c_{8}. The aerodynamic centers of the airfoil sections lie on a straight line across the semispan and form the wing axis. The elliptical wing is formed hy distorting an ellipse until the wing axis hecomes straight. In order to determine the wing axis, the
aerodynamic centers of the airfoil sections were taken at the quarter-chord point. The straight wing axis may then be given sweepback with each chord moving parallel to its original position. The same process would be used to change the sweepback of the tapered wing.
For the wings considered, the twist varies linearly from root to tip and the total angle of twist is ϵ. As shown in figure $1, \epsilon$ is the twist measured between the zero-lift directions of the root and tip sections.
Taperod wing.-For the tapered wing the coefficients B_{n} and C_{n} were determined from the equation

$$
\begin{equation*}
\alpha_{a}=\Sigma A_{n} \sin n \theta\left(\frac{4 b}{m_{0} c}+\frac{n}{\sin \theta}\right) \tag{5}
\end{equation*}
$$

where α_{a} is the absolute angle of attack at any section; that is, the angle of attack measured from the zero-lift direction for the section. The coefficients B_{n} and C_{n} are related to A_{n} by

$$
A_{n}=B_{n} \alpha_{a_{1}}+C_{n} \epsilon
$$

where $\alpha_{d_{s}}$, is the absolute angle of attack of the root section. The value of m_{0} used in the preceding equation was 5.79 per radian, which approximates the liftcurve slope of good airfoil sections. For the linear taper α_{a} becomes

$$
\alpha_{\varepsilon}=\alpha_{\alpha_{\mathrm{q}}}+\epsilon \cos \theta
$$

For a wing of any particular aspect ratio and taper ratio, equation (5) was satisfied at four points along the semispan by the usual method (except for $c_{4} / c_{3}=0$ for which six points were necessary to obtain sufficient accuracy), and values of B_{n} and C_{n} for $n=1,3,5$, and 7 were found.

The elliptical wing.-For the elliptical wing the foregoing fundamental equation may be simplified and a new series of coefficients, independent of aspect ratio, may be obtained. The coefficient A_{n} for $n=3,5,7 \ldots$ ∞ may be obtained in the form

$$
A_{n}=\frac{k_{n} \epsilon}{\frac{\pi A}{m_{0}}+n}
$$

where k_{n} is determined from

$$
\begin{aligned}
& \cos \theta=k_{3}\left(1+\frac{\sin 3 \theta}{\sin \theta}\right)-k_{5}\left(1-\frac{\sin 5 \theta}{\sin \theta}\right) . \\
& \quad+k_{7}\left(1+\frac{\sin 7 \theta}{\sin \theta}\right)
\end{aligned}
$$

The factors for the elliptical wing then take the form

$$
\begin{aligned}
& L_{b}=4 A\left[\sum_{n=3,5,7,7} \frac{k_{n}}{\pi A+n m_{0}} \sin n \theta\right] \\
& L_{a}=\frac{4}{\pi} \sqrt{1-\left(\frac{y}{b / 2}\right)^{2}}
\end{aligned}
$$

$a=\frac{a_{0}}{1+\frac{57.3 a_{0}}{\pi A}}$
$f=1$
$J=-k_{3}+k_{5}-k_{7} .$.
$u=1$
$v=0$
$w=\frac{\pi A}{m_{0}^{2}}\left[\sum_{\substack{n=3.5,7,7 \\ \cdots, \ldots,}} \frac{n k_{n}{ }^{2}}{\left(\frac{\pi A}{m_{0}}+n\right)^{2}}\right]$
$H=\frac{2}{3 \pi}$
$G=\frac{2 k_{3}}{5 \pi\left(1+\frac{3 m_{0}}{\pi A}\right)}-\frac{2 k_{5}}{21 \pi\left(1+\frac{5 m_{0}}{\pi A}\right)}+\frac{2 k_{7}}{45 \pi\left(1+\frac{7 m_{0}}{\pi A}\right)}-\cdots$
$E=\frac{32}{3 \pi^{2}}$ ($c_{m_{\text {a.c. }}}$ constant along the span)
The foregoing factors were obtained for the elliptical wing and for a straight-taper wing with trapezoidal tips for a range of aspect ratios from 3 to 20 and of taper ratios from 0 to 1 . The factors were also obtained for the tapered wing with rounded tips for a sufficient number of aspect ratios and taper ratios so that the complete range could be covered using the factors for the wing with trapezoidal tips as a guide. Cross plots were then made to obtain figures 2 to 9 and the values for wings with rounded tips presented in tables I and II. Although the factors become less reliable as the aspect ratio is decreased, it was considered desirable to extrapolate the curves to an aspect ratio of 2 as the factors in the low-aspect-ratio range may be of use in the absence of other data. Additional spanwise liftdistribution data computed for the elliptical wing are given in table III.

USE OF TABLES AND CHARTS

In order to find tbe characteristics of a wing having a straight taper and rounded tips or having an elliptical plan form, the tables and charts may be used directly.

The properties of the wing should first be determined; that is, the taper ratio c_{t} / c_{1}, aspect ratio A, span b, the area S, the aerodynamic twist ϵ in degrees, the angle of sweepback β, and the average value of section liftcurve slope, as well as the section lift-curve slope a_{0}, the section pitching-moment coefficient $c_{m_{a, ~},}$, and the chord c at convenient stations along the semispan.

The chord and a_{0} should be found at the spanwise stations given in tables I and II to facilitate finding the spanwise lift distribution. Then, for the values of c_{t} / c_{t} and A, values of L_{0} and L_{a} may be found from tables I and II by interpolation if necessary. The section lift coefficients $c_{l_{b}}$ and $c_{a t a}$ are then found for each station along the semispan from

$$
\begin{aligned}
& c_{l_{b}}=\frac{\epsilon a_{0} S}{c b} L_{b} \\
& c_{\mathrm{a} a \mathrm{a}}=\frac{S}{c b} L_{a}
\end{aligned}
$$

Fiade 2.-Chart for detarmining utt-curve nlope.

$$
\varepsilon-f=\frac{\alpha_{0}}{1+\frac{37.3 \mathrm{a}_{0}}{\nabla A}} \quad \quad 81=57.3 \mathrm{a}
$$

Figure 4.-Cbart for detecmining induced-drag fector u.

Frover a-Chart for determining induced-drag factor to.

Fiouse 5.-Chart for determining Indoced-drag fector $\%$.

Fioves 7.-Chart for determining pitching moment due to section momest.
$C_{a,}=F c_{a_{0}}$.
For em, , constant seroes the spon.
and c_{l} for any value of C_{L} for the wing is obtained from

$$
c_{i}=c_{i_{0}}+C_{L} c_{i_{a l}}
$$

Figulax 8.-Chart lor determining pitching moment dus to besic lift forces. $C a_{\boldsymbol{1}_{\mathbf{b}}}=-G \cos A \tan \rho$.

FIGURE 9.-Chart for determining aerodynamic-center position.

$$
\frac{r_{\text {a.c: }}}{S / b}-I I A \tan \beta .
$$

The actual basic, additional, and total lifts for any section of the wing may then be obtained from

$$
\begin{aligned}
& l_{b}=c_{i_{0}} q c \\
& l_{a}=C_{L} c_{i_{a}} q c \\
& l=c_{i} q c
\end{aligned}
$$

Values of l may be computed for the various spanwise stations and the curve of the span lift-distribution may be plotted. Typical semispan lift-distribution curves are shown in figure 10.

The semispan induced angle-of-attack distribution may be obtained from

$$
\alpha_{i_{a}}=\alpha_{a}-\frac{c_{d}}{a_{0}}
$$

where

$$
\alpha_{a}=\alpha_{a_{z}}+\frac{y}{b / 2} \epsilon
$$

$$
\alpha_{a_{s}}=\frac{C_{L}}{a}+J_{\epsilon}
$$

The remaining characteristics are obtained simply by finding the required factor for the desired values of $c_{t} / c_{\text {a }}$ and A from the charts and by computing the characteristics from the formulas previously given, using the a verage value of a_{0} where a_{0} is required. The formulas are summarized here for convenience.

Lift-curve slope:

$$
a=f \frac{a_{0}}{1+\frac{57.3 a_{0}}{\pi A}}
$$

Angle of attack corresponding to any C_{L} :

$$
\alpha_{s}=\frac{C_{L}}{a}+\alpha_{t_{0}}+J \epsilon
$$

Angle of zero lift:

$$
\alpha_{s_{(L-0)}}=\alpha_{t_{2}}+J \epsilon
$$

Induced-drag coefficient:

$$
C_{D_{i}}=\frac{C_{L}{ }^{2}}{\pi A u}+C_{L} \epsilon a_{0} u+\left(\epsilon a_{0}\right)^{2} w
$$

Fiaure 10.-Typical semispan lift distribution. $\quad C_{l}=1.2$.
Pitching-moment coefficient about an axis through the aerodynamic center:

$$
\begin{aligned}
C_{m_{a}, . .} & =C_{m_{1}}+C_{m_{t_{b}}} \\
C_{m_{s}} & =E C_{m_{a . a c} . \dot{s}} \\
C_{m_{i_{b}}} & =-G \epsilon a_{0} A \text { tan } \beta
\end{aligned}
$$

Aerodynamic-center position (x coordinate):

$$
\frac{x_{\text {a.c. }}}{S / b}=H A \tan \beta
$$

Although $C_{m_{z}}$ may usually be determined from the foregoing formula, equation (4) should be used if $c_{m_{a, c}}$ varics considerably across the span.
Hlustrative example.-In order to illustrate the method of using the charts, an example will be worked
out for a wing with straight taper and rounded tips having the following characteristics:

$$
\begin{aligned}
A & =6 \\
c_{2} / c_{3} & =0.5 \\
b & =40 \text { feet } \\
S & =266.7 \mathrm{sq} . \mathrm{ft} . \\
\beta & =10^{\circ} \\
C_{L} & =1.2 \\
q & =10 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft} .
\end{aligned}
$$

Root section:

$$
\begin{aligned}
& \text { N. A. C. A. } 4415 \\
& a_{0_{3}}=0.097 \\
& \alpha_{i_{3}}=-3.8^{\circ} \\
& c_{m_{\text {c.e.f }}}=-0.083
\end{aligned}
$$

Construction tip section:

$$
\begin{aligned}
& \text { N. A. C. A. } 2409 \\
& a_{0 t}=0.099 \\
& \alpha_{i_{0}}=-1.7^{\circ} \\
& c_{m_{a . c .}}=-0.044
\end{aligned}
$$

The angle of twist macasured between the chords of the root and construction tip sections is -5° (washout). Then, by the use of the angles of zero lift of the root and tip sections and by reference to figure 1 , the angle of aerodynamic twist is determincd to be -7.1°.

The chord at several stations along the semispan and the calculation of the lift distribution are given in table IV. In the table, a_{0} and $c_{m_{\text {c.e. }}}$ are assumed to have a linear variation along the semispan. Values of L_{0} and L_{c} were obtained from tables I and II for an aspect ratio of 6 and a taper ratio of 0.5 and the basic, additional, and total lift distributions were computed and plotted in figure 10. The pitching-moment coefficient $c_{m_{\text {a c. }}}$. varies so much along the semispan that C_{m}, cannot be found by use of the factor E but must be found from (4). Accordingly, $c_{m_{c . c} . c} c^{2}$ is plotted against y in figure 11 and $C_{m,}$, is found from the area under the curve to be -0.072 .

Figuar 11.-Graphlcal determination of section pitching moment.

$$
C_{m,}=\frac{2 b}{S} \int_{1}^{1 / p} c_{n, \ldots}, c^{2} d y=-0 . \pi / 2
$$

From figures 2 to 9 and the equations on page 7 the remaining factors and characteristics are determined to he

$$
\begin{array}{cr}
f=0.998 & a=0.0755 \\
J=-0.408 & \alpha_{s}=15.0 \\
u=0.995 & \alpha_{z_{(L-0)}}=-0.9 \\
v=0.0001 & C_{D_{i}}=0.0786 \\
w=0.0039 & C_{m_{b}}=0.015 \\
G=0.0199 & x_{a . c .}=1.51 \mathrm{ft.} \\
H=0.214 & C_{m_{\text {a.c. }}}=-0.072+0.015=-0.057
\end{array}
$$

Method for wing of special form.-lf it is desired to find the characteristics of a wing having a chord distribution that lies between the cloord distributions of the tapered and elliptical wings, such as a wing with a constant-chord center section, an interpolation may be made between the values for the tapcred and elliptical wings to find most of the characteristics.
The lift distribution for such wings may be found by an approximate method that has becn tried for a few wings having parallel center sections and has given satisfactory results. The metliod has been taken from refercnce 5 with the symbols converted to the notation of this report. Approximate values of L_{a}, which will be designated $L_{a}{ }^{\prime}$, may be calculated from

$$
L_{a}^{\prime}=\frac{\sqrt{1-\left(\frac{y}{b / 2}\right)^{2}}}{\frac{\sqrt{1-\left(\frac{y}{b / 2}\right)^{2}}}{\frac{m_{0} c}{b / 2}}+\frac{3}{8}}\left(\frac{A}{2} \alpha_{a}+\frac{1}{\pi}\right)
$$

where

$$
\alpha_{a}=\frac{8}{\pi A}\left[\left(\frac{\sqrt{1-\left(\frac{y}{b / 2}\right)^{2}}}{\frac{m_{0} c}{b / 2}}\right)_{\text {mean }}+\frac{1}{8}\right]
$$

The procedure is to choose a number of points at convenient intervals along the semispan (12 points should be sufficient for the usual plan forms); then from the values of c at those points the mean valuc of $\frac{\sqrt{1-\left(\frac{y}{b / 2}\right)^{2}}}{\frac{m_{0} c}{b / 2}}$ is calculated. The value of α_{a} may then be found and from the values of y and $c, L_{a}{ }^{\prime}$ at each point along the semispan may be computed. The values of $L_{\mathrm{a}}{ }^{\prime}$ should correspond to a C_{L} approximately equal to 1 . The actual C_{L} may be found from

$$
C_{L}=\int_{0}^{1} L_{a} d\left(\frac{y}{b / 2}\right)
$$

and C_{L} may be convenicntly found from the area under a curve of $L_{a}{ }^{\prime}$ plotted against $\frac{y}{b / 2}$. Finally, L_{a} may be found from $L_{a}=L_{a}{ }^{\prime} / C_{L}$. Values of $c_{c_{u 1}}$ may then be calculated by the previously indicated method and, if desired, $C_{D_{i}}$ and $\frac{x_{a \cdot c},}{S / b}$ may be found fron cquations (1) and (2)

If a wing has considerable dihiedral or a curved wing axis, an integration may be made directly from the section characteristics. For this purpose, the best procedure would be to resolve the section values $c_{i_{0}}$ and $c_{d_{0}}$ into components along and parallel to the x and z axcs, where the z axis is perpendicular to the x axis and lics in the planc of symmetry. Owing to dihcdral, therc will be a vertical coordinate of the aero-
dynamic center and a pitching moment ahout the acrodynamic center of the force components in the x direction. The coordinates of the aerodynamic center and of the pitching moment ahout it may he found from integrations like (2) and (3) hy suhstituting the appropriate values of the x and z force components. For example, $x_{\text {a.c. }}$. would be found from

$$
x_{a . c . c}=\frac{\frac{2}{S} \int_{0}^{b / 2} c_{t_{a}} c x d y}{C_{z_{a}}}
$$

where

$$
C_{z_{a}}=\frac{2}{S} \int_{0}^{\Delta / 2} c_{z_{a}} c d y
$$

The values of $x_{\text {a.c. }}$ and $C_{z_{a}}$ may he found hy plotting
to the desired angle of twist and the sections hetween the root and tip were then formed hy using straight lines hetween corresponding stations of the root and tip sections. Formation of the wings in this manner results in a nonlinear distrihution of twist along the semispan. In plan view the quarter-chord points of the sections lie on a straight line across the semispan; the sweephack was measured hetween this line and the lateral axis.

Three different amounts of sweephack, $0^{\circ}, 15^{\circ}$, and 30°, and three types of airfoil sections, symmetrical, camhered, and reflexed, were used.
As the wings differ primarily in airfoil section, sweepback, and twist, a convenient designating number

$c_{z_{a}} c x$ and $c_{z_{g}} c$ against the distance along the semispan and finding the area under the curves.

tests of tapered wings

In order to provide test data on tapered wings, including wings with sweephack and twist, and to provide a check on the previously outlined method of computing characteristics, nine tapered wings were tested. The plan forms and sections of the wings are shown in figures 12 to 20 . The aspect ratio of all the wings was 6 ; the taper ratio of eight of the wings was 0.5 and of one wing was 0.25 . For all the wings the thickness ratio of the root section was 15 percent and of the tip sections 9 percent. The tip section was set
was used to distinguish the wings, such as $24-30-8.50$. In this numher 24 designates the N. A. C. A. airfoil mean line, i. e., 2 means 0.2 chord maximum camber and 4 that the maximum camher is at 0.4 chord; 30 gi- s. the sweephack in degrees; and 8.50 gives the washout in degrees.

The wings are listed in tahle V. The first two wings have no sweephack and no twist and differ only in airfoil section. The next two have increased sweephack. The five remaining wings are examples of various methods of comhining sweepback, twist, and airfoil section to ohtain wings having a small positive pitching moment; such wings would he suitahle for tailless airplanes. The amounts of twist and of

sweepback necessary to ohtain the desired pitching moment were determined by the method previously given for computing pitching moments, except that data for wings with trapezoidal tips were used. The 24-30-8.50 wing has sufficient twist to ohtain the desired pitching moment using a cambered section and 30° sweephack. The $2 \mathrm{R}_{1}-15-8.50$ wing has the same twist hut half the sweepback and a reflexed airfoil section to obtain a positive pitching moment. The $2 \mathrm{R}_{2}-15-0$ airfoil has no twist and increased reflex. A symmetrical section together with twist is used for the $00-15-3.45$ wing, while the last wing has the same twist and sweephack as the previous wing but a taper ratio of 0.25 .

The variahle-density wind tunnel in which the tests were made is descrihed in reference 6 together with the method of making tests. The lift, drag, and pitching moment of the wings were measured at a tank pressure of 20 atmospheres.

The results of the tests, corrected for tunnel-wall effect, are given in the form of dimensionless coefficients and are plotted in figures 12 to 20 . The liftcurve peak is given for two values of effective Reynolds Number to indicate the scale effect. The effective Reynolds Number, at which the maximum lift coefficients apply in flight, is the test Reynolds Numher multiplied by a turbulence factor, 2.64 .

In order to make possible a more accurate reading of drag coefficients than can be made from the plots against angle of attack, a drag coefficient has been plotted against lift coefficient with the induced drag for elliptical span loading deducted; that is

$$
C_{D_{b}}=C_{D}-\frac{C_{L}^{2}}{\pi A}
$$

The coefficient $C_{D_{e}}$ is called the "effective profile-drag coefficient" and is useful for comparing the drag of tapered wings, as it includes with the true profile drag any additional induced drag caused hy a departure from the ideal elliptical lift distrihution. Notice should he taken that $C_{D_{d}}$ cannot he used like a profiledrag coefficient to compute the effect of change of aspect ratio hut applies only to the particular wings tested. The values of $C_{D_{c}}$ have been corrected to the effective Reynolds Numher (references 7 and 8) by allowing for the reduction in skin-friction drag due to the change from the test to the effective Reynolds Numher. The reduction amounted to $C_{D}=0.0011$.

The pitching-moment coefficients plotted against the lift coefficient are given about an axis through the aerodynamic center of the wings in order to ohtain a practically constant value of pitching-moment coefficient. The aerodynamic center was determined from the slope of the test pitching-moment curve. The location of the aerodynamic center is given on the plots hy its distance from the leading edge and ahove the chord of the root section. These distances are given as fractions of the ratio of area to span, S / b.

The shapes of the lift and pitching-moment curves near maximum lift provide information on the nature of the stalling of the wings. The $24-0-0$ wing has a sharp drop in lift after the maximum, indicating that stalling occurs almost simultaneously over a considerable portion of the wing. Also the $C_{m_{c . c}}$. after the stall is like that of normal wings. In contrast to this wing, the $24-30-0$ wing, which has the same airfoil sections but 30° sweephack, has a rounded lift-curve peak, indicating that stalling occurs progressively along the span. The pitching-moment coefficient is positive after the stall, which shows that stalling hegins at sections hehind the aerodynamic center. Washout, as in the case of the 24-30-8.50 wing, reduces the tendency to stall of sections behind the aerodynamic center, which may he verified hy reference to the $C_{m_{a, c}}$ curve. Stalling, however, still hegins hehind the aerodynamic center, as the $C_{m_{\text {a.c. }}}$ is positive after the stall. All the wings, except the $24-30-0$ and $24-30-8.50$, are stahle after the stall.

The important test results for all the wings are summarized in tahle V . The coordinates of the nerodynamic center are expressed as fractions of S / b. The $24-0-0,24-15-0$, and $24-30-0$ wings show a decrease of $C_{L_{m a x}}$ as the sweephack is increased. For the 24-308.50 wing, the effect of sweephack is partly compensated hy twist, which reduces the tendency to stall of the low Reynolds Number sections near the tips and therefore increases $C_{L_{\text {max }}}$. The drag, however, is also increased. Of the wings designed to have a small positive $C_{m_{0}}$, the $2 \mathrm{R}_{2}-15-0$ wing has the highest ratio of $C_{L_{\text {max }}} / C_{D_{s_{m i n}}}$.

COMPARISON OF TEST AND CALCULATED RESULTS

Pitching-moment characteristics, lift-curve slope, and drag.-The lift distribution and other theoretical data used to determine the desired pitching-moment coefficient of the wings are now used to predict other characteristics. In addition to $C_{m_{0}}$, the aerodynamiccenter position, the angle of zero lift, and the lift-curve slope have heen calculated. The values of a were calculated from the formula in figure 2. In this formula a value of a_{0} corresponding to the a_{0} for the N. A. C. A. 0012 and 2412 sections at a Reynolds Number of $3,000,000$ was used, inasmuch as the effect of variations of a_{0} with section and Reynolds Number is small. As the value of a_{0} used in the formula was derived from tests of rectangular wings, a correction for square tips has heen applied in order to ohtain a hetter value of the section lift-curve slope. The correction, derived from tests of wings with rounded tips, is given in reference 9.

The calculated values of the pitching-moment coefficient at zero lift, the aerodynamic-center position, the angle of zero lift, and the lift-curve slope are generally in good agreement with the test values (tahle VI). The agreement of the pitching-moment coefficient at zero lift and the aerodynamic-center position, which are
calculated from the basic and additional lift distributions, rsspectively, indicate that the theoretical lift distributions must also agree reasonably well with the actual distributions.

In addition to the foregoing characteristics, the drag has been calculated for the $00-0-0$ and $24-0-0$ airfoils. The comparison between calculation and experiment is based on values of the effective profile-drag coefficient. The calculated values were obtained from

$$
C_{D_{0}}=\frac{2}{S} \int_{0}^{b / 2} c_{d_{0}} d d y+C_{D_{1}}-\frac{C_{L}^{2}}{\pi A}
$$

In order to find the value of the integral, values of $c_{a_{0}}$ were determined as follows at several points along the semispan for convenient values of total wing C_{L}. For each value of C_{L} the distribution across the semispan of c_{i}, Reynolds Number, and thickness ratio were calculated. Then; for each point on the semispan, $c_{a_{0}}$ was found for the appropriate c_{t}, Reynolds Number

Figurz 21.-Determination of the C_{L} at which a tapered wing begins to stall.
and thickness ratio, using data that are expected to be published soon in a report concerning scale effect on airfoils. From the values of $c_{a_{0}}$, a curve of $c_{c_{0}} c$ was plotted against y and the value of the integral was determined from the area under the curve. The value of $C_{D_{t}}$ was obtained for the formula prsviously given. The calculated and test values of C_{D} are compared in figures. 12 and 13. The agreement is considered good.
Estimation of maximum lift coefflcient. Λ final characteristic to be estimated is the maximum lift coefficient, which should be nsarly equal to the C_{L} at which stalling begins. The method of determining the C_{L} at which stalling begins is demonstrated for the $00-15-3.45$ (4:1 taper) wing in figure 21. The lift coefficient at which each section along the semispan stalls (shown by the dashed curve) was obtained by
using the maximum lift coefficients of the symmetrical sections given in reference 10 but with the valuss of $C_{L_{\text {max }}}$ increased 3 percent. This correction was made for the same reason that a_{0} was corrected; that is, to allow for the effect of square tips and thereby to obtain a closer approach to true section characteristics. Better section characteristics will be obtained as a result of an in vestigation in progress but the correction used is sufficiently accurate for the present purpose. As the values of $C_{L_{m a x}}$ given in reference 10 were for a Reynolds Number of $3,000,000$, correction increments were applied to correct the values of $C_{L_{\text {max }}}$ to the actual Reynolds Number of each section along the span. Correction increments applying to various airfoil sections are expected to be published in the previously mentioned report concerning scale effect on airfoils.

The curves of c_{i} distribution for several values of wing C_{L} given in figure 21 were determined by the method previously given for finding c_{l} distribution. As soon as the $c_{\text {; }}$ curve becomes tangent to the stalling $c_{i_{\text {mez }}}$ curve, the section at that point reaches its maximum lift coefficient and stalling should soon spread over a considerable part of the wing. Thus, for the 00-153.45 (4:1 taper) wing, stalling is indicated as beginning near the tips, at a C_{L} of 1.31 . Stalling, however, is so close to the tip that it may be modified by the tip vortex. The measured $C_{L_{\text {max }}}$ is 1.32 , but this value is probably low owing to the sweepback of the wing. This method, when applied to several other tapered wings without sweepback but having various taper ratios and aspect ratios, gave a stalling C_{L} that was within a few percent of the measured $C_{L_{m a r}}$ for all the wings; therefore, the method should prove useful for estimating the $C_{L_{\text {max }}}$ of tapered wings.
The 00-15-3.45 (4:1 taper) wing is an example of the harmful effect of excessive taper on $C_{L_{\text {max }}}$. Large taper not only tends to cause a low $C_{L_{\text {maz }}}$ but also tends to cause stalling near the tips, which results in poor lateral control at low speeds. Improvement could be obtainsd by using less taper and thicker sections near the tips.
Although all of the characteristics of tapered wings have not yet been satisfactorily calculated, it may be concluded that the following important aerodynamic characteristics-angle of zero lift, the lift-curve slope, the pitching-moment coefficient, the aerodynamiccenter position, and the span lift distribution-can be calculated with sufficient accuracy for engineering purposes.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., May 1, 1996.

REFERENCES

1. Glauert, H.: The Elements of Aerofoil and Airscrew Theory.

2. Glauert, H., and Gates, S. B.: The Characteristics of a Tapered and Twisted Wing with Sweep-Back. R. \& M. No. 1226, British A. R. C., 1929.
3. Hueber, J.: Die aerodynamischen Eigenschaften von doppeltrapezformigen Tragflugein. Z. F. M., 13. Mai 1933, 8. 249-251; 29. Mai 1933, S. 269-272.
4. Anderson, Raymond F.: Charts for Determining the Pitching Moment of Tapered Wings with Sweepback and Twist. T. N. No. 483, N. A. C. A., 1933.
5. Lippisch, A.: Method for the Determination of the Spanwise Lift Distrihution, T. M. No. 778, N. A. C. A., 1935.
6. Jacobs, Eastman N., and Ahbott, Ira H.: The N. A. C. A. Variable-Density Wind Tunnel. T. R. No.416, N. A. C. A. 1932

7. Jacobs, Esatman N., and Clay, William C.: Characteristics of the N. A. C. A. 23012 Airfoil from Teata in the Full-Scale and Variahle-Density Tunnels. T. R. No. 530, N. A. C. A., 1935.
8. Platt, Robert C.: Turhulence Factors of N. A. C. A. Wind Tunnels as Determined hy Sphere Teate. T. R. No. 558, N. A. C. A., 1936.
9. Jacobs, Eastman N., and Pinkerton, Robert M.: Tests of N. A. C. A. Airfoils in the Variahle-Density Wind Tunnel. Series 230. T. N. No. 567, N. A. C. A., 1936.
10. Jacohs, Eastman N., Ward, Kenneth E., and Pinkerton Robert M.: The Characteristics of 78 Related Airfoil Sections from Teata in the Variahle-Density Wind Tunnel. T. R. No. 460, N. A. C. A., 1933.

TABLE I.-BASIC SPAN LIFT-DISTRIBUTION DATA
VALUES OF L_{6} FOR TAPERED WINGS WITH ROUNDED TIPS $c_{6}=\frac{e a_{0} S}{c b} L_{b}$

TABLE I.-BASIC SPAN LIFT-DISTRIBUTION DATA-Continued VALUES OF L_{b} FOR TAPERED WINGS WITH ROUNDED TİPS $c_{b}=\frac{\epsilon a_{0} S}{c b} L_{b}$.

	0	0.1	0.2	0.3	0.4	0.5	0.5	0.7	0.8	0.9	1.0
	SPANWISE STATION ${ }_{\text {g/ }} \mathbf{y}$ - 0.6										
	0.052.070.059.099.119.188.139.188.158.159.170	0.0520.09.002.107.117.122.138.145152158162.169	0.061.008.081.092.114.124.121.148.160.114.180185	0.050.068.0001.102.112$: 1120$.132.14811811158158150	0.00000800000.001101111.130131.140145149.152.152		0.0500.088.000.106.110.119.130.141.143.145.147		0.049.068.080.106.110.118.138.139.140.148.141	0.049.008.000.000.100.117.178.132.138.1391199.140	
5...											
${ }_{8}^{8 .}$											
8.											
12.											
14.											
${ }^{18} 18 .$.											
20..........											
	GPANWISE STATION ${ }_{\text {6/2 }} \mathbf{0}-0.3$										
	0.0720.088106100115115128138130145152150161.168	0.070.008.113.125.142.148.100.170.182.197.201	0.080101101.130138148.158.178.188.200.205.215.200		0.08310412514011501180.180.205.208.223.230.237		0.0851091.128147.1173.182.201.214.223.239.249.248				
					ISE	Ion					
2.	0.0060	0.008	${ }^{0.072}$	0.073	0.075	0.076	0.075	0.075	0.075	0.075	0.075
	076	.008	111	. 118	. 121	$\ldots 122$. 123	.123	.123	. 123	123
	081	-177	122	131	. 138	-140	. 141	141	. 142	.142	. 142
	.000	.173	.146	:100	.15\%	:171	. 171	.172	${ }_{172}$:172	:172
8.	.092	. 1311	1183	170	. 170	. 182	. 283	188	. 185	1208	. 187
10.	. 1000	- 113	${ }_{18} 108$	188	${ }_{210}^{108}$	-2018	221	${ }_{225}^{205}$. 228	. 229	${ }_{230}^{210}$
	$1{ }^{102}$. 150	. 188	208	20	231	288	. 211	238	2245	248
18.	. 108	.151	. 107	${ }_{228}^{219}$. 241	298 200	. 233	2288	${ }_{71}^{298}$	${ }_{275}^{250}$
20....	107	. 172	211	238	248	. 200	. 288	:273	279	282	285
					JSE	ION					
	0.038	0.061	0.058	0.050	0.050	0.000	0.000	0.000	0.050	0.050	0.058
	.046	.072	. 073	. 08088	.009	. 0808	.000	. 0000	.080 .00 10	. 1079	. 0780
	. 052	083	. 106	. 107	.110	. 112	.113	. 114	.118	. 117	. 118
	${ }_{0}^{035}$	${ }_{0}^{088}$	-100	. 139	. 122	- 128	. 130	- 132	. 132	- 131	\bigcirc
	.057	. 100	-125	.140	. 146	$\bigcirc 152$	-138	. 160	.$_{161}$.100	-159
	.0088	-1127	${ }^{138}$	-152	. 162	. 171	. 178	. 180	:188	.187	- 183
	.000	. 112	. 151	-174	170	. 2802	:211	:215	. 218	221	. 222
	. 061	-121	-159	-184	. 203	- 212	\bigcirc	. 278	. 239	. 236	. 238
${ }_{20.18 .}^{18 .}$.061	:128	. 173	. 2193	. 223	. 230	:238	. 241	. 248	. 255	. 271
					ISE	TION	. 075				
	. 0.022	. 0303	. 046	. 0400	. 0062	. 0681	.0682	. 0.068	.053	. 0.068	
	.029	. 085	:085	.070	. 072	. 076	. 078	. 081	.082	. 083	.088
	.030	.000	. 0771	.0787	. 0892	.088	. 101	. 108	. 1107	. 1107	. 110
	.030	002	.081	-001	. 108	$\therefore 107$:112	- 120	$\bigcirc 121$.121	-121
${ }_{12}^{10 .}$.031	:007	.0005	:115	.115	. 124	. 138	.138	${ }_{1}^{100}$. 168	162
	. 031	. 071	. 102	. 127	. 143	. 155	-163	. 171	. 175	. 177	.178
18.......-	. 031	07	. 111	. 138	. 158	. 159	. 178	. 182	188	120	121
20..........	.032	:088	. 128	. 150	:178	:193	: 292	. 208	-210	. 212	. 213

TABLE II.-ADDITIONAL SPAN LIFT-DISTRIBUTION DATA VALUES OF $L_{\text {a }}$ FOR TAPERED WINGS WITH ROUNDED TIPS, $c_{i_{a 1}}=\frac{S}{c b} L_{a}$

TABLE II.-ADDITIONAL SPAN LIFT-DISTRIBUTION DATA-Continued VALUES OF L_{s} FOR TAPERED WINGS WITH ROUNDED TIPS, $c_{i_{s}}=\frac{S}{c b} L_{s}$

	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	SPANWISE STATION $\frac{1}{1 / 2}-0.9$										
$\frac{2}{3}$	0.378 .352 .351	0.465 .47	0.508 .500 .	0.525	0.531 .33 .480	${ }^{0.534}$	0. 535	0.536	0. 537	0. 5381	0.839 .578 .858
	$\begin{array}{r}.331 \\ .314 \\ \hline\end{array}$	- 4.435	$\begin{array}{r}\text { - } 498 \\ . \\ \hline 190 \\ \hline\end{array}$. 8331	. 364	- 569	-.381	- 300	- 308	- 603	-. 0.009
	. 3140	. 412	. 488	. 831	. 560	. 593	. 6000	. 6131	:822	. 850	. 638
	. 282	. 110	-484	. 535	. 578	. 603	. 628	. 646	. 600	. 678	-678
10.	. 288	${ }_{383}$. 472	${ }_{41}$. 500	. 622	. 688	:689	. 678	. 712	. 723
12.	. 233	. 370		. 412		. 639	. 689	. 6988	. 718	. 738	. 731
	. 245	. 3370	. 488	. 345	${ }_{000}^{\infty}$:488	. 6898	. 7175	. 7390	$\begin{array}{r}.739 \\ .780 \\ \hline\end{array}$. 8701
	. 234		. 473	. 585	618 625	-689	. 7170	. 743	. 773	:800	. 8278
			. 473	. 600	${ }^{62}$. 679	. 722	. 759	. 701	. 819	. 846
	SPANWISE STATION $\frac{1}{\text { b/2 }} \boldsymbol{\sim}$-0.25										
			0.334.339.32.34.346.346.346.346.349.351.357.344	0.358.350.378.384.392.403.410.419.433.439.499			0.381.407.128.469.481.495.525.542.363.581.588.613				
2.......	SPANWIEE STATION $\frac{1}{\delta / \mathbf{/ 2}}=0.975$										
	0. 132	0.172	0. 207	0. 238	0. 2283	0. 272	0. 274	0. 277	0. 279	0. 281	0.382 .301
	- 1107	-183	$\bigcirc \cdot 214$	- 2288.	- 2788	:304	- 3088	$\stackrel{+}{.311}$	-.315	- 319	- 322
	. 0808	. 1158	. 2129	$7{ }^{2}$. 314	. 332	340	340	. 350	. 3387	. 3.381
	. 081	- 1188		$\begin{array}{r}788 \\ \hline 28\end{array}$. 329	. 342	. 333	. 374	. 383	. 3731	
	009	:1888	238 23 23	. 238							. 400
	088		.	. 3200	. 376	. 413	. 413	- 438	488	-403	. 5173
	.006	. 1186					. 488	. 488			
	${ }_{0}^{063}$. 169	. 283	. 3.36	-412	: 481	. 402	:518	. 570	. 5803	. 380

TABLE III.-ADDITIONAL SPAN LFT-DISTRIBUTION DATA FOR THE ELLIPTICAL WING, $c_{l_{a 1}}=\frac{S}{c b} L_{s}$

$\frac{1}{b / 2}$	L_{0}
0	1.273
.2	1.248
.4	1.107
.8	1.019
.9	.74
.95	.355
.975	.398

TABLE IV.-CALCULATION OF LIFT DISTRIBUTION FOR ILLUSTRATIVE EXAMPLE

$\frac{1}{8 / 2}$	c	${ }^{4}$	L.	2.	${ }^{4} \mathrm{c}_{4}$	${ }^{*}{ }_{181}$	$C_{2} \times c_{61}$	c^{\prime}	4	i.	1	${ }^{6}=. .$.	$c_{=0} \times{ }^{\text {c }}$
0	9. 13	0.097	-0. 232	1.300	0.127	0.900	1. 140	1.207	11.59	106.0	115.6	-0.083	-8.92
. ${ }^{2}$	\%. 7.22	.0978	-.176 -.018 .18	1.236	.028	1.003	ci. ${ }_{\text {1. } 205}^{\text {1. } 218}$	1.303 1.2000	8. 88	90.0 9	-107.2	$=-.078$	-5.06
. 0	0.39	.098	. 101	. 983	-. 073	1.038	1. 212	1.109		78.6	${ }^{74.7}$	-.000	-2.45
8	${ }_{4}{ }^{5} 42$.099	. 1150	. 593	-.138 -165	. 984	1.145	1. 8007	-7. 48	${ }^{62} 8$	34.6	-. 083	-1.33
.95	3.43	:009	128	. 451	-. 175	87	1.053	878	-7.41	38.2	30.1	=. 048	-. 97
. 975	2.47	(099)	088	. 332	$-.167$. 826	1.076	. 909	-4. 13	28.0	22.4	-.045	$-.27$
1.0		(.098)							0	0	0	(-.04)	0

$$
\begin{aligned}
& { }^{2} \varepsilon_{101}-\frac{S}{c b} L_{0}-\frac{0.67}{c} L_{0}
\end{aligned}
$$

TABLE V.-SUMMARY OF TEST RESULTS [Effective Reynolds number, approximately 8, 000,000]

${ }^{1}$ The first eroup of numbera deesiguatos the mean line of the airfoll sectlons; the next croasp cives the angle of sweepback in degrees; the last group cives the angle of ${ }^{2}$ Coordinaten of the serodynamio ceanter: p is the distance from the lesding edge of the root chord; end h is the distance above the root chord.

TABLE VI.-COMPARISON OF CALCULATED AND EXPERIMENTAL VALUES

Wing	c_{m}		$\frac{I_{4.0 .0}}{S / 6}$		$*_{\text {(l- }}{ }^{\text {a }}$		${ }^{*}$	
	Calculated	Experf: mental	Calculated	Exparf: mpatal	$\begin{aligned} & \text { Calcu- } \\ & \text { listed } \end{aligned}$	Expermantal	Calcu lated	Exper: mental
00-00..........		0	-	-0.014	,	,	0.074	0.075
24-0-0 \ldots........	-. 043	-. 0.040		-. 022	-1.7	-1.7	. 074	. 074
24-130-0..........	-.043	=-.043	. 744	. 778	-1.7	-1.9	. 074	. 075
2-30-8.60.	. 010	. 002	. 744	. 788	. 9	. 7	. 074	. 076
2R R^{1}-15-8.50...	. 008	. 003	. 345	. 348	1.1	1.2	. 074	. 078
2R	. 004	. 004	. 345	. 351	-6	-7	. 074	. 078
00-15-3.46.	. 010	. 007	. 345	. 346	1.1	1.0	. 074	. 076
00-15-3.45(4-1)		. 005	. 34	. 334		. 7	. 075	. 076

