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Determination of the coefficients of Langevin models for inhomogeneous
turbulent flows by three-dimensional particle tracking velocimetry
and direct numerical simulation
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Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

�Received 24 August 2006; accepted 25 January 2007; published online 13 April 2007�

A promising and, in terms of computer power, low-cost way of describing flow properties such as
turbulent diffusion is by Langevin models. The development of such models requires knowledge of
Lagrangian statistics of turbulent flows. Our aim is to determine Lagrangian statistics of
inhomogeneous flows, as most turbulent flows found in practical applications are inhomogeneous.
The present paper describes how a Lagrangian measurement technique, three-dimensional particle
tracking velocimetry, has been developed and applied to the most common example of
inhomogeneous flows: turbulent pipe flow. A new direct numerical simulation �DNS� code has been
developed and experimental results have been compared with results of this DNS code. The results
concern Eulerian and Lagrangian velocity statistics at two Reynolds numbers. Based on these,
coefficients of the Langevin model have been determined and physical consequences for Langevin
modeling and turbulent dispersion have been explained. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2717688�

I. INTRODUCTION

Stochastic models are a useful way to describe particle
dispersion in turbulent flows. For the development of such
models, knowledge of Lagrangian statistics of turbulent
flows is useful, for example to calculate an unknown damp-
ing function included in such a model. Taylor’s 19211 paper
on turbulent dispersion describes the Langevin equation for
stationary, homogeneous, isotropic turbulence, in which case
the damping coefficient is a constant. Sawford’s 2001 review
article2 gives an overview of the history and development of
Lagrangian models since then. A stochastic Lagrangian
model for particle velocity in homogeneous shear flow was
developed by Pope.3 For many other kinds of turbulence, as
occurring in common practice, a unique formulation for the
damping function has yet to be found. Rather than focusing
on homogeneous turbulent flows, the present research aims
at measurement of inhomogeneous turbulent flow in a pipe,
to enable determination of the damping function.

The need for Lagrangian statistics makes experimental
methods that apply to a Lagrangian frame of reference indis-
pensable. Such techniques have rapidly been developed over
the past few years and presently several fully three-
dimensional Lagrangian techniques are available. They can
be divided into two main categories, namely optical and so-
nar techniques. The main advantage of the sonar techniques4

is the direct measurement of particle velocities using Dop-
pler shifts. Another advantage is that measurements in non-
transparent media are possible at high sampling frequencies,
up to a few kHz. The drawbacks of this technique are related
to the seeding of the fluid with tracer particles. The working
principle and software algorithms applied currently demand

a relatively large seeding size, in the order of tenths of mil-
limeters, and very low seeding densities, in most cases not
more than one particle in the measurement volume at a cer-
tain time. The large size and thus the far from ideal flow
tracing characteristics limit this technique to low flow veloci-
ties, and the low seeding density demand is not favorable
when gathering statistical averages of flow quantities. A so-
nar technique has been used by Mordant et al.5 to determine
long-time Lagrangian velocity correlations, in order to study
intermittency in turbulence. Seeding densities and sizes are
more flexible in the case of optical techniques such as three-
dimensional particle tracking velocimetry �3D PTV�.6–14 Vi-
rant and Dracos studied the boundary layer of free-surface
turbulent flow using 3D PTV.7 The turbulent diffusion of
particle pairs in oscillating grid turbulent flow was studied by
Ott and Mann.11 Suzuki and Kasagi13 used the 3D PTV tech-
nique, originally developed by Nishino et al.12 for liquid
flows, to study secondary flow effects in turbulent air flow
through a curved square bend. In other 3D PTV researches, a
fully developed quasihomogeneous turbulent flow of the von
Kármán swirling type was studied.6,10,14 Voth et al.10 mea-
sured particle accelerations in this flow type, using high-
speed silicon strip detectors, in order to determine universal
characteristics of turbulent flows.10,14 Lüthi et al.6 measured
the full set of velocity derivatives, to study the role of vis-
cosity on the enstrophy budget.

As indicated by Hoyer et al.,15 the maximum number of
particles that can be tracked simultaneously by 3D PTV sys-
tems gradually increased to O�103� since the introduction of
the technique in the 1980s. This number is thought to repre-
sent the limit for classical 3D PTV systems with four cam-
eras. Traditional 3D PTV algorithms can be divided into two
parts: determination of the particle positions in space and thea�Electronic mail: j.g.m.kuerten@tue.nl
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tracking of the particles in time. Willneff8 combined these
two steps and the resulting spatio-temporal matching algo-
rithm improves particle tracking efficiency by 10–30%. This
makes it unnecessary to lower seeding density in order to
increase particle matching probability. For the same reason, a
new technique called 3D scanning PTV is developed by
Hoyer et al.15 Changes in illumination, image acquisition,
and analysis lead to a significant increase in the maximum
number of trackable particles, which is especially useful
when spatial derivatives of particle velocity are of interest.

In our case, the goal is to accurately determine Lagrang-
ian statistics, such as velocity correlation functions. This de-
mands that a large number of fluid or tracer particles can be
followed over a significant time interval and the camera sam-
pling frequency is required to be at least twice the character-
istic frequency of the flow phenomena of interest. At low or
moderate Reynolds numbers, commercially available high-
speed cameras with sampling frequencies of 30 Hz or more
are usually sufficient. It can therefore be concluded that 3D
PTV is a suitable method for the determination of Lagrang-
ian statistics as long as the frequency of the image recording
equipment is sufficient to capture all relevant flow phenom-
ena, whereas sonar techniques and the fast image detectors
suffer from low seeding densities and short measurement
times, respectively.

The present paper describes how velocity statistics of
turbulent pipe flow and its consequences for Langevin mod-
eling have been determined using 3D PTV and DNS. A de-
scription of the experimental and data processing techniques
is given in Sec. II. To our knowledge, the application of a
Lagrangian experimental technique to pipe flow has not been
done before. Results will be compared with direct numerical
simulation �DNS� results in Secs. III and IV. Accurate DNS
predictions of turbulent pipe flow are scarce, and a descrip-
tion of a new DNS code as developed by Veenman16 �re-
ferred to as VKW in the remaining part of this paper� is
given in Sec. II D. With our measuring equipment, it is at
present still impossible to measure at Reynolds numbers
higher than the ones at which DNS results can be obtained.
Comparison with DNS will prove that Lagrangian experi-
mental techniques are applicable to the research of inhomo-
geneous turbulent flows. This is done for turbulent water
flow through a pipe at two Reynolds numbers. Based on the
bulk velocity and inner pipe diameter, these Reynolds num-
bers are Reb=UbD /�=5300 and Reb=10300, with � the ki-
nematic viscosity, which is equal to �=1�10−6 m2 s−1 for
water at atmospheric conditions. Lagrangian results will be
compared with results of the VKW DNS in Sec. IV. In the
same section, the Kolmogorov constant and damping func-
tion, to be specified below, will be determined from Lagrang-
ian statistics. Physical implications for the development of
the Langevin model are discussed. The same section de-
scribes the Reynolds limit for the current hardware, and pos-
sibilities to increase this limit. As Lagrangian statistics of
turbulent pipe flow are almost absent in the literature, Eule-
rian velocity statistics are also studied for validation pur-
poses in Sec. III. Finally, conclusions are presented in Sec. V.

II. THEORETICAL BACKGROUND AND
EXPERIMENTAL TECHNIQUE

A. Theoretical background

As mentioned in the Introduction, a Lagrangian stochas-
tic model is often an efficient way of predicting, for example,
turbulent dispersion. An example of such a model is the
Langevin equation for fluid particle velocity �here, fluid par-
ticles are passive particles that have no mass and that move
with the local fluid velocity�,

dui��t�
dt

= Aijuj��t� + �C0��1/2wj�t� , �1�

ui denotes one of the three velocity components in a Carte-
sian frame of reference. The usual distinction between the
mean �u� and fluctuating part u� of the total velocity u= �u�
+u� is made, where the brackets signify ensemble averaging.
Aij is called the drift tensor or damping tensor, C0 is the
Kolmogorov constant, � is the energy dissipation rate, and
wj�t� is random white noise. Veenman16 shows that the un-
known damping tensor can be determined from non-
normalized Lagrangian velocity correlation functions,

�ij��,r� = �ui��t0�uj��t0 + ��� , �2�

where t0 denotes the reference time and � the time separa-
tion. The correlation functions depend on the radial coordi-
nate but are independent of t0. Equation �2� therefore only
yields correct results if all tracer particles considered start
with the local fluid velocity at the same radial coordinate r at
time t0. The particles thus need to be delta-distributed in the
radial direction at time t0. This situation can easily be cre-
ated in numerical simulations but is impossible in experi-
ments. The calculation of correlation �ij�� ,r� is thus done by
averaging over all particles that are situated at radial position
r at a certain time, which is then marked t0 for that particle.
The particles are selected using the sampling method de-
scribed in Sec. II C. The 3D PTV and DNS results are used
to calculate the coefficients of the damping tensor and the
Kolmogorov constant in Secs. IV A and IV B, respectively.

In the remaining part of this section, the most important
features of the experimental technique are described. The 3D
PTV method and setup are discussed in detail in Sec. II B.
Acquiring statistics from raw 3D PTV data requires special
attention, as is described in Sec. II C. Information on the
numerical technique of the new VKW DNS is included in
Sec. II D.

B. 3D PTV method

The 3D PTV setup consists of a camera frame for reli-
able and accurate positioning of the cameras, and a calibra-
tion unit to determine the relation between camera and real-
world coordinates. By removing a tube section, the
calibration unit can be placed on top of the measurement
section, as shown in Fig. 1. This enables in situ calibration
by moving a well-defined calibration grid through the mea-
surement volume. The grid is manufactured out of a glass
plate that is coated on one side. The grid points are made out
of circular voids in the coating. To facilitate recognition of
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the X and Y directions, three larger dots are positioned in the
center of the grid.

Because of the statically determined design of the cam-
era frame, which is described in detail in a previous
publication,17 there is no incorporation of unknown stresses
in the frame or flow tube. The cameras are attached to the
flow tube instead of mounting them on separate camera sup-
port stands. Relative motion of the cameras to the measure-
ment volume is avoided in this way.

To create a stable and accurately controlled turbulent
flow, a special water circulation system has been built. The
measurement section consists of a vertically oriented glass
pipe, with an inner diameter, D, of 100 mm and a length of
70D, to ensure optical accessibility. A water-filled rectangu-
lar glass box surrounds the measurement volume to mini-
mize optical distortions. To facilitate temperature stabiliza-
tion, a water reservoir with a capacity of 2 m3 is included in
the system. A frequency controlled pump forces the water
through the pipe and a flow straightener, a tube bundle con-
ditioner installed in the lowest part of the test section accord-
ing to ISO standard18 5167-1:1991 to discard all secondary
flow effects. The system is described in more detail in a
previous publication.17

To visualize the flow, polyamide seeding particles with
diameters between 200 and 250 �m are added to the water
flow. The particles have a mass density close to that of water
under atmospheric conditions ��p=1030 kg/m3� and are
close to being spherical. Of course, these particles have to be
able to follow all velocity fluctuations of the flow. The most
rapid fluctuations take place on time scales on the order of
the Kolmogorov time scale, for which an order-of-magnitude
estimation can be made by using �k= �� /��1/2, where � is the
kinematic viscosity and � is the kinetic energy dissipation per
unit mass. For water flow under atmospheric conditions, �
�10−6 m2 s−1 and the energy dissipation can be expressed as
�=4u�

2Ub /D; see Ref. 19, where u� is the wall shear velocity
and D is the pipe diameter. In the present paper, we focus on
moderate Reynolds numbers, for example Reb=5300, in
which case �k�0.29 s. The relaxation time for small par-
ticles in stationary flow is shown by Albrecht et al.20 to be

�p = �d2�p/18���1 + 0.5� f/�p� , �3�

where d is the particle diameter, � is the mass density, and �
is the dynamic viscosity. The subscripts p and f stand for
particle and fluid, respectively. For the earlier mentioned
250 �m seeding particles, we obtain a relaxation time of
�p�5 ms. As �p��k, it can safely be assumed that the par-
ticles follow all flow fluctuations.

To optimize the accuracy of determination of the particle
position, the optical setup is such that the tracer particles
appear on the camera CCD with a diameter of a few pixels.
This facilitates the use of a subpixel accurate gray-value
weighted average determination of tracer particle center. For
particles with a typical diameter of about 10 pixels, as in our
experiments, the error in the determined center is then less
than 0.1 pixel.21

The illumination of the measurement volume is realized
by two strong stroboscopic light sources of about 5 J light
energy per pulse each. The strobes are custom-made in-house
for this project to optimize light output and camera synchro-
nization; they have a maximum pulse frequency of about
100 Hz and can be synchronized to the cameras with a neg-
ligible delay. The light pulse duration is approximately
40 �s, ensuring virtually instantaneous seeding particle im-
ages for the Reynolds numbers considered. At Reb=5300, a
seeding particle traveling at the maximum fluid velocity un-
dergoes a displacement of about 3 �m during the light pulse,
which is much smaller than its diameter. The stroboscopes
enable illumination of the entire measurement volume of
about 85�120�50 mm3 �width�height�depth� without
any significant heat generation.

The principle of 3D PTV requires a minimum of two
synchronized cameras to capture the instantaneous 3D par-
ticle positions in the measurement volume, but the use of
more cameras minimizes ambiguities in particle detection
and allows for higher seeding densities. As we are interested
in Lagrangian velocity statistics, and not in spatial deriva-
tives, a high seeding density is not a primary requirement,
and the use of a three-camera system is sufficient. The cam-
eras �Kodak MegaPlus ES1.0� have a 10-bit grayscale CCD
with a resolution of 1018�1008 pixels and a maximum
sampling frequency of 30 Hz. The 3D particle tracks are de-
termined using the 3D PTV algorithm developed by Kieft et
al.,9,22 who based their method on the work of Yamamoto et
al.23 The algorithm starts with a filtering technique called
dynamic thresholding to get rid of background noise in the
obtained images. Subsequently, the 2D representation of a
particle is detected within each camera image and, combined
with the camera calibration information, the 3D particle po-
sition is determined. This procedure is schematically de-
picted in Fig. 2, where dynamically thresholded images of all
three cameras are shown alongside typical 3D particle posi-
tion information at a single time step. Finally, the algorithm
checks which particle in frame i+1 is most likely to match to
a particle in frame i. During this last step, information of
previous matches of the current particle and neighboring par-
ticles, up to frame i, is used to extrapolate the particle track
to the most likely position in frame i+1. This algorithm does
not contain the improvements to classical 3D PTV intro-

FIG. 1. The 3D PTV setup with the calibration unit in place.
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duced by Refs. 8 and 15, as mentioned in the Introduction.
Nevertheless, it shows good performance in tracking the
relatively simple particle motion encountered in pipe flow,
and in the test case published by Kieft et al.,9 who studied
the wake flow behind a heated cylinder.

C. Data processing

In pipe flow, inhomogeneous behavior is encountered in
the radial direction. This radial dependency necessitates se-
lected sampling of the measured particle tracks, in contrast to
homogeneous, isotropic turbulence, where Lagrangian statis-
tics can be determined by ensemble averaging over particles
that are arbitrarily distributed over the entire domain. The
easiest way to perform the sampling in pipe flow is to take
only those particles into account that cross a certain radial
position, rcrit. This would, however, result in preferential
sampling of particles having a high radial velocity because
they are more likely to cross a chosen radial position. This
problem is solved by using the particle sampling method
presented by Walpot et al.24 If the instantaneous particle po-
sition r satisfies

rcrit − �r � r � rcrit + �r , �4�

then r is considered as corresponding to a useful particle
trajectory. Here �r denotes half the width of the sampling
volume. All particles that can be found inside the specified
volume at a certain time are taken into account. At each time
step that a particle is situated within the specified volume, a
ghost particle is created. Because particles with a low radial
velocity are less likely to move to other radial positions, they
will create more ghost particles than faster ones. All ghost
particles contribute to the statistical averages, thus compen-
sating for the velocity bias; see Ref. 24. A disadvantage of
this method is that a particle with a relatively high radial
velocity can pass rcrit while it is never detected within the
specified volume at a discrete time step. We found that the
requirement 2�r	 �u ��t, with u a typical large radial veloc-
ity value, is appropriate to prevent this.

The 3D PTV algorithm employed calculates 3D particle
tracks according to the procedure as described in Sec. II B.
High-frequency measurement noise is removed with a low-
pass smoothing filter as was first introduced by Savitzky and
Golay.25 The most rapid, physical velocity fluctuations are
expected to have a characteristic frequency close to the Kol-
mogorov frequency, 1 /�k. To obtain a more accurate estima-
tion of the Kolmogorov time scale as in Sec. II B, it has been
estimated using spectral densities as calculated from DNS.
The largest meaningful frequency in the spectrum appeared
to be about 1 Hz for Reb=5300 and about 2 Hz for Reb

=10300. The measurement noise, which induces high-
frequency disturbances on the position signal, is expected to
have a big influence on the unfiltered autocorrelation func-
tion for small time separations. The unfiltered 3D PTV posi-
tion signal contains sudden position jumps due to optical
disturbances and the finite spatial resolution of the cameras.
These position jumps result in large, nonphysical, velocity
fluctuations causing an artificial increase of the velocity
RMS and thus an increase of the starting value of the corre-
lation function, because �ij�0�=
ij

2 . The high-frequency mea-
surement noise was indeed found to cause the superposition
of noise on the correlation functions calculated from unfil-
tered 3D PTV results. To obtain a suitable cutoff frequency, a
filter span of 17 points with order 3 is used. The filter process
is repeated 10 times to improve the stop-band attenuation.
The transition bandwidth of the filter has of course a finite
width. The above settings are found to work well for both
Reynolds numbers, as will be shown later. To illustrate the
necessity of the smoothing filter, Fig. 3 shows a typical 3D
PTV particle position and corresponding velocity signal be-
fore and after the application of the smoothing filter. For
comparison of typical fluctuation time scales, VKW DNS
results are also included in the figure and represented by the
solid lines.

In the VKW DNS computations, the particle velocity is
interpolated to intergrid point particle positions using a

FIG. 2. Samples of dynamically thresholded images from each of the three
cameras, with on the right-hand side a typical example of recognized 3D
particle positions at a single time step.

FIG. 3. Typical 3D PTV position and corresponding velocity signal before
and after the application of the Savitzky Golay smoothing filter, represented
by circles and dashed lines, respectively. A typical DNS particle trajectory
and the corresponding velocity signal are plotted with solid lines.
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fourth-order accurate interpolation scheme. This Lagrange
interpolation scheme causes oscillations in the velocity sig-
nal, as is visible in Fig. 3 and also in the first part of some
correlation functions, discussed in Sec. IV A. This approach
was compared by Veenman16 with a direct summation of the
Fourier series in the periodic directions and Hermite interpo-
lation in the radial direction, which gives smooth velocity
signals. We found that the oscillations have little or no influ-
ence on the low-order statistics in which we are interested,
such as correlation functions. More details on the numerical
method used in the VKW DNS are given in Sec. II D.

Figure 4 shows an example of radial velocity probability
density functions �PDFs� as obtained by DNS computations
and 3D PTV measurements at r /R=0.5 for Reb=5300. The
solid line represents VKW DNS results whereas the 3D PTV
results are denoted by the dashed line. Figure 4 shows that
the full radial velocity PDF is captured well within ±5
 from
the mean �, which also holds for other radial positions and
velocity components. This justifies the exclusion of particle
matches with more than �±5
 fluctuations from 3D PTV
data analysis. It has been found that the PDFs do not change
if this exclusion is shifted to �±10
, which implies that the
method is not sensitive to outliers.

D. DNS method

In the numerical method for the VKW DNS, a finite part
of a cylindrical pipe of length 5D with periodic boundary
conditions in the streamwise direction is used. Since both the
streamwise and the tangential directions are periodic, the use
of a spectral method is convenient. In the two periodic direc-
tions, a Fourier-Galerkin method is applied, and in the radial
direction a Chebyshev-collocation method is applied. In or-
der to avoid a large number of collocation points near the
axis, the radial direction is first divided in several elements
and in each element a Chebyshev expansion is chosen with
continuously differentiable solutions at the element bound-
aries. In this way, it is also possible to reduce the number of
tangential Fourier modes in the element closest to the axis. In

total, 106 collocation points are taken in the radial direction
and 128 Fourier modes in both periodic directions.

The vorticity formulation of the Navier-Stokes equation
in cylindrical coordinates is discretized. The nonlinear terms
in the Navier-Stokes equation are computed in physical
space; FFT is applied to transform the solution from Fourier
space to physical space and back. The 3

2 rule prevents alias-
ing. The pressure and viscous terms are easily calculated in
Fourier space. For time integration, a second-order time
splitting is applied: an explicit second-order Adams-
Bashforth method for the nonlinear terms and an implicit
method for the linear terms. The boundary condition for the
pressure on the wall of the pipe is chosen in such a way that
the velocity field is, in good approximation, divergence-free.

In order to determine the Lagrangian statistics, passive
particles that move with the local instantaneous fluid velocity
are tracked. In order to integrate the equations of motion of
the particles in time, the first-order Euler forward method is
used, but it has been checked that this is sufficiently accurate
by comparing results with those of a second-order accurate
Runge-Kutta method. The fluid velocity at the position of a
particle is found from fourth-order accurate interpolation:
Lagrange interpolation in the two periodic directions, and
Hermite interpolation in the radial direction.

III. EULERIAN STATISTICS

In this section, Eulerian turbulent pipe flow statistics as
determined with 3D PTV are presented and compared with
various DNS results from the literature. Section IV will show
Lagrangian velocity correlation functions as determined us-
ing 3D PTV and DNS. Lagrangian as well as Eulerian results
are made available from the VKW DNS code. Other La-
grangian statistics for inhomogeneous flows have not been
found in the literature, but Eulerian results could also be
verified by DNS results as published by Eggels et al.26

�EGG�, Loulou27 �LLO�, and Wagner et al.28 �WAG�. In the
graphs below, error bars are plotted to indicate the magnitude
of the error in the mean of a certain quantity for the experi-
mental results. The size of the error bars is taken to be equal
to ±2
m, where


m =	
� xi
2 −

1

n
�� xi�2�
�n�n − 1�� �5�

with xi the average value for a single set and n the number of
measurement sets. The probability that the actual mean value
lies within the given error bars is about 95%, see Squires.29

Whenever appropriate, velocity statistics are normalized by
the centerline velocity, Uc, and plotted against the dimen-
sionless distance to the pipe centerline, r /R. The centerline
velocity is chosen as a normalization quantity instead of the
wall shear velocity, u�, that is often used in the literature,
because Uc can be determined more accurately in an experi-
mental setup. Laser Doppler anemometry �LDA� velocity
measurements have been performed simultaneously with the
3D PTV measurements to check the centerline velocity. The
LDA time records also show that the velocity signal is ran-
dom but stationary in time.

FIG. 4. Radial velocity PDFs for DNS results and filtered 3D PTV data.
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The 3D PTV results for Reb�5300 are averaged over 50
separate measurement sets of 2 min each. The measurements
were performed with a frequency of 30 Hz, and at each time
step, on average, 150 particles were recognized. The seeding
density was deliberately kept this low to maximize the length
of the measured particle tracks. The average Reynolds num-
ber during the 50 sets was Reb=5320±30. Before the start of
each measurement set, the temperature and bulk velocity of
the water was measured. The frequency controller of the
pump facilitates accurate control over the velocity and thus,
for constant fluid temperature, the Reynolds number. The
average Reynolds number for the Reb�10300 3D PTV data
is Reb=10290±40. For this Reynolds number, 40 measure-
ment sets of 2 min each are available, with an average num-
ber of 100 recognized particles per time step.

The VKW DNS results are ensemble averaged over 600
velocity fields, covering 850 dimensionless time units where
time is made dimensionless using the bulk velocity Ub and
the pipe diameter D. Wagner et al. averaged their results over
200 statistically independent velocity fields, covering over
800 dimensionless time units. Comparing this to LLO and
EGG, that are averaged over 41 and 46 velocity fields, re-
spectively, covering 40 and 60 dimensionless time units, re-
spectively, it can be stated that the statistical error is ex-
pected to be much smaller for the VKW and WAG codes.
This is visible in the skewness and flatness results presented
later in this section.

To test the performance of the 3D PTV system, the well-
known mean axial velocity profile for turbulent pipe flow has
been determined for Reb=5300 and 10300 and compared
with corresponding results of EGG, VKW, and WAG. Re-
sults are shown in Fig. 5. Due to their negligible size, no
error bars could be plotted. For both Reynolds numbers, two
different DNS results are plotted but they are indistinguish-
able. No discrepancies between experimental and numerical
results are found, implying that the flow is indeed a fully
developed turbulent pipe flow. Experimental data are avail-

able up to r /R�0.97. Even closer to the wall, light deflec-
tions hinder the measurements and no particles are detected
here. The axial profile for the higher Reynolds number is
also plotted normalized with the centerline velocity of the
lower Reynolds number with a dotted line, showing the well-
known fact that the profile is flatter for higher Reynolds
numbers.

The diagonal components of the Reynolds stress tensor

ij = �ui�uj�� are compared with VKW, LLO, and WAG DNS
results for Reb=5300 and 10300 in Figs. 6 and 7. Further-
more, experimental results as obtained by van Doorne and
Westerweel30 and results from LDA measurements as per-
formed in our laboratory are also included in the plots. These
results are only available at the lower of the two Reynolds
numbers, and the LDA results are only available for the axial
diagonal component at Reb=5300. As we are interested in
the non-normalized velocity correlation functions, it is im-
portant that the mean-square value �MSV� of the velocity is
accurately determined. For all MSV plots, the 3D PTV data
coincide with the DNS and LDA results within measurement
error, even close to the wall. The only striking distinction is

FIG. 5. Mean axial velocity profile for two Reynolds numbers. The solid
lines represent the overlapping VKW and EGG DNS results for Reb

=5300 and VKW and WAG for Reb=10300. The dotted line represents the
Reb=10300 data rescaled to match the Uc of Reb=5300.

FIG. 6. Velocity MSV as a function of the dimensionless radius for radial
and tangential velocity components at Reb=5300 �a� and Reb=10300 �b�.
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the lower 3D PTV 
��
2 values at radial positions around the

peak in the profile. No other explanation than measurement
inaccuracy can be given. The differences between the various
DNS results are negligible. The agreement between the 3D
PTV results and the PIV results of van Doorne and Wester-
weel is good, although deviations occur for r /R	0.8 for

��

2 and close to the wall for 
rr
2 .

For isotropic flows, the nondiagonal terms of 
ij are all
zero. But in the case of inhomogeneous turbulent flow, such
as pipe flow, the only decoupled direction is the tangential
one, which means that correlations like, e.g., u��uz� and u��ur�,
are zero. The only nonzero cross-component of 
ij, the cor-
relation of ur� and uz�, �ur�uz��, as calculated by VKW, LLO,
and WAG, is compared with the current 3D PTV results and
van Doorne and Westerweel30 PIV results in Fig. 8.

The results for all components of 
ij have also been
compared with EGG DNS results. The results of Eggels et
al.26 showed significant deviations, especially close to the
wall, from the presented DNS and experimental results and

have therefore been omitted from the figures. We believe that
the deviations are caused by the coarser near-wall resolution
used by Eggels et al.

The skewness factor S= �u�3� /
3 and kurtosis or flatness
factor F= �u�4� /
4 of all velocity components are also deter-
mined and plotted in Fig. 9. These third- and fourth-order
moments of the velocity are expected to be more sensitive to
measurement noise as the lower-order moments presented
above, but they show nevertheless a good agreement with the

FIG. 7. Velocity MSV as a function of the dimensionless radius for axial
velocity components at Reb=5300 and Reb=10300.

FIG. 8. Reynolds stress component �ur�uz�� as a function of the dimensionless
radius at Reb=5300.

FIG. 9. Velocity skewness and flatness for all cylindrical velocity compo-
nents at Reb=5300. The circles represent the 3D PTV results, the solid lines
the VKW DNS, and the dash-dotted lines represent the LLO DNS.
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VKW and LLO DNS results. For inhomogeneous wall-
bounded flows, such as pipe flow, the PDFs of the velocity
components are bell-shaped but not exactly Gaussian near
the center.16,31 The departure from Gaussian behavior in-
creases with decreasing distance to the wall as indicated by,
for example, the data on turbulent channel flow by Moser et
al.31 This trend is also observed in Fig. 9 of the skewness and
flatness factors, which are equal to S=0 and F=3 for Gauss-
ian processes, respectively. The Gaussian values for the
skewness and flatness are indicated by the thin dashed lines.
The only significant deviation between 3D PTV and DNS is
the failure of the 3D PTV results to capture the sudden in-
crease in radial velocity flatness close to the wall for F�ur��.
This relatively large deviation can be explained by the cu-
mulative effect of the relative measurement errors in �ur�

4�
and 
. Although the absolute values of the error in both the
second- and fourth-order moment of the radial velocity com-
ponent are very small close to the wall, the relative error in
the fourth order is large and this leads to a large relative error
in the flatness as well. The large relative error in the fourth-
order moment can be explained by the small amount of mea-
surement data close to the wall. The departure from Gaussian
behavior in the near-wall region is most obvious when ob-
serving the flatness profiles of the velocity components.

IV. LAGRANGIAN STATISTICS

As mentioned in Sec. II, the unknown damping function
in the Langevin equation can be determined from non-
normalized Lagrangian velocity correlation functions. For
this procedure, the autocorrelation functions of all velocity
components, as well as the cross-correlations, need to be
known. These correlation functions are to be determined in
the inertial subrange, which is considered to be the range
�k����c, with �c the Lagrangian integral time scale de-
fined as �c=�0

�����d�. A typical estimate of �c for pipe flow
is given by D /Ub. In other words, for an accurate description
of velocity correlation functions, we have to be able to cap-
ture small-scale velocity fluctuations down to the Kolmog-
orov scale, �k, as defined in Sec. II B, as well as particle-
velocity tracks up to time separations specified below. The
inertial subrange increases with increasing Reynolds number.
At the moderate Reynolds numbers studied in this paper, the
difference between the Kolmogorov and integral time scales
is still relatively small. However, our DNS calculations have
shown that, in order to capture the full inertial subrange, we
have to follow particles up to time separations, �, given by
�u�R

−1=0.06. This corresponds to 0.8 s in the current experi-
mental situation. This number, 0.06, is only slightly depen-
dent on the Reynolds number. To capture particle tracks up to
0.8 s with the restriction of a measurement volume with an
axial length of 120 mm, see Sec. II B, the maximum allow-
able axial velocity is 150 mm/s, which corresponds to Reb

=13000. This reasoning assumes perfect particle tracking
characteristics of the 3D PTV algorithm; the particle track
time will be verified in the following subsections. For higher
fluid velocities in the current flow geometry, rigorous
changes in the setup are needed. A camera and lightning
system that moves along with the mean flow such as the one

described by Virant and Dracos7 could offer a solution. In
this way, the measurement volume moves along the flow
with Ub and particles can easily be followed for longer times
than with stationary cameras.

Section IV A describes the velocity correlation function
results and the determination of the damping function. The
Kolmogorov constant also appears in the Langevin equation
and can be determined from velocity structure functions as
discussed in Sec. IV B.

A. Velocity correlations

Figure 10 compares Lagrangian velocity autocorrelation
functions for the radial, tangential, and axial velocity com-
ponents at two radial positions for 3D PTV with correspond-
ing ones of VKW DNS at Reb=5300. The statistical error in
the 3D PTV results is indicated by the dashed lines; for the
DNS results it is more or less independent of time separation,
�, and indicated by a single error bar. The figure also shows
Eulerian velocity autocorrelation functions for the VKW
DNS. These Eulerian correlations are calculated in a moving
frame of reference, with the frame moving with the local
average axial velocity,

�ij
E��,r0� = �ui��r0,�0,z0,t0�uj�„r0,�0,z0 + ��uz�r0��,t0 + �…� .

�6�

The deviations between numerical and experimental results
observed in the MSV plots of Figs. 6 and 7 manifest them-
selves here as offsets in the correlation starting points, be-
cause the correlation functions shown here are made dimen-
sionless by Uc, but are not normalized. Without the
application of the sampling method discussed in Sec. II C
and the polynomial smoothing filter, the experimentally de-
termined correlation functions would suffer from signifi-
cantly too high starting values and noise peaks for small �
values. In the results presented in Fig. 10, the shape of the
measured autocorrelation functions closely resembles that of
the DNS results, even if some offset at �=0 occurs.

When comparing the correlation functions calculated in
an Eulerian moving frame with their Lagrangian counter-
parts, it is clear that the correlations decorrelate faster in a
Lagrangian reference frame. This can be explained by the
movement of the Eulerian frame, which is only in the axial
direction. In a Lagrangian reference frame, a particle is fol-
lowed through the flow, thus also to other radial positions
with other statistical properties leading to the faster decorre-
lation. The highly inhomogeneous behavior of the flow close
to the wall causes the autocorrelations to decay faster there
than in the central region of the pipe. This behavior is illus-
trated in Fig. 11, which shows tangential autocorrelation
functions for r /R=0.3 and 0.9 that have been normalized
with the corresponding starting values, 
��

2 , to highlight the
decay rate.

Figure 12 shows radial, tangential, and axial velocity
autocorrelation functions at Reb=10300, as obtained by 3D
PTV and VKW DNS. The higher fluid velocity at Reb

=10300 makes it impossible to follow the seeding particles
as long as at the lower Reynolds number due to the limited
axial length of the measurement volume. The maximum time

045102-8 Walpot, van der Geld, and Kuerten Phys. Fluids 19, 045102 �2007�

Downloaded 12 Aug 2008 to 131.155.151.25. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



separation for which the correlation functions can be accu-
rately determined thus decreases as compared to the lower
Reynolds number. Furthermore, the dimensionless time reso-
lution is not as good as at Reb=5300. Both effects can be
observed when comparing Figs. 10 and 12. The Lagrangian
experimental results are nevertheless in good agreement with
the DNS results at this Reynolds number. However, the up-
per Reynolds number limit for the present setup is expected
to be only slightly higher than 10300. The upper limit esti-
mate mentioned in Sec. IV of Reb=13000 therefore seems
reasonable.

The coefficients of the damping tensor, aij, can be deter-
mined from the correlation functions in a way similar to that
presented by Pope.3 The results for 3D PTV as well as DNS
data are presented in Fig. 13, where the single error bar gives
an indication of the statistical error. In a large part of the
pipe, the coefficients are more or less constant; it is only near
the wall that they strongly change. The region where the
coefficients are more or less constant increases with increas-
ing Reynolds number, but otherwise the dependence on the
Reynolds number is small. The diagonal damping terms are
all negative. The cross coefficient azr is positive for all radial
positions, increasing strongly in the wall region. The cross
term arz is close to zero for both Reynolds numbers over the
whole radius. Some simplified Langevin models for inhomo-
geneous flows assume all nondiagonal damping terms to be
zero.32 These results show this assumption to be incorrect.
Models without nondiagonal damping terms cannot produce
correct results for both first- and second-order moments of
particle velocity,33 as follows from application of the well-
mixed criterion. The results in Fig. 13 show indeed that in
inhomogeneous turbulence, azr is not equal to zero and that
the damping coefficients are position-dependent.

As discussed in Sec. III, there is no correlation between
the tangential and the other velocity components. This im-
plies that the only nonzero cross-correlation functions are �rz

and �zr, of which VKW DNS and 3D PTV results at two

FIG. 10. Lagrangian and Eulerian velocity autocorrelation functions for the
radial �a�, tangential �b�, and axial �c� velocity components at two different
radial positions for VKW and 3D PTV at Reb=5300. The dashed lines
indicate the statistical error for the 3D PTV results.

FIG. 11. Normalized Lagrangian velocity autocorrelation functions for the
tangential velocity components at r /R=0.3 and 0.9 for VKW and 3D PTV at
Reb=5300. The dashed lines indicate the statistical error for the 3D PTV
results.
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radial positions are shown in Fig. 14. As expected from the
graph showing the Reynolds stress results �Fig. 8�, the start-
ing values of the experimental and numerical cross-
correlation function agree well. The cross-correlation func-
tions also agree within statistical accuracy for �	0. Again,
similar results have been found at the other radial positions
measured. A striking difference between �rz and �zr is the
considerably faster decay of �zr. This phenomenon can be
understood if one imagines a particle moving from radial
position rA at time t0 to radial position rB at time t0+�. With-
out loss of generality, we take inward motion, i.e., rB�rA,
implicating that ur��t0��0 and �uz�rB��	 �uz�rA��. The aver-
age product of ur� and uz� is positive �Fig. 8�, so the particle is
most likely to have a negative uz��t0� as well. As follows from
the Taylor hypothesis, a fluid particle tends to retain its ve-
locity for a while. As a consequence, uz�t0+���uz�t0�. Since
the average axial velocity component at the particle position
increases in time, this results in an average increase of the
absolute value of the axial velocity fluctuation. This makes
the average product �ur��t0�uz��t0+��� larger or about as large
as �ur��t0�uz��t0��, which is exactly the trend observed in Fig.

FIG. 12. Lagrangian velocity autocorrelation functions for the radial �a�,
tangential �b�, and axial �c� velocity components at two different radial
positions for VKW and 3D PTV at Reb=10300. The dashed lines indicate
the statistical error for the 3D PTV results.

FIG. 13. The damping coefficients as functions of the dimensionless radius
as calculated from DNS and 3D PTV results for Reb=5300 �a� and Reb

=10300 �b�.
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14. The argument is similar for a particle moving outwards.
For �uz��t0�ur��t0+���, this argument does not hold as �ur� is
constant and no average increase of the magnitude of the
velocity fluctuation occurs.

The Taylor micro time scale, 
, is coupled to the second
derivative of the velocity autocorrelation function as ���0�
=−2/
2, where the double prime denotes the second time
derivative, see Tennekes and Lumley.34 The Taylor time scale
is related to Lagrangian accelerations and it is a well-defined
quantity that is often used in turbulent flow studies, among
others, due to the clear relation with the Kolmogorov time
scale,35 
 /u�=	15�k. The Taylor time has been determined
from DNS as well as 3D PTV results; see Fig. 15, which
shows the variation of the direction-dependent 
i with radius
and Reynolds number for each velocity component. The
single error bar plotted gives an indication for the statistical
error in all results. For the lower Reynolds number, 
z shows
a strange behavior near the pipe wall. This might be due to a
low Reynolds number effect or due to poor sampling, al-
though it is consistent with the deviating behavior found for
C0

z*, as presented later, in Sec. IV B. The Taylor time in-
creases about linearly with increasing distance to the wall,
which is to be expected because the near wall flow is domi-
nated by the small viscous scales. With increasing Reynolds
number, the influence of the viscous scales decreases, which
might explain the decrease of both inhomogeneity and 
 val-
ues with increasing Reynolds number.

B. Velocity structure functions

Another important Lagrangian quantity is the second-
order Lagrangian velocity structure function, Dii�t�, defined
as

Dii�t� = ��vi��t� − vi��0��2� . �7�

This quantity is important, since Kolmogorov’s theory of lo-
cal isotropy gives a scaling rule connecting the structure

functions with the universal Kolmogorov constant, C0; see,
for example, Pope,35 p. 486:

Dii�t� = C0���t . �8�

The scaling rule is valid in the inertial subrange, for time t in
the range �k� t��c.

Finding the universal value for the Kolmogorov constant
has been the subject of many studies over the past decades.
In principle, C0 can be determined from DNS computations,
Lagrangian velocity measurements, as well as from tracer
particle dispersion studies. An overview of some important
results is given by Lien and D’Asaro.36 In the limit of very
large Reynolds numbers, the structure functions in the three
principal directions will be equal. However, this is not yet
true at the Reynolds number studied here. It therefore stands
to reason to define a direction-dependent C0

i . This was also
proposed by Pope3 when he investigated a linear stochastic
model for homogeneous shear flow. Lien and D’Asaro point
out that the Taylor microscale Reynolds number, R
, must be
greater than about 105 for the inertial range of the structure
function to be sufficiently wide to accurately determine C0.
According to Kolmogorov similarity, one should observe a

FIG. 14. Lagrangian velocity cross-correlation functions for VKW and 3D
PTV at Reb=5300. The dashed lines indicate the statistical error for the 3D
PTV results.

FIG. 15. The Taylor micro time scale as a function of the dimensionless
radius as calculated from DNS and 3D PTV results for Reb=5300 �a� and
Reb=10300 �b�.

045102-11 Determination of the coefficients Phys. Fluids 19, 045102 �2007�

Downloaded 12 Aug 2008 to 131.155.151.25. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



plateau of C0 in the inertial subrange. However, for the lim-
ited Reynolds numbers studied here, such plateaus are not
present and a local maximum value, C0

*, appears when the
structure function is scaled with ���t. This local maximum is
widely studied and is found to increase with R
.36,37 Figure
16 shows radial and tangential structure functions for r /R
=0.3 at Reb=5300. For the DNS results, the structure func-
tions are scaled as in Fig. 16�a� and the value of C0

i* is the
local maximum. Due to the limited axial length of the mea-
surement volume, 3D PTV results are not available up to the
time separations where the local maximum occurs. For this
case, the structure functions are not scaled, see Fig. 16�b�,
and fitted with a linear function in a time interval that is
assumed to be in the inertial range, indicated with the dotted
lines in the figure. Changing the time interval does not sig-
nificantly alter the results for C0

i* and the results obtained
with this linear fit are similar to those obtained from DNS, as
can be seen in Fig. 17, where the DNS and 3D PTV results

for C0
i* are plotted. The single error bar plotted gives an

indication for the statistical error in all results. In a large part
of the pipe, C0

i has a constant value of approximately 2–2.5
for Reb=5300 and around 3 for Reb=10300. The increase of
C0

i* with increasing distance to the wall is also found by Choi
et al.37 for turbulent channel flow. Furthermore, the aniso-
tropy in the results decreases slightly with increasing Rey-
nolds number.

When taking the limitations regarding R
 into account,
the only high-quality independent measurements of C0

are38,39 5.5 and 6.4. At the moment, the generally accepted
idea is that C0 increases with the Reynolds number and
reaches an asymptotic value of approximately 6 to 7. These
findings are consistent with the relations proposed by Fox
and Yeung:40

C0 = 6.5
1 +
8.1817

R

�1 +

110

R

��−1

. �9�

The Taylor Reynolds number, R
, can be calculated35 using
R
=	20k2 / �3���, where k= �uiui� /2 is the turbulent kinetic
energy. This relation gives C0=2.8 and 3.7 for the turbulent

FIG. 16. Scaled Lagrangian velocity structure function for the radial veloc-
ity component �a� and unscaled structure function for the tangential velocity
component �b� at r /R=0.3 at Reb=5300; VKW DNS and 3D PTV. The
dashed lines indicate the statistical error for the 3D PTV results and the
dotted lines in �b� indicate the inertial subrange.

FIG. 17. The Kolmogorov constant as a function of the dimensionless radius
as calculated from DNS and 3D PTV results for Reb=5300 �a� and Reb

=10300 �b�.
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Reynolds numbers studied here, R
=30 and 40, which is in
relatively good agreement with the presented results.

V. CONCLUSION

In the present study, a Lagrangian experimental tech-
nique, 3D PTV, has been applied to an inhomogeneous tur-
bulent flow �pipe flow�, which to our knowledge has not
been done before. In addition, new DNS results for turbulent
pipe flow obtained from a code with high spatial and tempo-
ral resolution are presented for the same Reynolds numbers
that have been measured, Reb=5300 and 10300. Some im-
portant aspects in processing raw 3D PTV data are discussed.
For both Reynolds numbers and all three cylindrical velocity
components, higher-order Eulerian velocity statistics, up to
the fourth order, are studied. For r /R�0.97, the agreement
between DNS and 3D PTV results is found to be good.

Lagrangian statistics are studied through velocity corre-
lation and structure functions. These quantities are used to
determine the Kolmogorov constant C0 and the damping co-
efficients in the Langevin model for fluid particle velocity.
Good agreement between numerical and experimental results
is found for both Reynolds numbers. Inhomogeneity, aniso-
tropy, and main trends have been assessed and analyzed. The
results show the necessity of incorporating nondiagonal
damping terms in the Langevin model.
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