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Abstract – A free wave, transmission only technique for the determination of complex 

permittivity in the mm wave band 14 – 40 GHz of planar samples of textiles is presented.  

W ith this method accurate alignment of source and detector horns is not required and time 

gating methods to reduce or remove standing wave interference between horns is replaced 

by a data smoothing process. Transmittance measurements are taken at discrete angles of 

incidence (0 to 65 degrees) for TE (s) polarised mm waves and the data is then smoothed to 

remove standing wave interference effects between transmitter and receiver horns. The 

resulting data is fitted to a mathematical model of an infinite planar sheet of isotropic complex 

permittivity in air and the permittivity parameters that best fit the data to the model are 

presented. The textiles investigated here are denim (cotton) and cow leather (two colours, 

Red and Beige). This method is shown to be simple to set up, easy to use and fast when 

compared with other methods such as free wave reflectance and transmittance or Fabry-

Perot cavity and gives results which are accurate enough for most practical applications. 

Significant difference in the absorption of mm-wave power between the two leather samples 

is observed. This can be explained by the different chemical composition of the two leather 

samples, investigated using a Scanning Electron Microscope with Electron Dispersive 

Spectrometry, which is almost certainly a result of the colouring process employed.  
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1 Introduction 

The determination of the complex permittivity of textiles in the mm-wave spectral 

region is becoming increasingly necessary as technologies as varied as personal 

antennas (Body-Centric Wireless) and security applications require more detailed 

information on the electromagnetic properties of clothing materials in the mm-wave 

band.  There is a paucity of such data in literature, notable exceptions to this are 

[1,2].  There are several methods commonly employed in the determination of the 

complex permittivity of media in the mm-wave band, each with its own advantages 

and drawbacks. Three widely used and published methods are: 

1. Fabry-Perot cavities [3,4,5,6,7,8,9] 

2. Filled or partially filled waveguides [10,11,12] 

3. Free-wave, reflectance and transmittance [13,14,15,16,17] 

In each case the theoretical model must be known in order to extract permittivity from 

the measured physical quantities. In the case of the free space method, this takes 

the simple and well known Fresnel equations for an isotropic layer in air. This, 

combined with prior data smoothing and subsequent non-linear regression gives a 

simple and easy to use method for determining the complex permittivity from oblique 

transmittance only measurement.  It is noted that phase information from the 

transmitted wave would further help to determine the permittivity but the added 

complexity of the non-linear regression of two dependent variables and the ability to 

satisfactorily determine the complex permittivity from transmittance magnitude alone 

renders this “extra” information unnecessary. For a discussion and comparison of the 

common methods of complex permittivity determination in the mm-wave band see 

Janezic [18]. 
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2 Experim ental Apparatus and Operation 

Figure 1. A block diagram of the millimetre wave system for determining the complex 

permittivity of fabrics.   

The experimental apparatus consists of an Agilent Technologies E8257D Microwave 

Synthesizer working from 250 KHz to 40 GHz, a rotational stage from Time and 

Precision, Model A4757-TSP, a sample holder, an RS stepper motor interface 

RS2173611, two horns used as transmitter and receiver, a Hewlett Packard 11585A 

detector, an amplifier, a NI interface BNC-2110 and a National Instrument card PCI-

6132. For the control of the system and data collection a PC is used in conjunction 

with a program written in LabView 8.2.   

Typically, the Agilent microwave synthesizer is set to trigger externally.  The 

start and stop frequencies are set at 14 and 40 GHz respectively, the power to 20 

dBm and the number of points per scan to 64.  The output of the microwave source 

or the harmonic generator is then connected to the transmitter horn. The transmitted 

signal is detected by a 20 dB gain receiver horn and the detector, amplified and then 

digitised by an A/D port of the National Instrument PCI-6132 card. 

The fabric samples (sizes are approximately that of A4 paper) are attached to 

a holder which is fixed to the top of the rotational stage which is situated between the 
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transmitting and receiving horns. The rotational stage and holder is rotated with a 

step angle of 5° from 0° to 65° using a stepper motor.  The program controls the 

scan of the synthesised microwave source by sending pulses to its external trigger 

and the rotational stage by sending full steps to the stepper motor.  The program 

then acquires and displays the data as amplitude (arbitrary units) against frequency. 

Figure 2.  The transmitter, sample and receiver horn as used 

3 Theory

Measuring the oblique transmittance of a planar sample is a simple and fairly 

sensitive method for determining the complex permittivity ε , of the medium, 

where εεε ′′+′= i ,.  The transmittance of the planar sample is easily measured and 

is a function of the frequency ν , sample thickness h, angle of incidence θ and the 

complex permittivity of the medium.  In this case we use waves that are TE polarised 

and the layer is situated in air with permittivity ~ 1. 

The TE transmittance is given as, 
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in a vacuum. 

Note: The effective magnetic permeability of the sample is assumed to be unity. 

4 Data Smoothing and Fitting 

The detector output signal is linear with received power over the range used, thus the 

output voltage is proportional to the power incident on the receiving horn. The 

transmittance of the sample can be obtained by dividing the signal with sample, at a 

given frequency, by the signal at the same frequency with no sample. When a 

sample is present an oscillation is seen in the signal with frequency.  This is due to 

standing waves between transmitter and receiver.  The frequency change between 

peaks in this pattern is related to the distance between horns and is a much more 

rapid oscillation with frequency than is the signal due to thin film interference in the 

sample.  Smoothing is achieved by convolution integral technique, which is achieved 

by Fourier transforming the data and multiplying by the Fourier transform of a 

function appropriate for removing the high frequency oscillations from the data, 

forming a low pass filter.  The authors used a Gaussian function in this instance,  and 

then applying the inverse Fourier transform on the product.  An example of a data set 

before and after the smoothing process is shown in figure 3. 
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Figure 3.  A plot of raw data (dashed line) and smoothed data for beige leather sample at 

normal incidence.  The rapid oscillations in the raw data are due to standing wave 

interference between horns. 

A non-linear fitting package is then used to best fit the smoothed transmittance data, 

as a function of angle of incidence (for constant frequency) to equation (1).  The 

thickness of the layer is measured at ten points over the sample and the mean taken 

and used as the sample thickness in the equation.  The real and imaginary parts of 

the permittivity are the parameters that are iterated until there is no change in the 

sum of squares of the deviation between theory and experiment. The starting values 

for the permittivity parameters are chosen as (0.1, 0.1) and then varied separately in 

steps of 0.1 to a maximum of (5, 5).  Certain solutions can be discarded as they are 

not physical (i.e. negative imaginary part of permittivity) and others discounted as 

they are not consistent within small changes of frequency.  For example, it is tacitly 

assumed that the permittivity varies reasonably slowly with frequency.  Thus one can 

confidently select the parameters that describe the dielectric properties of the fabric 

samples. It is found often that best fit permittivity parameters converge upon the 
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same solution for a wide range of starting values.  An example of the smoothed 

transmittance data with the best fit transmittance curve as calculated from equation 1  

is presented in figure 4. 

Figure 4. A plot of the smoothed transmittance data points (diamonds) for beige leather 

sample versus the transmittance curve predicted by equation (1) for best fit permittivity 

(2.13+i 0.0553). The frequency is 25 GHz.  

5 Results and Discussion 

The fabrics examined are denim and two coloured (red and beige) leather samples.  

These were chosen as they are more absorbing than most other commonly worn 

textiles and are a problem for mm wave imaging devices (security applications). For 

example Nylon, Polyester and other man made fibres are practically transparent to 

mm-wave radiation in the 14-40 GHz region, thus they do not lend themselves to 

measurement with a free-wave transmittance technique and would be better 
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measured using a resonant cavity method.  It is supposed that the chosen materials 

are more lossy than other textiles as they readily absorb water from the atmosphere 

and it is well known that water has a high dielectric constant (~ 60+i35 at 10 GHz) in 

both real and imaginary parts, in this frequency range [19].  It is therefore probable 

that the permittivity of the samples taken is very strongly influenced by atmospheric 

humidity and that subsequent measurements upon the same samples might yield 

substantially different results as the water content of the samples changes [2,20].   

The mean thickness of the Denim sample was 0.89 mm, the mean thickness of the 

beige and red leather samples was 1.49 and 1.09 mm respectively.  The best fit 

permittivity parameters for the measured samples as determined by transmittance 

measurements are present in figures 5 and 6. 
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Figure 5.  The real part of the permittivity for the three textiles 
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Figure 6.   The imaginary part of the permittivity for the three textiles 
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Figure 7.   The skin depth of the textile samples  

There is very little difference in the real parts of permittivity for the two leather 

samples and both show little variation with frequency over the range measured. 

Denim has a slightly lower real part of permittivity than the leather samples and does 

appear to fall slightly with increasing frequency.  The Imaginary parts of the 
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permittivity, however, do show substantial difference and dependence upon 

frequency.  The denim is the least lossy of the three media as is seen by the skin 

depth plots in figure 5, obtained from the expression 

επν

ε
δ

′′

′
=
c

(2) 

Equation 2 is valid for 1<<
′

′′

ε

ε
as is the case for low loss dielectrics. 

The two leather samples show a distinct difference, with the red leather being 

substantially more attenuating than the beige sample. This difference might be 

explained by the colouring process that the leather has undergone.  To investigate 

this, the surface chemistry of the two leather samples were examined by an 

Analytical Scanning Electron Microscope, model Jeol JSM 6300, operated at 20 Kev 

and fitted with an Oxford Instrument Energy Dispersive X-ray Spectroscope (EDS). 

The data were collected using INCA Energy 300 system.  X-ray spectra and also X-

ray elemental maps were obtained from a representative area of each sample. 

It was found that both specimens were composed of C, O, Na, Al, Si, S and Cl 

elements.  In addition, the red leather specimen contained a small amount of Cr 

(~1%, by normalised Oxygen stoichiometry method), Ti (~7%  of oxide content), and 

relatively significant amount of Fe (~21%  of oxide content).   On the other hand, the 

beige leather sample also contained a small amount of P (~2% ), Ca (~1.4% ), 

significant amount of Cr (~ 28%  of oxide content), but showed no presence of Fe and 

Ti elements.  

The individual X-ray spectra of the two samples are shown in figures 8 and 9. 

Page 10 of 17

IET Review Copy Only

IET Microwaves, Antennas & Propagation



Figure 8.   EDS spectrum of a red leather specimen. 

Figure 9.  EDS spectrum of a beige leather specimen. 

The SEM secondary electron images of the red and beige leather surface 

morphologies and their equivalent elemental maps of Fe, Cr and Ti elements are 

presented in figures 10 and 11 respectively. 

Both specimens showed even distribution of the elements, which is demonstrated in 

the maps by bright spots. This is a qualitative technique where intensity of a signal 

over the scanned surface is directly related to a content of the element being 
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mapped. In case of the red leather specimen a few small regions showed higher 

concentration of iron in relation to the overall area.  

It would appear that the surfaces of both specimens are covered with oxides. In case 

of the red specimen, iron oxide is likely to be responsible for the colour of the leather 

surface.    

Figure 10.   SEM image of the red leather sample (top left) and its elemental X-ray 

maps of Cr, Ti and Fe. (top right, bottom left and bottom right) 
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Figure 11.   SEM image of the beige leather sample (left) and an elemental X-ray map of Cr 

(right). 

Although the moisture content of the samples is very important in determining the 

complex permittivity, some difference is observed, between the two coloured leather 

samples at least, as a result of the tanning and colouring process. It is probable that 

natural fibres, such as cotton (denim) and leather are more attenuating in the 14-40 

GHz frequency range than are man made fibres like Nylon because their fibres can 

hydrogen bond with water and thus they will retain moisture more readily.  Since both 

the beige and red leather samples have been stored together it is reasonable to state 

that the differences in their complex permittivity across the 14-40 GHz frequency 

band is due to the colouring treatment they have undergone. This assertion is borne 

out in the EDS analysis of the two samples. The presence of relatively large 

concentrations of iron and titanium oxides in the red leather sample and their 

absence from the beige leather sample may well explain the difference in the 

imaginary part of the permittivity of the samples.  

However we may conclude that even these natural fibres are fairly transparent in the 

frequency range studied and for layers that are the order of a wavelength thick (as is 
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to be expected) such materials can be treated as being lossless for most 

applications.
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