(i)

determination of the donor pair exciange energy IN PHOSPHORUSGDOPED SILICON

by
piefer rutren cullis

A thesis submitted in partial fulfilment of THE RENUIREAENTS FOR THE DEGREE OF
 MASTER OF SCIENCE

in the Department
of
Physics

We accept this thesis as conforming to the required standard

THE UNIVEASITY OF BRITISII COLUMBIA
April, 1970

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree tha permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Physics
The University of British Columbia Vancouver 8, Canada

Date April 17, 1970

The e.p.r. spectrum for relatively dilute samples of phosphorusdoped silicon ($<5 \times 10^{16}$ donors/ cm^{3}) has been calculated in detail for an assumed random distribution of impurities. The system of donor electron spins is treated as a collection of nearest neighbor donor pairse An expression is derived for the donor pair exchange energy uging Kohn-Luttinger wavefunctions and a general exchange energy expression. The resultant relationship contains an adjustable parameter a^{*}, the "effective Bohr radius", which is determined from a comparison of the calculated spectrum and the experimental results obtained for the ratio, C, of the "central pair" and "hyperfine" line intensities. The resulting expression $J(\underline{R})$, where J represents the exchange energy and R the separation vector connecting the two pair donors, exhibits an oscillatory spatial dependence due to interference from portions of the wavefunction arising from different conduction band valleys.

TABLE OF CONTENTS

PAGE
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST CF TABLES vi
ACKNOWLEDGEAENTS vii
CRAPTER
I. INTRODUCIICN 1
II. THEORY 3
A. Electron Spin Resonance 3
B. The Waverunctions of the Impurity States 4
C. The Nearest Donor Approximation 5
D. The Exchange Interaction 6
E. The Donor Pair System 7
III. CALCULAATION OF THE SPECTRUM 9
A. Introduction 9
B. Matrix Mement Calculations 10
C. Calculation of the Population Difference Between Transition Levels 18
D. The Theoretical Spectrum 21
IV. EXPERIMENTAL METHODS AND RESULTS 22
A. Apparatus and Operating Conditions 22
B. Experimental Results 25
C. Possible Error 29
v. DISCUSSION OF RESULTS 30
BIBLIOGRAPITY 31
APPENDIX
A. POPULATION DIFFERENCES BETWEET TRANSITION LEVELS 32
B. CALCULATION OF EXCHANGE 34
APPENDIX PAGE
C. the distribution of niarest buciange coupled pairs 38
a. Calculation of the Number of Lattice Sitesin Shells of Unit Thickness Centred on theOrigin 38
b. Determination of the Nearest Neighbour Distribution 41
D. CALCULATION OF THE THOORERTCAL SPECTRUM 47

(v)

LIS' OF FTGURES
FI GURE PAGE

1. Energy Levels of a Spin $\frac{1}{2}$ Syster 3
2. Energy vs. K Relation in $[1,0,0]$ Direction 4
3. Spin System of the Pair 7
4. Spectrum of the Pair System 8
5. Energy Level Diagram for a Phosphorus Donor Pair. The Eigenstates are Labelled Numerically From 1 to 16 Along With the Usual Strongly Coupled Pair States to Which Each Reduces in the Limit $J \gg A$ 17
6. Spectral Contributions of Allowed Transitions 12
7. Comparison of Discrete and Continuous $N(J)\left(a^{*}=16.5 \AA\right)$ 20
8. Introduction of the Gaussian Shape Function 21
9. Block Diagram of ixperimental Apparatus 24
10. Mode Shape and Sample Cavity Resonance 22
11. Experimental ESR Derivative Trace for $\mathrm{Nd}=3.7 \times 10^{16} / \mathrm{cm}^{3}$ 26
12. A Plot of Experimental Points and Theoretically Calculated Values of the Ratio $C(\%)$ of the Central Pair Line Intensity to the Average Intensity of the Fyperfine Lines. The
Line Represents the Calculated Ratio for an Effective Bohr Radius $a^{*}=17.3 A^{\circ}$. 27
13. A Plot of the Normalized Distribution of Pair JValues $N(J) / N o / 2$ as a Function of the ExchangeEnergy J for a 4×10^{16} Donors / cm^{3} Sample (SolidCurve) and a 6×10^{16} Donors $/ \mathrm{cm}^{3}$ Sample (DashedCurve)28
14. Simple Face Centred Cubic Latלice Structure 38
15. Simplified Energy Level Diagram of the Donor Pair 32

LIST OF TABLES

TABLE PAGE
I. Matrix Representation of the Hamiltonian of the Donor Pair System 13
II. Eigenfunctions of the Donor Pair 14
III. A Comparison of (i) the Computer Projected Donor Pair Eigenvalues When the Off-diagonal lyperfine Elements are not Neglected to (ii) the Functional Derivation Where These Off-diagonal Elements are Neglected 15
IV. Donor Pair Transitions Having Non-zero TransitionProbability. The Relative TransitionProbabilities and the Transition Energies, Δ, areGiven and $\mathcal{V}_{\mathrm{e}=\mathrm{gBH}_{0}}$16
V. Boltzmann Population Differences Between
Transition Levels 33
VI. Number of Lattice Sites Having the Same Absolute Value for Projections on the x, y, z Axes in a Crystal with Interlocking F.C.C. Structure 40

ACKNOWLEDGEMENTS

I would Iike to thank Dr. John R. Marlo for his suggestion of the thesis topic and subsequent encouragement through all phases of the problem.

Thanks also go to Dre R. Barrie, who was a critical soundingboard for many aspects of this thesis.

I would like to express gratitude to the National Research Council for their award of a Post Graduate Studentship for the duration of this work.

The research for this thesis was supported by the National Research Council, Grant Number 67-4624.

CHAPTER I

INTRODUCIION

The electron spin resonance (E.S.R.) spectrum of phosphorus doped silicon ($\mathrm{P}-\mathrm{Si}$) in the concentration range $10^{15}<\mathrm{N}<10^{18}$ impurities $/ \mathrm{cm}^{3}$ demonstrates a "weak centre peak" that lies midway between the hyperfine lines of the isolated donors. Slichter ${ }^{l}$ attributed this peak to coupled pairs of neighbouring impurities that act as a unit with a total spin of 1 . In samples with $N_{d}<5 \times 10^{16} / \mathrm{cm}^{3}$ ancillary lines adjacent to the centre peak have similarly been explained in terms of clusters of three or more donor atoms.

The degree to which two interacting spins may be considered to act as a pair is given by the exchange energy " J " between them. Slichter's calculation included only those pairs for which $J \sim A$, where A is the hyperfine interaction. It is the purpose of this work to determine the functional dependence of J on " r ", the interdonor separation, for all values of r. This functional dependence is constructed so as to contain a single adjustable parameter a^{*}, the "effective Bohr radius" of the impurity electron, which is subsequently fisted to experimental results.

Motivation for the determination of J arises partly from the "spin diffusion" mechanism that can transport energy from one part of a spectral line to another ${ }^{2}$, presumably via a flip-flop of neighbouring spins. It has been proposed that the bulk of electronic spins relax through such a diffusion of spin and energy to other spin centres with very short spin lattice relaxation times, "T1. One of these fast relaxing centres is suspected to be the previously mentioned highly coupled pair, with $T_{1} \propto J^{-2}$. A functional knowledge of J is therefore essential before detailed studies of the spin diffusion relaxation mechanism can be initiated.

Attention has also been given to a broad background line that
has been observed beneath the isolated donor spectrum of $\mathrm{P}-\mathrm{Si}$ and which extends well outside this spectrum. This line is thought to arise from exchange coupled pairs for which $J \sim A$. It is shown that at least part of this line is due to such pairs.

CHAPTER II

THEORY
A. Electron Spin Resonance

The basic energy levels of the unpaired electrons of a paramagnetic sample in a magnetic field $\mathrm{H}_{\mathrm{L}} \mathrm{H}_{\mathrm{o}} \hat{k}$ are given in Figure 1.

$m_{s}=$ the electronic spin quantum number
h 1 12 $2=$ energy difference between states
N^{+}=number of electrons in upper state
$\mathrm{N}^{-}=$number of electrons in lower state

Figure 1. Energy levels of a spin $\frac{1}{2}$ system.
If this system is subjected to a mic rowave field at frequency V_{12}, the resulting equilibrium absorption of energy (ESR) can be written (assuming no saturation) ${ }^{4}$ as:

$$
\begin{equation*}
A=n_{55}\left|C_{-\frac{1}{2}, \frac{1}{2}}\right|^{2} h \gamma_{12} g\left(\theta_{12}\right) \tag{1-1}
\end{equation*}
$$

where $c_{-\frac{1}{2}}{ }^{1}$ is the matrix el ament connecting the states, $g\left(\mathcal{F}_{12}\right)$ is a "shape function" due to the finite width of the energy levels, and $n_{s s}$ is the steady state excess number of electrons in the ground state. Assuming Boltzmann population statistics (see Appendix I) we obtain:

$$
\begin{equation*}
n_{s s}=N \sinh \left[\frac{h v_{12}}{2 R T}\right] \tag{1-2}
\end{equation*}
$$

where N is the total number of spins, k is Boltzmann's constant, and
T is the absolute temperature in ${ }^{\circ} \mathrm{K}$. Eramination of equation $1-2$ reveals that the greatest population differences and hence the largest ESR signals are obtained at high magnetic fields and low temperatures.

B. The Wavefunctions of the Impurity States

Silicon has six conduction band minima in "Is" space that lie along each of the directions $[1,0,0],[-1,0,0],[0,1,0], \cdots \cdots$, $[0,0,-1]$ as shown in Figure 2.

Figure 2. Energy vs \underline{k} relationship in the $[1,0,0]$ direction. The wavefunctions of the impurity states can be represented ${ }^{5}$ by the following linear combination of the wavefunctions at each of these conduction band minima:

$$
\begin{equation*}
\because Y(\underline{r})=F(r) \sum_{n=1}^{6} \alpha_{n} e^{i \underline{k}_{0}^{(n)} \cdot \underline{r}} u_{\underline{k}_{0}^{(n)}(r)} \tag{1-3}
\end{equation*}
$$

where ${ }^{\alpha}{ }_{n}$ represents the contribution of each minimum to the total wavefunction, and $U_{\underline{k}_{0}^{(n)}}$ ($\underline{\underline{r}}$) is a periodic function of \underline{r} corresponding to the $n^{\text {th }}$ minimum. $F^{\prime}(\underline{r})$ is an envelope function satisfying a hydrogen-like Schroedinger equation:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m_{l}} \frac{J^{2}}{\partial z^{2}}-\frac{\hbar^{2}}{2 m_{t}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{J^{2}}{\partial y^{2}}\right)\right] F(r)-\frac{e^{2}}{k r} F(r)=E F(r) \tag{1-4}
\end{equation*}
$$

Where m_{ℓ} is the longitudinal effective mass, m_{t} is the transverse
effective mass, e is the electronic charge and K is the macroscopic: dielectric constant. Equation 1-4 is non-separable, but a good variational solution to $i t^{6}$ is given by:

$$
\begin{equation*}
F(r)=\frac{1}{\sqrt{\pi a^{2} b}} e^{-\sqrt{\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}}} \tag{1-5}
\end{equation*}
$$

where a and b are, respectively, the transverse and longitudinal "effective Bohr radii".

As previously mentioned, this work will employ a single effective Bohr radius that enables equation $1-5$ to be rewritten as:

$$
\begin{equation*}
F(\underline{r})=\frac{1}{\sqrt{\pi a^{* 3}}} e^{-\frac{r}{a^{*}}} \tag{1-6}
\end{equation*}
$$

where a^{*} is presumably some suitable average of a and b.
Kohn ${ }^{5}$ finds, from considerations of symmetry and the experimentally observed ground state hyperfine splitting that $n=1 / \sqrt{6}$ for all n. Therefore we can write equation l-3 for the ground state as:

$$
\begin{equation*}
\Psi(\underline{r})=\frac{1}{\sqrt{6}} \cdot \frac{1}{\sqrt{\pi a^{* 3}}} \cdot e^{-\frac{r}{a} *} \sum_{n=1}^{b} e^{i \frac{k_{0}^{(n)} \cdot \underline{r}}{} u_{k_{0}^{(n)}}(\underline{r})} \tag{1-7}
\end{equation*}
$$

The interference tern $e^{i \underline{\underline{k}}(n)} \underline{\underline{\underline{r}}}$ in equation $1-7$ will be retained explicitly in our further calculations.

C. The Nearest Donor Approximation

This study assumes a random distribution of the phosphorus impurities in the host lattice. This assumption has previously been shown to be reasonably justified in the concentration range of interest. Further, we assume that the exchange interaction J betreen donor electrons is non-negligible for nearest neighbours only. Obviously, this approximation becomes inaccurate when some impurity site "A" is the same distance from neighbouring sites "B" and "C", but it is found that, for our concentration range, nonnegligible probabilities of such clusters arise only when A, B and

C are so widely separated as to act like isolated donors. This approximation is also justified by the absence of lines due to such clusters in our spectra.
D. The Exchange Interaction

The nearest neighbour exchange interaction may be written as 8

$$
\begin{equation*}
V_{e x}=J \underline{S}_{1} \cdot \underline{S}_{2} \tag{1-8}
\end{equation*}
$$

where S_{1}, \underline{S}_{2} are the spins of the two electrons concerned, and:

$$
\begin{align*}
& J=-\iint d r_{1} d x_{2} \frac{e^{2}}{r_{12}} \psi_{1}^{*}\left(r_{1}\right) \psi_{2}^{*}\left(r_{2}\right) \psi_{1}\left(r_{2}\right) \psi_{2}\left(r_{1}\right) \tag{1-9}\\
&-2 \iint \psi_{1}^{*}\left(r_{1}\right) \psi_{2}\left(r_{1}\right) d r_{1} \cdot \psi_{1}^{*}\left(r_{2}\right)\left(-\frac{e^{2}}{r_{12}}\right) \psi_{2}\left(r_{2}\right) \\
& \equiv-J_{12}^{0}-2 S_{12} L_{12} \tag{1-10}
\end{align*}
$$

where $\mathcal{Y}_{1}, \psi_{2}$ are the wavefunctions of electrons 1 and 2 , and $r_{12}=\left|\underline{r}_{1}-\underline{r}_{2}\right|$.

We can now calculate the exchange energy J as a function of interdonor separation \underline{r} by substituting the impurity wavefunctions of equation 1-7 into equation l-9. This is done in Appendix II, where we obtain:

$$
\begin{aligned}
& J(r)=\frac{1}{9} \frac{e^{2}}{K a^{*}}\left(\sum_{n}^{1} \cos \left(\underline{B}_{0}^{(n)} \cdot r\right)\right)^{2} e^{-2 D}\left\{2(1+D)\left(1+D+\frac{D^{2}}{3}\right)\right. \\
& \left.-\frac{1}{5}\left[-\left(-\frac{25}{8}+\frac{23}{4} D+3 D^{2}+\frac{D^{3}}{3}\right)+\frac{6}{D}\left[\left(1+D+\frac{D^{2}}{3}\right)^{2}(\gamma+\ln D)\right]\right]\right\}^{(1-11)}
\end{aligned}
$$

The $\left(\sum_{n}^{1} \cos \underline{k}_{0}^{(n)} \cdot r\right)^{2}$ factor represents an interference effect due to contributions from various conduction band minima.

E. The Donor Pair System

It is instructive to first calculate the donor pair spectrum in the two limiting cases of large ($J>A$) and small ($J \ll A$) exchange energy. The spin system is given in Figure 3.

Hestatic magnetic field
$\underline{S}_{1} \bullet-e \quad S_{2} \oplus-e$
$\prod_{-} \quad \begin{aligned} & O+r \rightarrow 0 \\ & I_{1}+e \\ & I_{2}\end{aligned}$
$I_{1}, I_{\text {spins }}$ are the individual nuclear
Sl, \underline{S}_{2} are the individual electronic spins of the pair

Figure 3. Spin system of the pair.
The Hamiltonian for this system can be written as:

$$
f\left(=g \beta H\left[S_{1 z}+\underline{S}_{2 z}\right]+A\left[\underline{I}_{1} \cdot S_{1}+\underline{I}_{2} \cdot \underline{S}_{2}\right]+J \underline{S}_{1} \underline{S}_{2}(1-12)\right.
$$

where g is the electronic g factor and β is the Bohr magneton. The much smaller nuclear Zeeman and nuclear spin-spin interactions are neglected. In the limit $J \ll A$, the resulting spectra is obviously that of the isolated donor, which gives two hyperfine peaks at $\mathrm{E}=\mathrm{g} \beta \mathrm{H}_{0} \pm \mathrm{A} / 2$. The more interesting limit when $J \gg A$ shall now be considered in detail. For this situation $S_{\underline{L}} \underline{S}_{1}+\underline{S}_{2}$ is essentially a good quantum number. Neglecting the off-diagonal components of the hyperfine interaction, which is justified formost values of J (c.f. Chapter II, Section B), equation 1-12 becomes:

$$
\begin{equation*}
\mathscr{L}=g \beta H S_{z}+A S_{z}\left(I_{1 z}+I_{2 z}\right)+\frac{1}{2} J\left(S^{2}-\frac{1}{2}\right) \tag{1-13}
\end{equation*}
$$

with eigenvalues:

$$
\begin{equation*}
E_{T}^{0, \pm 1}=g \beta H M+\frac{1}{2} A M\left(m_{1}+m_{2}\right)+\frac{\sqrt{3}}{4} \tag{1-14}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{3}=-\frac{3}{4} J \tag{1-15}
\end{equation*}
$$

where $E \mathrm{P}$, ES are the triplet and singlet energies (using the usual notation for the ground state of the hydrogen molecule). M is the total electronic spin projection quantum number, and m_{1}, m_{2} are the individual nuclear spin projection numbers.

The introduction of a microwave field adds a perturbation to the Hamil tomian H of the form:

$$
\begin{equation*}
\mathcal{L}_{\text {r.f. }}=\frac{g \beta H_{1}}{2}\left(S^{+}+S^{-}\right) \sin (\omega t) \tag{1-16}
\end{equation*}
$$

where S^{+}is the electron spin raising operator, S is the electron spin lowering operator, and $w / 2 \pi$ is the frequency of transition. Clearly, this perturbation induces transitions such that $\Delta M= \pm$, $\Delta\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)=0$.

The transition $\Delta S=1$ is not allowed. This is due to the fact that the spin wavefunctions of the triplet state are symmetric under interchange of electrons, whereas those of the ground state are antisymmetric under the same operation. Thus He r.f.synmetric under this interchange, cannot connect the singlet to the triplet because of parity considerations. Note that when $J \sim A$, however, S is no longer a good quantum number and we observe ${ }^{2}$ such "forbidden" transitions from the "singlet" to the "triplet" states.

From the selection rules given above, the ESR spectrum will have the form of Figure 4.

Note that the spectra due to the isolated donors will effectively mask the donor pair peaks at $E g \beta H_{0} \pm A / 2$.

A. Introduction

The spectrum of $\mathrm{P}-\mathrm{SI}$ is inhomgeneously broadened due to hyperfine interactions with Si^{29} nuclei (4% natural abundance). The following calculation will assume the existence of the "spin packets" proposed by Portis ${ }^{9}$. Each such spin packet constitutes a homogeneously broadened line corresponding to a particular effective local field, and has little interaction with those paclects corresponding to different local fields. This is a questionable assumption and should be considered in more detail in future studies. For each of these packets the susceptibility $\gamma=X^{\prime}+i X^{\prime \prime}$ is given by ${ }^{9}{ }_{8}$

$$
\begin{align*}
& \gamma^{\prime}(H)=\frac{1}{2} \dot{x}_{0} \gamma^{2} H_{0} T_{2}^{2} \frac{\left(H_{0}-H\right)}{1+T_{2}^{2} \gamma^{2}\left(H_{0}-H\right)^{2}+\gamma^{2} H_{1}^{2} T_{1} T_{2}} \tag{2-1}\\
& \gamma^{\prime \prime}(H)=\frac{1}{2} x_{0} \gamma H_{0} T_{2} \frac{1}{1+T_{2}^{2} \gamma^{2}\left(H_{0}-H\right)^{2}+\gamma^{2} H_{1}^{2} T_{1} T_{2}} \tag{2-2}
\end{align*}
$$

where is the static magnetic susceptibility, γ is the free electron gyromagnetic ratio, H_{1} is the microwave magnetic field intensity, T_{1} and T_{2} are the spin-lattice and spin-spin relexation times respectively, and H_{o} is the central resonant field of the spin packet.

Experimentally, we observe $d K^{\prime} / d H$. Thus, realizing that for our low concentration semples $\left(\left\langle 4 \times 10^{16} / \mathrm{cm}^{3}\right) \gamma^{2} \mathrm{H}_{1}^{2} \mathrm{~T}_{1} \mathrm{~T}_{2}\right\rangle \mathrm{T}_{2}{ }^{2} \gamma^{2}\left(\mathrm{H}-\mathrm{H}_{0}\right)^{2}$ when $\mathrm{H} \gamma \mathrm{H}_{0}$, we obtain from equation 2-1 that:

$$
\begin{equation*}
\left(\frac{d \gamma^{\prime}(H)}{d H}\right)_{H \simeq H_{0}} \simeq \frac{\frac{1}{2} x_{0} \cdot \gamma^{2} H_{0} T_{2}^{2}}{1+\gamma^{2} H_{1}^{2} T_{1} T_{2}} \tag{2-3}
\end{equation*}
$$

and thus from equation $2-2$,

$$
\begin{equation*}
\left(\frac{d x^{\prime}(H)}{d H}\right)_{H \simeq H_{0}} \simeq \gamma T_{2} \gamma^{\prime \prime}\left(H_{0}\right) \tag{2-4}
\end{equation*}
$$

Then, given that the rate of power absorbed by the sample is ${ }^{9}$:

$$
\begin{equation*}
A=2 \gamma H_{0} X^{\prime \prime}\left(H_{0}\right) \tag{2-5}
\end{equation*}
$$

we obtain from equations 1-1 and 2-4 that:

$$
\begin{equation*}
\left(\frac{d X^{\prime}(H)}{d H}\right)_{H \simeq H_{0}} \quad \alpha n_{s s}\left|C_{-\frac{1}{2}, \frac{1}{2}}\right|^{2} g\left(H-H_{0}\right) \tag{2-6}
\end{equation*}
$$

where we assume a shape function $g\left(H-H_{o}\right)$ for the homogeneously broadened line of each spin pecket to be of a Gaussian form. A theoretical calculation of a scale model of the spectrum therefore involves determining each of the tems on the right hand side of equation $2-6$ over each interval of H corresponding to a spin packet width.
B. Matrix Element Calculations.

The calculation of the matrix elements of the allowed transitions necessitates a general calculation of the eigenvalues and eigenfunctions of the donor pair system over the whole range of J. Following the individual spin notation introduced in Figure 3, we can write the general form of the eigenfunctions as:

$$
\begin{equation*}
\psi^{(n)}=\sum_{i, j, k, l=1}^{2} c_{i j k l}^{(n)}\left|M_{i} M_{j} m_{k} m_{l}\right\rangle \tag{2-7}
\end{equation*}
$$

where M_{1}, M_{2} are the " z " components of the electronic spins \underline{S}_{1} and \underline{S}_{2}, m_{1} and m_{2} are the $" z$ " components of the nuclear spins I_{1} and I_{2}, and the $C_{i j k l}$'s are normalized constants giving the contribution to the eigenfunction from each of the basis states.

There are 16 basic wavefunctions $\psi_{i j k l}=\left|M_{i} M_{j} m_{k} m_{l}\right\rangle$ and correspondingly $16 C_{i j k l}^{(n)}$'s for a given $\psi^{(n)}$. The matrix representation of the Hamiltonian of the donor pair spin system (equation l-l2) in this basis is given in Table 1 . This matrix wass diggonalized via computer and the corresponding eigenvalues and eigenfunctions deterwined for particular values of J. The eigenfunctions compiled in Table II have a particular form which guarantees that they be invariant under the
simultaneous interchange of both electron and nuclear spins (this operation commutes with the Mamiltonian given in equation 1-12.).

As this calculation of the eigenvectors and eigenvalues of for each value of J was tedious and costly in computer time, we determined their functional form by means of a hybrid method. Labelling the basis vectors ψ_{m} by unprimed $m, n^{\prime} s$, and the eigenvectors (in the diagonal representation) by m', $n^{\prime \prime}$, we write

$$
\begin{align*}
\left|m^{\prime}\right\rangle & =\sum_{m}^{\prime}|m\rangle\left\langle m \mid m^{\prime}\right\rangle \tag{2-8}\\
& =\sum_{m}^{\prime}|m\rangle C_{m m^{\prime}}
\end{align*}
$$

where the $C m m^{\prime}$ have already been calculated via computer for certain J's.

Then:

$$
\begin{equation*}
\mathscr{H}\left|m^{\prime}\right\rangle=E_{m^{\prime}}\left|m^{\prime}\right\rangle=\sum_{m}^{1} f l|m\rangle C_{m m^{\prime}} \tag{2-9}
\end{equation*}
$$

or:

$$
\begin{equation*}
E_{m^{\prime}}\left\langle n \mid m^{\prime}\right\rangle=\sum_{m^{\prime}}^{1}\langle n| \mathcal{L l}|m\rangle C_{m m^{\prime}} \tag{2-10}
\end{equation*}
$$

which we express more concisely as:

$$
\begin{equation*}
E_{m} C_{n m^{\prime}}=\sum_{m}^{1} H_{n m} C_{m m^{\prime}} \tag{2-11}
\end{equation*}
$$

In accord with equation $2-11$ the $n^{\text {th }}$ row of Fnm was multiplied by the colum vector $\left|m^{\prime}\right\rangle$ and the equation was solved for the corresponding Fin'. This calculation was facilitated by neglecting the off-diagonal elements of the hyperfine interaction. A check on this approximation was made by comparing the eigenvalues projected by computer (in minch the off-diagonal elements were not neglected) and the calculated $E{ }^{\prime}$ in the region $J \sim A$, with rratifying results (See Table III). The functional $\mathrm{Em}{ }^{\prime} \mathrm{T}_{\mathrm{s}}$ are given in Table II and the energy level structure in Figure 5, where S, To, and $T \pm 1$ refer to electronic pair spin states, and $S_{2} t_{0,} t_{ \pm 1}$ refer to similar
nuclear pair spin states, in the $J \gg A$ limit.
The non-zero values of tire matrix elements connecting the various states under the influence of the microwave radiation are now easily calculated and are given in Table IV, together with the corresponding transition energy " Δ ". Examination of Δ reveals the different regions of the spectrum to which ench transition contributes. This is illustrated in Figure 6.

Figure 6. Spectral contributions of allowed transitions. The broad background line is shown to be at least partly due to donor pairs for which J~A.

TABLE I

Matrix Representation of the Mamiltonian of the Donor Pair System

	$\begin{aligned} & -1 \lambda \\ & -1 N \\ & -1 N \\ & -1 N \\ & -1 \omega \end{aligned}$			$\begin{gathered} -1 N \\ -1 N \\ -1 N \\ -1 N \\ \hline-1 N \end{gathered}$	$\begin{aligned} & -\hat{1} \\ & -1 \sim \\ & -1 \sim \\ & -1 \sim \\ & -1 \sim \end{aligned}$		$\begin{aligned} & -14 \\ & \text {-in } \\ & \text {-in } \\ & \hline 12 \\ & \hline \end{aligned}$				$\begin{gathered} \wedge_{n}^{N} \\ -i n \\ -i, n \\ -i n \\ \hline \end{gathered}$				
$\begin{gathered} 8+0 \\ -\frac{\pi}{4}+\frac{A}{2} \end{gathered}$															
	$\begin{array}{r}8+0 \\ +\frac{5}{4} \\ \hline\end{array}$			$\frac{A}{2}$											
		$\begin{array}{r} x H_{0} \\ +\frac{J}{4} \\ \hline \end{array}$						$\frac{A}{2}$							
			$\begin{aligned} & 8 \mathrm{H}_{0} \\ & +\frac{\pi}{4} \\ & \hline \frac{\mathrm{~A}}{2} \end{aligned}$			$\frac{A}{2}$			$\frac{A}{2}$						
	$\frac{A}{2}$			$-\frac{5}{4}$				$\frac{\mathrm{J}}{2}$							
					$\frac{-3}{4}+\frac{A}{2}$				$\frac{J}{2}$						
			$\frac{A}{2}$			$-\frac{5}{4}-\frac{A}{2}$				$\frac{\mathrm{J}}{2}$		$\frac{A}{2}$			
							$-\frac{J}{4}$				$\frac{J}{2}$		$\frac{A}{2}$		
		$\frac{A}{2}$		$\frac{5}{2}$				$-\frac{5}{4}$							
			$\frac{A}{2}$		$\frac{5}{2}$				$-\frac{I}{4}-\frac{A}{2}$			$\frac{A}{2}$			
						$\frac{J}{2}$				-- $\frac{5}{4}+\frac{A}{2}$					
							$\frac{J}{2}$				$-\frac{5}{4}$			$\frac{A}{2}$	
						$\frac{A}{2}$			$\frac{A}{2}$			$\left.\begin{array}{\|c\|} \hline-8 k_{0} \\ -\frac{5}{4} \\ -\frac{A}{2} \end{array} \right\rvert\,$			
							$\frac{A}{2}$						$\begin{array}{\|r\|} \hline-r H_{0} \\ -\frac{J}{4} \\ \hline \end{array}$		
											$\frac{A}{2}$			$\begin{array}{r} \\ -8 H_{0} \\ +\frac{I}{4} \\ \hline\end{array}$	
															[

Eigenfunctions of the Donor Pair

State	$\begin{aligned} & \text { NT } \\ & \text { Mt } \\ & \text { Nt } \\ & \text { NL } \end{aligned}$		$\begin{aligned} & \mathrm{NH} \\ & \mathrm{NH} \\ & \mathrm{NH} \\ & \mathrm{NH}, \end{aligned}$	$\begin{aligned} & \overline{\mathrm{Nt}} \\ & \mathrm{Nt} \\ & \mathrm{Ni}_{1}^{-} \\ & \mathrm{Ni}_{1}^{2} \end{aligned}$	$\begin{aligned} & \overline{N^{\prime}-1} \\ & \mathrm{~N}^{-} \\ & \mathrm{N}^{\prime} \\ & \mathrm{N}^{-1} \end{aligned}$		$\begin{aligned} & \overline{\mathrm{Ni}} \\ & \mathrm{NL} \\ & \mathrm{NL} \\ & \mathrm{NL} \end{aligned}$		$\begin{aligned} & \overline{\mathrm{NF}} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \mathrm{NL} \\ & \mathrm{ML} \end{aligned}$			$\left\lvert\, \begin{gathered} \overline{\mathrm{Nt}} \\ \mathrm{Ni-} \\ \mathrm{Ni-} \\ \mathrm{Ni} \end{gathered}\right.$	T-	$\begin{aligned} & \text { N- } \\ & \hline \end{aligned}$		$\begin{aligned} & \overline{N H} \\ & \cdots i \\ & N+i \\ & N+i \end{aligned}$	Energy
1	1																$\gamma_{8} \mathrm{H}_{0}+\frac{J}{4}+\frac{\mathrm{A}}{2}$
2		$1 / \sqrt{2}$	$1 / \sqrt{2}$														$X H_{0}+\frac{J}{4}$
3		$1 / \sqrt{2}$	$-\frac{1}{\sqrt{2}}$														$\gamma H_{0}+\frac{J}{4}$
4				1													$\gamma H_{0}+\frac{J}{4}-\frac{A}{2}$
5					$1 / \sqrt{2}$				$1 / \sqrt{2}$								$\frac{\mathrm{J}}{4}$
6					$-1 / \sqrt{2}$				$1 / \sqrt{2}$								$-\frac{35}{4}$
7						a_{1}	a_{2}			a_{2}	a_{1}						- $-\frac{3}{4}+\frac{1}{2} \sqrt{J^{2}+R^{2}}$
8						a_{1}	$-a_{2}$			a_{2}	- a_{1}						$-\frac{J}{4}+\frac{1}{2} \sqrt{J^{2}+A^{2}}$
\bigcirc								$1 / \sqrt{2}$				$1 / \sqrt{2}$					$\frac{\mathrm{J}}{4}$
10								$-\frac{1}{\sqrt{2}}$				$1 / \sqrt{2}$					$-\frac{3 J}{4}$
11						a_{2}	a_{1}			- a_{1}	$-a_{2}$						$-\frac{1}{2} \sqrt{J^{2}+A^{2}}+\frac{A}{2}$
12						a_{2}	- a_{1}			$-a_{1}$	a_{2}						$-\frac{1}{2} \sqrt{J^{2}+A^{2}}+\frac{A}{2}$
13													1	.			$-8 H_{0}+\frac{5}{4}-\frac{A}{2}$
14										.				1/32	$1 / \sqrt{2}$		$-8 H_{0}+\frac{J}{4}$
15														-1/12	$1 / \sqrt{2}$		$-8 H_{0}+\frac{J}{4}$
16																1	$-8 H_{0}+\frac{J}{4}+\frac{A}{2}$

A Comparison of (i) the Computer Projected Donor Pair Eigenvalues When the Off-diagonal Myperfine Elements are not Neglected to (ii) the Functional Derivation Where These Off-diagonal Elements are Neglected.
State J=25 MHz J $\quad J \quad \mathbf{J}=00 \mathrm{MHz}$
(i)
(ii)
(i)
(ii)

1	10065.25	10065.25	10159.	10159.
2	10007.59	10006.25	10101.	10100.
3	10005.59	10006.25	1009.	10100.
4	9947.9	9947.25	10041.	10041.
5	6.59	6.25	99.7	100.
6	-18.39	-18.75	-299.6	-300.
7	54.06	54.06	108.5	108.5
8	54.06	54.06	108.5	108.5
9	5.9	6.25	100.3	100.
10	-22.46	-18.75	-300.3	-300.3
11	-66.56	-66.56	-308.5	-308.5
12	-66.56	-66.56	-308.5	-308.5
13	-10053.5	-10052.75	-9959.7	-9959.
14	-99941.1	-9993.75	-9900.	-9900.
15	-9994.1	-9993.75	-9900.	-9900.
16	-9934.75	-9934.75	-9841.	-9841.

TABLE IV

Donor Pair Transitions Ilaving Non-zero Transition Probability. The Relative Transition Probabilities and the Transition Energies, \triangle, are Given and $\vartheta_{e}=g \mathrm{gH}_{0}$.

Transition	Relative Transition Probability	Transition Energy (Δ)
a: (16) $\rightarrow(9)$	1	$V_{e}-\frac{A}{2}$
$\mathrm{b}: \quad(13) \leftrightarrow(5)$	1	$v_{e}+\frac{A}{2}$
c: (9) ↔ (4)	1	$\gamma_{0}-\frac{A}{2}$
$\mathrm{d}:(5) \leftrightarrow(1)$	1	$\gamma_{e}+\frac{A}{2}$
e: $\quad(15) \leftrightarrow(8)$	$\frac{1}{2}\left(1+J\left(J^{2}+A^{2}\right)^{-\frac{1}{2}}\right)$	$\gamma_{e}+\frac{1}{2}\left(J^{2}+\Lambda^{2}\right)^{\frac{1}{2}}-\frac{J}{2}$
$f: \quad(14) \leftrightarrow(7)$	"	"
$g: \quad(8) \leftrightarrow(3)$	"	$\gamma \gamma_{e} \frac{1}{2}\left(J^{2}+A^{2}\right)^{\frac{1}{2}}+\frac{J}{2}$
$\mathrm{h}: \quad(7) \leftrightarrow(2)$	"	"
i: (15) $\leftrightarrow(11)$	$\frac{1}{2}\left(1-J\left(J^{2}+A^{2}\right)^{-\frac{1}{2}}\right)$	"
$j: \quad(14) \leftrightarrow(12)$	"	"
k: $\quad(12) \leftrightarrow(2)$	"	$Y_{e}+\frac{1}{2}\left(J^{2}+A^{2}\right)^{\frac{1}{2}}+\frac{J}{2}$
1: (11) $\leftrightarrow(3)$	"	"

Energy Level Diagram for a Phophorus Donor Pair. The Eigenstates are Labelled Numerically From 1 to 16 Along With the Usual Strongly Coupled Pair States to Thici Each Reduces in the Limit J A.
C. Calculation of the Population Difference Betreen Transition Levels

The population difference between the transition levels is given by $n_{s s}$ as defined by equation l-2. The determinetion of $n_{s s}$ thus entails a knowledge of the relative number of pairs that contribute to a given spin packet, and also of the normilized distribution of spins in the corresponding upper and lower states at equilibrium. Appendix A deals with the latter calculation. As the transition energies Δ can be writiten in terms of J (Table IV), we shall calculate $N(J)$, (the nomalized distribution of nearest donor pairs having J values in a certain ronge) in order to find the relative number of pairs contributing to a given spin paclet.

The nearest neighbour distribution function for a random distribution of impurities is given by Chandresklar ${ }^{10}$ as:

$$
\begin{equation*}
W(r) d v=e^{-\frac{4 \pi N_{d} r^{3}}{3}} 4 \pi N_{d} r^{2} d r \tag{2-12}
\end{equation*}
$$

where N_{d} is the concentration of impurities and $W(r) d r$ is the probability that the nearest neighbour to a given impurity lies in the spherical shell between r and $r+d r$. Noting that the factor $4 \mathrm{~N}_{\mathrm{d}} \mathrm{r}^{3} / 3$ in equation $2-12$ expresses the number of impurity sites inside a radius r, we write:

$$
\begin{equation*}
\frac{4 \pi N_{d} r^{3}}{3}=\frac{N_{d}}{N_{5 i}} \cdot n(r) \tag{2-13}
\end{equation*}
$$

where $n(r)$ is the total number of lattice sites inside "r", and $N_{\text {sI }}$ is the concentration of lattice sites. Similarly:

$$
\begin{equation*}
4 \pi N_{d} r^{2} d r=\frac{N_{d}}{N_{S I}} \cdot n(r, r+d r) \tag{2-14}
\end{equation*}
$$

and therefore equation 2-12 can be rewritten as:

$$
\begin{equation*}
W(r) d r=\frac{N_{d}}{N_{S I}} n(r, r+d r) e^{-\frac{N_{d}}{N_{S I}}} n(r) \tag{2-15}
\end{equation*}
$$

The probability that any particular lattice site in the shell is
a nearest donor impurity site is then given by:

$$
\begin{equation*}
P(r)=\frac{N_{\alpha}}{N_{s I}} e^{-\frac{N_{d}}{N_{s I}} \cdot n(r)} \tag{2-16}
\end{equation*}
$$

For particular values of N_{d} and a^{*}, the determination of $N(J)$ entails calculating J for each lattice site in a particular shell. Then, the probability thet this lattice site is a nearest donor impurity site (as given by equation 2-16) is associated with this value of J. This analysis can then be performed over all possible shells, and the probabilities $P(r)$ (whose J's fit into certain intervals) added in a corresponding array. Thus, for a particular concentration and effective Bohr radius, a discrete $N(J)$ is determined. The computer analysis necessary to this computation is contained in Appendix C.

In order to make further calculation easier, a continuous $N(J)$ was calculated by taking an appropriate average of the interference term in equation l-ll (c.f. Appendix C). A comparison of the discrete and continuous distributions for $N_{d}=4 \times 10^{16} / \mathrm{cm}^{3}$ and $a^{*}=10.5 \Lambda^{\circ}$ is given in Figure 7. (The rapid fall-off of the discrete curve in the region $\log J<-1$ is simply due to the fact that not all the pairs in this region were considered, due to limitations of computer time.)

The problem of determining the relative number of spins that contribute to a certain spin packet is now reduced to an integration of $N(J)$ over the width of the packet expressed in terms of J. This is combined with the namalized Boltzmann population differences between the levels (Appendix A) to give $n_{s s}$ of equation 2-6.

FIGURE 7
Comparison of Discrete and Continuous $N(J)\left(a^{*}=16.5 \AA\right)$

D. The Theoretical Spectrum

The final step in the calculation consists first of integrating the absorption A over one spin packet. We obtain $N_{J_{1}}^{J_{2}}$ where:

$$
\begin{equation*}
N_{J_{1}}^{J_{2}}=\int_{J,}^{J_{2}} N(J) \cdot f_{B}(J, \Delta, T) \cdot M_{i j}^{2}(J) d J \tag{2-17}
\end{equation*}
$$

where $E\left(J_{1}\right)-E\left(J_{2}\right)$ is the spin packet width, $f_{B}(J, \Delta, T)$ is the normalized Boltzmann population difference between the i and j levels, $M(J)$ is the matrix element connecting the i and j states, and T is the tenperature in ${ }^{\circ} \mathrm{K}$. With reference to Figure 8, the Gaussian shape function is then introduced.

Figure 8. Introduction of the Gaussian shape function.
The total absorption $N \frac{\pi_{2}}{3}$, is taken to be the area under the Gaussian shape function, with half width equal to the spin packet width ($\sim 8 \mathrm{MHz}$). The convolution of all these contributing Ga ssians is then calculated and the resulting scaled spectrum is obtained. Appendix D presents the computer program that is used to perform these operations.

Subsequently, the ratio "C" of the height of the centre line to the average height of the hyperfine lines is calculated. This ratio is sensitive to the value of the "effective Bohr Radius" a*, and is particularly easy to determine experimentally.

Chapter IV

EXPERIREJTAL METHODS AND RESULTS

A. Apparatus and Operating Conditions

The gross features of the ESR spectrometer employed are seen in Figure 9. The klystron is a Varian Associates reflex type, delivering approximately 70 miV . over the frequency range 8.5 to 10 GHz . The klystron frequency was stabilized by a standard automatic frequency control (AFC) that was "locked" to an external cavity of high $\&$ and variable frequency, enabling observation in the dispersive mode. If we consider the equivalent circuit to a resonant cavity, X^{\prime} is proportional to the change in resonant frequency of the cavity as the resonant condition is swept through. It was found that the most sensitive position of the external cavity was approximately one half way up the resonant cavity as shown:

Figure 10. Mode shape and sample cavity. where the change in reflected power (which is monitored by the crystal detector) per unit change in cavity frequency will presumably be maximum.

The brass cavity used was designed to operate in the TE_{102} mode and was gold plated by an imersion type gold plating solution. Aluminum foil wrapped around its exterior excluded any optical light,
and two pyrex filters situated in the waveguide just above the coupling hole shielded the sample from infra-red radiation ${ }^{1}$. Fairly consistent semi-critical coupling to the cavity was achieved as long as these filters were at least l cm. above the coupling hole. The samples used had dimensions $\sim 10 \times 4 \times 4 \mathrm{~mm}$. and were held to the centre of the bottom of the cavity by vacuun grease.

Low temperatures were achieved by pumping on liquid He^{4} that was transferred into an inner dewar containing the resonant cavity and waveguide. The pump used had a 150 cubic ft./min. capacity, and pumped on a $6 "$ line. Temperatures achieved were found to be consistently close to $1.05^{\circ} \mathrm{K}$ during the course of the experiments.

Field modulation coils that enabled observation of the derivative of the dispersion were operated at 400 Hz and aimplitude . 5 0ersteds. The input to these coils also served as the reference for the lockin amplifier, to which was fed the output of the crystal preampifier. The static magnetic field was provided by a Newport Instruments $8^{\prime \prime}$ electromagnet with variable sweep control.

FIGURE 9

Block Diagram of Bxperimental Apparatus

B. Experimental Results

The ESA spectrum was obtained at $1.05^{\circ} \mathrm{K}$ for four samples with concentrations of $.8,1.7,2.3$ and 3.7×10^{16} donors $/ \mathrm{cm}^{3}$. A typical spectra for $N d=4 \times 10^{16} / \mathrm{cm}^{3}$ is shown in Figure 1. The experimental ration C of the centre line height to average hyperfine line height was plotted as seen in Figure 12. The theoretical ratio using an assumed effective Bohr radius a^{*} was then calculated, and the best fit of the experimental results was obtained for $a^{*}=17.3 A^{\circ}$. This theoretical ratio is seen as the solid line in Figure 12. Using this value of a^{*} and the theoretical spectrum C was calculated to be 20.2% for a $N d=3.7 \times 10^{16}$ donors $/ \mathrm{cm}^{3}$ sample at $4.2^{\circ} \mathrm{K}$. This is in good agreement with the experimental value of $20 \pm 2 \%$. Using this best fit value of $a^{*}=17.3 A^{\circ}, N(J)$ curves were then calculated for $\mathrm{Nd}=4 \times 10^{16} / \mathrm{cm}^{3}$ and $6 \times 10^{16} / \mathrm{cm}^{3}$, and are presented in Figure 13.

FIGURE 11
Experimental ESR Derivative Trace for $\mathrm{Nd}=3.7 \times 10^{16} / \mathrm{ca}^{3}$

A Plot of Experimental Points and Theoretically Calculated Values of the Ratio $C(\%)$ of the Central Pair Line Intensity to the Average Intensity of the Hyperfine Lines. The Line Represents the Calculated Ratio for an Effective Bohr Radius ${ }^{*}=17.3 \mathrm{~A}^{\circ}$.

FIGURE 13
A Plot of the No malized Distribution of Pair J Values $N(J) / N o / 2$ as a Function of the Exchange Energy Jor a 4×10^{16} Donors $/ \mathrm{cm}^{3}$ Sample (Solid Curve) and a 6×10^{16} Donors $/ \mathrm{cm}^{3}$ Sample (Dashed Curve)

C. Possible Error

The measurement of the sample concentrations were made through a. standard four point probe resistivity technique. These measurements had a possible error of $\pm 5 \%$, which, together with possible experimental errors in measuring the ratio, are reflected by the error bars in Figure 12. Values of a^{*} were then fitted to the limits of these error bars to define the accuracy of a^{*}. We thus obtained $a^{*}=17.3 A^{\circ} \pm .2 A^{\circ}$ 。

Additional errors may be due to a change in passage conditions from hyperfine to centre lines due to the more highly coupled and: consequently faster relaxing pair systems that contribute to the centre line. We therefore changed several parameters of the observation mode, notably the sweep rate and magnetic field modulation frequency, which was varied from 30 Hz to 3000 Hz . Within experimental error tine resulting values of the ratio were found to be independent of these changes in obervation parameters.

It was also found that the ratio "C" was significantly increased for higher microwave powers. This can be attributed to a spin diffusion phenomena ${ }^{3}$ that would increase the faster relaxing centre line absorption at the expense of the more slowly relaxing hyperfine lines. To avoid such difficulties the ratio C was measured at the lowest microwave powers consistent with useable signal to noise.

Chapter V

DISCUSSION OF RESULTS

The experinentally determined effective Bohr radius $a^{*}=17.3 A^{\circ}$ is very close to $17.2 A^{\circ}$, which is the arithmetic mean of the longitudinal and transverse effective Bohr radii of the anisotropic ground state impurity wevefunction ${ }^{12}$. This agreement would seem to indicate that the effective Bohr radius in overlap calculations should be set equal to such an arithwetic mean rather than a geometric mean which has been used in previous calculations ${ }^{13}$.

Jerome and Winter ${ }^{14}$ via Endor techniques obtained the most probable value of J in a P-SI sample where $N d=6 \times 10^{16} / \mathrm{cm}^{3}$ as $1.34 \times 10^{4} \mathrm{MHz}$. From Figure 13 which presents our noralized $N(J)$ for a similar sample, the most probable value of J is seen to be 50 mm . Part of this discrepancy may be due to the complications introduced into the interpretation of Endor results due to the J dependent electronic spin lattice relaxation time. Dut more importantly, it might be pointed out that Endor measurements only involved those parts for which $J \geqslant A$, thus ignoring the great bulk of more weakly coupled pairs.

In conclusion, the excellent agreement that is achieved between the calculated and experimental results (Figure 13) provides confidence in the isotropic assumption of the effective Bohr radius, and also in our assumption of a random distribution of impurities. This unified, self consistent approach should provide useful and detailed information on the distribution of exchange coupled pairs which has hitherto been unavailable.

BIBLIOGRAPHY

1. Slichter, C.P., Phys. Rev. 99, 479 (1955)
2. Marko, J.R., Phys. Lett. 27A, 119 (1968)
3. Yang, G. and Honig, A., Phys. Rev. 168, 271 (1967)
4. Pake, GoE., Paremagnetic Resonance, Ed. D. Pines, 38 (ii.A. Benjamin Inc., N.Y., 1962)
5. Kohn, W., in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., N.Y., 1957), Vol. 5.
6. Kohn, W. and Luttinger, J.Mo, Phys. Rev. 98, 915 (1955)
7. Mlexander, M.N. and Hol comb, D.F., Rev. Mod. Phys. 40, 815 (1968)
8. Anderson, P.W., in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., N.Y., 1963), Vol. 14
9. Portis, A.M., Phys. Rev. 91, 1071 (1953)
10. Chardraserhar, S., Rev. Hod. Phys. 15, 1 (1943)
11. Honig, A., Physica 24, 1635 (1958)
12. Miller, A. and Abrahams, E., Phys. Rev. 120, 745 (1960)
13. Sugihara, K., J. Phys. Chem. Solids 29, 1099 (1968)
14. Jerome, D. and Winter, J.M., Phys. Rev. 134, Al001 (1934)
15. Pauling, L. and Yilson, E.B., Introduction to Quantum Mechanics, 343 (McGraw-Hill Book Company Inc., N.Y., 1935)

APPENDIX A

POPULATION DIFTERENCES BETYEEN TRNNSITION LEVILS

Our whole calculation of the spectrum is based on the fact that all the localized impurity pairs are "distinguishable". Therefore, even though the electrons are fermions, the relative populations of the various pair levels will be given by Boltzmann statistics. With reference to Figure 5, page 17, we discount the splitting of the various triplet lines (as A.<< H_{o}) and obtain the simplified energy level diagram given in Figure 15.

Figure 15. Simplified energy level diagran of the donor pair. Therefore, if we assign a population of 1 to energy level 1 , and a total population of N to the whole system, the fractional populations of the other states are given by:

State 1.

$$
\begin{equation*}
N_{1}=\frac{N e^{-\beta E_{1}}}{\sum_{r}^{1} e^{-\beta E_{r}}} \sum_{r} e^{-\beta E_{r}}=N e^{-\beta E_{1}} \tag{A-1-1}
\end{equation*}
$$

thus:

$$
(A-1-2)
$$

State 2. $N_{2}=\frac{N e^{-\beta E_{2}}}{\sum_{r}^{\prime} e^{-\beta E_{v}}}=e^{\beta\left(E_{1}-E_{2}\right)} \quad(A-1-3)$
and similarly for states 3 and 4. The results of this calculation and corresponding population differences are given in Table V.

TABLE V

Boltzmann Population Differences Between Transition Levels

$$
\begin{array}{ll}
\text { Transition } & \text { Population Difference } f_{B}(J, \Delta, T) \\
15 \rightarrow 8 & \exp \left[-\frac{\left(J+\sqrt{J^{2}+A^{2}}\right)}{2 k T}\right]\left\{\exp \left[\frac{\gamma H_{0}}{k T}\right]-1\right\} \\
14 \rightarrow 7 & \exp \left[-\frac{\left(J+\sqrt{J^{2}+A^{2}}\right)}{2 k T}\right]\left\{1-\exp \left[-\frac{\gamma H_{0}}{k T}\right]\right\} \\
7 \rightarrow 2 & \\
11 \rightarrow 15 & \left(1-\exp \left[\frac{\left.\left.2 \gamma H,-J-\sqrt{J^{2}+A^{2}}\right]\right)}{2 k T}\right]\right. \\
12 \rightarrow 14 & \\
12 \rightarrow 2 & \\
11 \rightarrow 3 &
\end{array}
$$

CALCULATION OF EXCHANGE

The tern J_{12}^{0} of equation $1-10$ is now to be calculated explicitly. Substituting the shielded potential - $e^{2 / K r_{12}}$ seen by the donor electrons for the liydrogenic potential $-e^{2 /}, r_{12}$, and writing $\underline{r}=\underline{r}_{2}-\underline{r}_{1}$ we obtain:

$$
J_{12}^{0}=\frac{e^{2}}{K} \int \Psi_{1}^{*}\left(r_{2}-r\right) \Psi_{2}\left(r_{2}\right)\left\{\int \Psi_{2}^{*}\left(r_{1}+r\right) \Psi_{2}\left(r_{1}\right) d r_{1}\right\} d r_{2}(A-2-1)
$$

As

$$
\psi_{1}(r)=F(\underline{r}) \sum_{n} \alpha_{n} e^{i \underline{k}_{0}^{(n)} \cdot \underline{v}} u_{\underline{k}_{0}^{(n)}}(r),
$$

J_{12}^{0} can now be written:

$$
\begin{aligned}
& J_{12}^{0}=\frac{e^{2}}{k} \int F_{1}\left(\underline{r}_{2}-\underline{r}\right) F_{2}\left(\underline{r}_{2}\right) \sum_{n, n^{\prime}}^{1} \alpha_{n} \alpha_{n^{\prime}} e^{-i \underline{k}_{0}^{(n)} \cdot\left(\underline{r}_{2}-\underline{r}\right)} e^{i \underline{\underline{k}}\left(n^{\prime}\right) \cdot} \cdot \underline{r}_{2} u_{\underline{p}_{0}^{(n)}\left(\underline{r}_{2}-r\right)} u_{\underline{k}_{0}^{(n)}\left(\underline{r}_{2}\right)}
\end{aligned}
$$

We examine the inner integral given by $\}$. Using the periodicity of the u's $\left(u_{k}^{\left(n \cdot n^{\prime}\right)}\left(r_{1}+\underline{r}\right)=u_{k_{0}(n)(\underline{n})}\right)$

As $u_{\left.\underline{R}_{0}^{(n \prime \prime}\right)\left(\underline{r}_{1}\right)} u_{\left.\mathbb{R}_{0}^{(n \prime \prime \prime}\right)}\left(\underline{r}_{1}\right) \quad$ is periodic in \underline{r}_{1}, we expand it in a Fourier series:

Thus:

Then, if $U_{x} \frac{F_{2}\left(r_{1}+r\right) F_{1}\left(r_{1}\right)}{r}$ varies slowly with r_{l}, (this is
equivalent to the "gentle potential approximation ${ }^{5}$ " basio to the derivation of the impurity waverunctions) one can obtain:

$$
\int U e^{i\left(k_{0}^{\left(n^{n}\right)}-\underline{k}_{0}^{\left(n^{\prime \prime}\right)}-\underline{k} q\right) \cdot \underline{r}_{1}} \underset{\left(\text { limit } \underset{\sim}{J x_{1}} \rightarrow 0\right)}{\longrightarrow}(\text { const }) \delta\left|\underline{k}_{0}^{\left(n^{\prime \prime \prime}\right)}-\underline{k}_{0}^{\left(n^{\prime \prime}\right)}-\underline{k}_{\gamma}\right|(A-2-6)
$$

by using the common definition of the delta function.
As $k_{0}^{\left(n^{\prime \prime \prime}\right)}$ and $k_{0}^{\left(n^{\prime \prime}\right)}$ are both in the first Brillouin zone, and
 $\gamma=0$ for non-neglibible contributions in this gentle potential limit. Similarly, $\underline{k}_{0}^{\left(n^{n \prime}\right)}$ and $\underline{k}_{0}^{\left(n^{\prime}\right)}$ must be in the same direction in order that their difference be close to zero, which provides the condition $n^{\prime \prime \prime}=n^{\prime \prime}$ - Therefore

$$
\begin{equation*}
\left\}=\sum_{n^{\prime \prime}}^{1} \alpha_{n^{\prime \prime}}^{2} e^{\left.-i \underline{k}_{0}^{n^{\prime \prime}}\right)} \cdot \underline{r} \int \frac{F_{2}\left(\underline{r}_{1}+\underline{r}\right) F_{1}\left(r_{1}\right)}{r} d r_{1}\right. \tag{A-2-7}
\end{equation*}
$$

Where the orthonormality of the $U_{\underline{x}_{0}(n)}(r)^{2} S$ has been used to obtain $B_{n^{\prime \prime}, n^{\prime \prime \prime}}^{0}=1$ 。

Thus

$$
\begin{align*}
& J_{12}^{0}=\sum_{n^{\prime \prime}}^{1} \alpha_{n^{\prime \prime}}^{2} e^{-i k_{0}^{\left(n^{\prime \prime}\right)} \cdot \underline{v}} \iint \frac{F_{1}\left(r_{2}-\underline{v}\right) F_{2}\left(\underline{r}_{2}\right) F_{2}\left(r_{1}+\underline{\underline{v}}\right) F_{1}\left(r_{1}\right)}{r} \tag{A-2-8}\\
& \cdot \sum_{n, n^{\prime}} \alpha_{n} \alpha_{n^{\prime}} e^{i \underline{k}_{0}^{(n)} \cdot \underline{r}} e^{i\left(h_{0}^{\left(n^{\prime}\right)}-\underline{k}_{0}^{(n)}\right) \cdot \underline{r}_{1}} u_{\underline{k}_{0}^{(n)\left(y_{1}\right)} u_{k}\left(n^{\prime}\right)\left(\underline{r}_{1}\right) d r_{1} d \underline{r}_{2}}
\end{align*}
$$

which, by the same type of procedure can be written as

$$
J_{12}^{0}=\sum_{n, n^{\prime}} \frac{\alpha_{n}^{2} \alpha^{2}}{k} n^{\prime} e^{i\left(\underline{\beta}_{0}^{(n)}-\underline{L}_{0}^{\left(n_{0}^{\prime}\right)}\right) \cdot \underline{r}} \cdot \overbrace{e^{2} \iint \frac{F_{1}\left(r_{1}\right) F_{2}\left(r_{2}\right) F_{1}\left(x_{2}\right) F_{2}\left(r_{1}\right) d r_{2} d d_{1}(A-2-9)}{r}}^{k}
$$

Noting that the $F_{1}^{\prime} s, F_{2}^{\prime \prime s}$ are hydrogenic $1 s$ wavefunctions with an effective Bohr radius a^{*}, the integral K is regognized to be equivalent to the integral K^{\prime} evaluated by Pauling and Filson ${ }^{15}$ in a treatment of the hydrogen molecule, where $a=a^{*}$. They obtain

$$
\begin{align*}
& K=\frac{e^{2}}{a^{4}}\left[-e^{-2 D}\left(-\frac{25}{8}+\frac{23}{4} D+3 D^{2}+\frac{1}{3} D^{3}\right)+\frac{6}{D}\left\{\Delta^{2}(\gamma+\ln D)\right.\right. \\
& \left.\left.+\Delta^{12} E_{1}(-4 D)-2 \Delta \Delta^{\prime} E_{i}(-2 D)\right\}\right] \tag{A-2-10}
\end{align*}
$$

where

$$
\begin{aligned}
& D=r / a^{*} \\
& r=.57722 \\
& \Delta=e^{-D}\left(1+D+D^{2} / 3\right)
\end{aligned}
$$

By an exactly similar analysis, using 42-10, 42-12 of Pauling and Will son ${ }^{15}$:

$$
\begin{equation*}
S_{12}=\sum_{n} \alpha_{n}^{2} e^{i k_{0}^{(n)} \cdot r} \Delta \tag{A-2-11}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{12}=\sum_{n^{\prime}}^{1} \alpha_{n^{\prime}}^{2} e^{-i \underline{k}_{0}^{\left(n^{\prime}\right)} \cdot r}\left(-\frac{e^{2}}{k}\right) e^{-D}(1+D) \tag{A-2-12}
\end{equation*}
$$

As $J_{12}=J_{12}^{0}-2 S_{12} L_{12}$, we have as our final expression:

$$
\begin{aligned}
& J_{12}=\frac{e^{2}}{k a^{*}} \sum_{n, n^{\prime}} \alpha_{n}^{2} \alpha_{n^{\prime}}^{2} e^{i\left(k_{0}^{(n)}-k_{0}^{\left(n^{\prime}\right)}\right) \cdot r} e^{-2 D}\left\{2(1+D)\left(1+D+\frac{D^{2}}{3}\right)\right. \\
& \left.-\frac{1}{5}\left\{-\left(-\frac{25}{8}+\frac{23}{4} D+3 D^{2}+\frac{1}{3} D^{3}\right)+\frac{6}{D}\left[\left(1+D+\frac{D^{2}}{3}\right)^{2}(r+\ln D)\right]\right\}\right\}
\end{aligned}
$$

where terms $O\left(E_{i}(-2 D)\right)$ have been discounted as they go to zero very quiclsly for $D \geqslant \frac{1}{2}$.

As $\left|k_{0}^{(n)}\right|=.85 \pi / a$, where a is the lattice spacing, for all n, the interference tern in equation $A-2-13$ can be rewritten as:

$$
\begin{equation*}
\sum_{n, n^{\prime}} \alpha_{n} \alpha_{n^{\prime}} e^{i\left(k_{0}^{(n)}-k_{0}^{(n)}\right) \cdot r}=4\left(\sum_{n} \cos \left(k_{0}^{(n)} \cdot \underline{v}\right)\right)^{2} \tag{A-2-14}
\end{equation*}
$$

Therefore, equation $\mathrm{A}-2-13$ becomes:

$$
\begin{aligned}
& J_{12}(r)=\frac{1}{9} \cdot \frac{e^{2}}{k a^{*}} \cdot\left(\sum_{n} \cos \left(k_{0}^{(n)} \cdot r\right)\right)^{2} e^{-2 D}\left\{2(1+D)\left(1+D+\frac{D^{2}}{3}\right)\right. \\
& \left.-\frac{1}{5}\left[-\left(-\frac{25}{8}+\frac{23}{4} D+3 D^{2}+\frac{1}{3} D^{3}\right)+\frac{6}{D}\left[\left(1+D+\frac{D^{2}}{3}\right)^{2}(\gamma+\ln D)\right]\right]\right\}^{(1-2-15)}
\end{aligned}
$$

which is our final expression.
a. Calculation of the Number of Lattice Sites in Shells of Unit Thickness Centered on the Origin.

Silicon has a so-called"diamond" crystalline structure consisting of two interlocking face-centred cubic lattices.

Figure 14. Simple Face-centred Cubic Lattice Structure (F.C.C.) For the simple F.C.C. lattice noted in the above figure, the basic lattice transformations depicted are given by

$$
\begin{align*}
& \underline{a}_{1}=\frac{a}{2}(\hat{i}+\hat{j}) \\
& \underline{a}_{2}=\frac{a}{2}(\hat{i}+\hat{j}) \tag{A-3-1}\\
& \underline{a}_{3}=\frac{a}{2}(\hat{j}+\hat{k})
\end{align*}
$$

Therefore, lattice sites are at positions \underline{R} where
$\underline{R}=n_{1} \underline{a}_{1}+n_{2} a_{2}+n_{3} a_{3}$ where n_{1}, n_{2}, n_{3} are integers.

The second F.C.C. lattice of silicon is displaced along the body diagonal of the cube depicted in Figure 19 by $\frac{1}{4}$ of its length. Therefore the lattice points of the second lattice are described by

R where:

$$
R^{\prime}=\underline{R}+\frac{a}{4}(\hat{i}+\hat{j}+\hat{k})
$$

The distance $R=(\underline{R} \cdot \underline{R})^{\frac{1}{2}}$ of the lattice sites from the origin is then given by:

$$
\begin{equation*}
R=\frac{a}{2} \sqrt{\left(n_{1}+n_{2}\right)^{2}+\left(n_{1}+n_{3}\right)^{2}+\left(n_{2}+n_{3}\right)^{2}} \tag{A-3-4}
\end{equation*}
$$

for the first lattice, and by:

$$
\begin{equation*}
R^{\prime}=\frac{a}{2} \sqrt{\left(n_{1}+n_{2}+.5\right)^{2}+\left(n_{1}+n_{3}+.5\right)^{2}+\left(n_{2}+n_{3}+.5\right)^{2}} \tag{A-3-5}
\end{equation*}
$$

for the second lattice.
When this formulation is used in the $360-67$ computer to calculate the number of lattice sites in shells of width $1 \AA$, it becomes extremely costly in computer time to proceed pest $r=100 \AA$. It is, however, essential to the calculation that we do so. Thus the problem was reformulated by using the symmetry properties of the lattice.

The basic quantities of interest are the absolute value of \underline{R} and (for the interference term in eq. A-2.15) the projections of $\underline{\underline{R}}$ on the x, y, z axes respectively. The interference term is seen to be an even function of these projections. Therefore we shall calculate the absolute value of the projections of various R on the x, y, z axes respectively and find the number of lattice sites that correspond to each set of projections. The analysis, although tedious, is conceptually trivial, and in essence consists of treating the tro interlocking F.C.C. lattices as 8 interlocking cubic lettices. The resulting absolute values of the projections and corresponding lattice sites are sumarized in Table VI. It was then easy to calculete the number of lattice sites contained in each shell of width $1 \stackrel{\circ}{A}$, and to subsequently obtain the probability that any one site in that shell was an impurity site through equation 2-16.

Table VI

Number of Lattice Sites Having the Same Absolute Value for Projections on the x, y, z Axes in a Crystal With Interlocking F.C.C. Structure.

$$
\left.\right)
$$

b. Determination of the Nearest Neighbour Distribution

This was performed by Program I. The probability that a lattice site in a particular shell was a nearest donar, as calculated in Section A for a particular concentration $N d$, was read in as the array P. The exchange energy J was then calculated, according to equation 1-10, for each collection of "equivalent" sites assuming an effective Bohr radius $a^{*}(=A D)$. Subsequently, depending upon which range the $\log (J)$ term corresponds to, the probability p multiplied by the number of equivalent sites L is added to a certain element of the FT $\phi \mathrm{T}$ array. This program is run for all the equivalent sites noted in Table VI, which entails nine separate computations in order to obtain the final discrete $F T \phi T$, or $N(J)$, array.
\＄LIS THENOJ
104
OINENSION PR(250), NO (250), PROB(250), ALJ(250), P(250), FTOT(250
REAL LGE,JJ(250)
$A A=2.30 E 08$
$B B=2 . / 9$ 。
$C C=1 . / 45$ 。
ALPHA $=5.3$
$\mathrm{E}=.85 \div 3.1416$
LGE =ALOG10(2.71828)
READ (4,100) DIST,AD
FORMAT (2F10.2)
$\mathrm{N}=\mathrm{DIST}$
DO $2 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{READ}(5,101) \operatorname{RR}(I), N(1), P(I)$
FORIAT (F10.2, I 10, E10.2)
NO (J) $=0$
$\operatorname{FTOT}(I)=0$.
$\operatorname{PROB}(I)=0$ 。
2 CONTINUE
$M=\operatorname{INT}(D I S T / 5.3)$
NJMAX $=90$
NJMIN $=-15$
$N N=N J M A X+16$
READ (4,104) GOD
6 CONTINUE
FORMAT (F10.2)
IF (GOD.EO.O.) GO TO 8
DO $6 \mathrm{I}=1$, MN
READ (3,102) JJ(I),JJ(I+1), ALJ(I), ALJ(I +1), PROB(I)
DO $7 \mathrm{I}=1, \mathrm{~N}$
READ (3,103) RR(I),NO(I),FTOT(I)
CONTINUE
CONTINUE
DO $1 \mathrm{I}=1$, M
$A=I$
$B=0$
$\mathrm{C}=0$
$L=6$
$R=A L P H A * S Q R T(A * * 2+B * * 2+C * * 2)$
IF (R.GT.DIST+1) GO TO 1
$N R=R$
$F=(\operatorname{COS}(E * A)+\operatorname{Cos}(E * B)+\operatorname{Cos}(E * C)) * * 2$
FTOT (NR) $=$ FTOT (NR) $+A L \cap G 10(F) * L$
$N O(N R)=N O(N R)+L$
$D=R / \Delta D$
$F D=A A * B R *(1 .+D) *(1 .+D+D * 2 / 3) * E X P.(-2 . * D) / A D$
$\mathrm{GD}=\mathrm{AA} * \mathrm{CC} *(25.18 \cdot-5.75 * D-3 . * D * * 2-0 * * 3 / 3$.
$2+(6 . / 0) *((1 .+D)+D * * 2 / 3) * * 2) *.(.57777+A L \cap G(D))) * E X P(-2 . * D) / A D$
$X=F *(F D-G D)$
NJ=INT(10.*ALOG10(x))

53
54
55
56 57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

IF (NJ.LT.NJMIN) GU TO l
$N J=N J+16$
$\operatorname{PROB}(N J)=P R \cap B(N J)+L * P(N R)$
1 CONTINUE
$\operatorname{ALJ}(1)=-15$
JJ(1) $=\operatorname{EXP}(A L J(1) /(10 . * L G E))$
ALJ(1)=-1.5
DO $4 \quad \mathrm{I}=1$, NN
ALJ $(I+1)=(I-15) / 10$.
$J J(I+1)=\operatorname{EXP}(A L J(I+1) / L G E)$
WRITE (6,102) JJ(I),JJ(I+1), ALJ(I), ALJ(I+1), PROR(I)
WRITE (7,102) JJ(I),JJ(I+1),ALJ(I), ALJ(I+1), PROR(I)
4 CONTINUE
102 FORMAT (2E10.2,2F10.2,1PE10.2)
OO $5 \mathrm{I}=1, \mathrm{~N}$
WRITE $(6,103) \operatorname{RR}(I), N O(I), F T O T(I)$
WRITE (7,103) RR(I), NO(I), FTOT(I)
5 CONTINUE
103 FORMAT (F10.2,I10,F20.5)
STOP
END
END OF FILE

A continuous approximation to this $N(J)$ distribution necessitates determining a suitable average value for the interference term in equation 1-10. As the distribution of nearest donors is calculated as a function of $\log (J)$ rather than J, we calculated $\log \left(\sum_{n}^{1} \cos \left(\hat{k}_{0}^{(n)} \cdot r\right)\right)^{2}$, and obtained the appropriate average value of $\left(\sum_{n} \cos _{k_{0}^{(n)}}^{(\underline{y}}\right)^{2}$ to be -4663. Writing J as a continuous function of r, and assuming the nearest donor distribution given by equation , the probability $N(J)$ that a nearest donor pair has exchange energy in the range $J, J+\alpha J$ is given by:

$$
\begin{equation*}
N(J) d J=\frac{4 \pi N_{d} r^{2} e^{-\frac{4 \pi N_{d} r^{3}}{3}}}{(d J / d r)} d J \tag{A-3-6}
\end{equation*}
$$

Therefore, upon integrating A-3-6 over a certain range of J (the same intervals as in the discrete calculation are used) one should obtain a reasonable approximation to the discrete distribution. This procedure is performed by Program II, where J is denoted by X, end $d \bar{J} / \mathrm{dr}$ by $X P$. The resulting probability as calculated from equation A-3-6 is entered into the array PNJ, which the second section of the progran integrates over the intervals of J.

```
C THIS PROG. CALCS.THE FRACT. \# DF NRST. DOMOR PRS. HAVING
C EXCHANGE ENERGY "J" FROM A POISSON DIST. OF NRST. DONORS.
READ (5,100) N,AD,CON,RMIN,RMAX
FORMAT (110,F10.2,E10.2,2F10.2)
    LOGICAL LI,L2
        \(\mathrm{N}=300\)
        DIMENS ION ALJ(600), PNJ(600).P.J(600)
        DIMENS ION RR(600)
        REAL LJ (600)
        DO \(20 \mathrm{I}=1,600\)
        PNJ (I) \(=0.0\)
        CONTINUE
        \(A A=2.90 E 08\)
        \(B B=2.19\) 。
        \(C C=1 . / 45\).
        \(F=.4663\)
        DELR \(=(R M A X-R M I N) / N\)
        DO \(1 \mathrm{I}=1\), N
        \(R=R M I N+(I-1) * D E L R\)
        \(D=R / A D\)
        \(F D=A A * B B *(1 .+D) *(1 .+D+D * 2 / 3) * E X P.(-2 . * D) / A D\)
        \(G D=A A * C C *(25 . / 8 .-5.75 * D-3 . * D * 2-D * * 3 / 3 .+6 . / D *(1 .+D+D * 2 / 3) *\).
        \(2(.57722+A \operatorname{LOG}(0))) \div E X P(-2 . * D) / A D\)
        \(X=F *(F D-G D)\)
        \(X P=-2 * X / A D+F * A A * E X P(-2 \cdot * D) / A D * 2 *(B B *((1+2 * D / 3) *(1+D)+\)
        \(2(1+D+D * * 2 / 3))-C C *(-5.75-6 * D-D * * 2-6 / D * * 2 *(1+D+D * * 2 / 3) * 2 *\)
        \(3(-.42278+\operatorname{ALOG}(0))+12 / D *(1+D+D * * 2 / 3) *(1+2 * D / 3) *(.577+A L O G(D))\)
        4)
```

 \(\operatorname{ALJ}(I)=A L O G 10(X)\)
 PNJ (I) \(=-4 . * 3.1416 * C O N * R * * 2 * E X P(-4 . / 3 . * 3.1416 * C O N * R * * 3) / X P\)
 WRITE (7,101) R,ALJ(I), PNJ(I)
 FORMAT (2F20.2,E20.5)
 CONTINUE
 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
70
71
72
73
74
75
76
77
78
79

PJ（1）$=0$ 。
DO $2 I=1,200$
$\mathrm{LJ}(\mathrm{I})=(80 .-1) / 10$ ．
$0010 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{Ll}=\mathrm{LJ}(\mathrm{I}) \cdot L E \cdot A L J(J)$
L2 $=L J(I)$ 。GE．ALJ $(J+1)$
IF（LJ．AND．L2）GO TO 11
10 CONTINUE
11 CONTINUE
IF（ALJ（J）．EO．O．）GO TO 21
PJ（I）＝（LJ（I）－ALJ（J））＊（PNJ（J＋1）－PNJ（J））／（ALJ（J＋1）－GLJ（J）
2）＋PNJ（J）
GO TO 22
21 CONTINUE
PJ（I）$=0$ 。
22 CONTINUE
HRITE $(6,102)$ I，LJ（I），PJ（I）
102 FORMAT（I10，F10．3，E20．5）
2 continue
STOP
END
REAL LJ（600），J（600），NJ（600），JO，LGE，LLJ（200）
$N A=10$
DIMENSION PNJ（200）
COMMON PNJ，LLJ
D0 $202 \mathrm{I}=1,200$
READ（5，200）K，LLJ（I），PNJ（I）
FORMAT（I10，F10．3，E20．5）
CONTINUE
$N=200$
LGE＝AL．OG10（2．71828）
$L J(1)=80$ ．
$\mathrm{J}(1)=\operatorname{EXP}(\mathrm{LJ}(1) /(10 . * L G E))$
$A R E A=0$ ．
DO I I＝1，200
$\mathrm{LJ}(\mathrm{I}+1)=80-\mathrm{I}$
$\mathrm{J}(\mathrm{I}+1)=\operatorname{EXP}(\mathrm{LJ}(\mathrm{I}+1) /(10 . * \mathrm{LGE}))$
CALL SIMP（J（I），J（I＋1），NA，NJ（I），CON，JO，ALPHA，M，T）
AREA $=A R E A+N J$（I）
WRITE（6，101）J（I），J（I＋1），LJ（I），LJ（I＋1），NJ（I）
101 FORMAT（2E10．2，2F10．2，1PE10．2）
1 continue
WRITE $(6,102)$ AREA
102 FORMAT（／／＇AREA UNDER CURVE＝＇，F10．4）
STOP
END

APPENDIX D

This calculation was performed by Program III. The basic operations involved consisted of breaking up the energy into intervals, contoined in the array E, calculating the corresponding intervals of exchange energy which were entered into the array J, and subsequently integrating the expression given by equation 2-17 over these intervals of J to obtain the array A. Special attention was given to points for which $E=g \beta H_{0}$ and $E=g \beta H_{D} \pm A / 2$ as the exchange energy, written as a function of energy, suffers discontinuities at these points. The elements of the array A were then equated to the areas under the Gaussian shape functions given in equation 2-17, and the height of the hyperfine lines and centre line obtained as their convolution. The value of the ratio of centre to average hyperfine line was then obtained as RATIO. The continuous $N(J)$ courve for a particular concentration and effective Bohr radius as calcualted by Program II was reed into Program III as the array LLJ, PNJ.

\$LIS FINAL		
1		LOGTCAL L1, L2,L3,LX
2		DIMENSION E(802), A(802)
3		REAL J(802), Jx(11), LJ(600), J0, JH(21)
4		DATA $\mathrm{N}, \mathrm{NX}, \mathrm{NH}, \mathrm{B} / 20,50,50,118 . /$
5	31	continue
6		READ (5,105) CON, JO, ALPHA, AD, RMAX, T
7		IF (CON.EQ.O.EO) GO TO 30
8		DIMENSION PNJ(200)
9		REAL LLJ 200)
10		COMMON PNS, LLJ
11		DO $202 \mathrm{I}=1,200$
12		READ (4,201) K,LLJ(I),PNJ(I)
13	202	continue
14	201	FORHAT (I10,F10.3, E20.5)
15	105	FORMAT (2E10.2,4F10.4)
16		DO 1 $\mathrm{I}=1,802$
17		$E(I)=9799.5+$ LDAAT (I) $* .5$
18		IF (E (I).EO.l.E 04) GO TO 2
1.9		$J(I)=A B S(B * * 2 /(4 . *(E(I)-1 . E 04)$)-E(I) +1.E04)
20		G0 T0 7
21	2	J(I) $=$ EXP(LLJ (1)/ALOG10(2.71828))
22	7	CONTINUE
23		$E(I)=E(I)+.25$
24	1	CONTINUE
25		$J(283)=$ EXP (LLJ 200$) /$ ALOG10(2.71828))
26		$J(519)=J(283)$
27		D0 $3 \mathrm{I}=1,802$
28		$\mathrm{LI}=\mathrm{E}$ (I). GE.9941.
29		L2三E(I).GE. 10000.
30		L3 $=$ E(I).GE. 10059 .
31		IF (.NOT.L1) $\mathrm{M}=1$
32		IF (L1.AND..NDT.L2) M=2
33		IF (L2.AND..NOT.L3) $M=3$
34.		I' ${ }^{\text {a }}$ (L3) $M=4$.
35		LX=(I.EO.282).OR.(I.EQ.283).OR.(I.EO.400).OR.(I.EO.401)
36		2.OR.(I.EO.518).OR.(I.EO.519)
37		IF (LX) GO TO 5
38		CALL SIMP (J (I), J(I + $)$, N, A (I), CDN, JO, ALPHA, M, T)
39		GO TO 3
40	5	$A(I)=0$.
41		$J \times(1)=A M I N 1(J)(I), J(I+1))$
42		DO $10 \mathrm{~K}=1,10$
43		
44		$J X(K+1)=A M I N I(J) I), J(I+1))$ \#EXP (X)
45		CALL SIMP (JX(K), JX (K+1), NX, AX, CON, JO, ALPHA, M, T)
46		$A(I)=A(I)+A X$
47	10	continue
48	3	continue
49		HYP $=0$.
50		$J H(1)=J(283)$...

DO $11 K=1,20$
$X=A L \cap G(J(401) / J(283)) * F L O A T(K) / 20$ 。 $J H(K+1)=J(283) * E X P(X)$
CALL SIMP（JH（K），JH（K＋1），NH，AH，CON，JO，ALPHA，5，T）
$H Y P=H Y P+A H$
11 CONTINUE
HHBL $=0$ 。
DO $12 \mathrm{I}=263,303$
$H H B L=H H B L+A(I) /(\operatorname{SORT}(2 . * 3.1416) * 8) * E X P.(-.5 *((E(283)-E(I)) / 8) * 2$. 21
cont inue
$H C L=0$ ．
DO $13 \mathrm{I}=381,421$
$\mathrm{HCL}=\mathrm{HCL}+\mathrm{A}(\mathrm{I}) /(\operatorname{SORT}(2 . * 3.1416) * 8). * \operatorname{EXP}(-.5 *((E(401)-E(I)) / 8) * * 2$.
2）
CONTINUE
$H H B R=0$ ．
DO $14 \mathrm{I}=499,539$
HHBR $=H H B R+A(I) /(S O R T(2 . * 3.1416) * 8). * \operatorname{EXP}(-.5 *((E(519)-E(I)) / 8) * 2$. 2）
14
cont inue
$\mathrm{HHL}=\mathrm{HYP} /(\operatorname{SORT}(2 . * 3.1416) * 8$.
RATIO $=2 . * H C L /(2.2 H H L+H H B L+H H B R) * 100$ 。
$H L=H H L+H H B L$
$H R=H H L+H H B R$
WRITE（6，100）AD，JO，ALPHA，CON，T，RMAX
WRITE $(6,102) \mathrm{N}, \mathrm{NX}, \mathrm{NH}, \mathrm{HL}, \mathrm{HCL}, H \mathrm{R}$
WRITE $(6,103)$ RATIO
GO TO 31
CONTINUE
STOP
\because

FORMAT（／／／55X，＇AD＝1，F5．1，／／／1X，＇JO＝＇，E10．2， $9 \mathrm{X}, \mathrm{I} A L P H A=1$ ， 2F10．3， $7 \mathrm{X}, \mathrm{CO} \mathrm{CO}=1, \mathrm{E} 10.2,9 \mathrm{X}, \mathrm{T}$ TEMP＝＇，F10．2， $8 \mathrm{X}, \mathrm{IRMAX}=1, \mathrm{~F} 10.1 /$ ）
FORMAT（／50X，＇CHECKING PARAMETERS＇，／／IX， $1 \mathrm{~N}=1, I 8,38 \mathrm{X}, \mathrm{INH}=1$ ，
2I8，38X，＇NH＝＇，I8，／／2X，1HEIGHT OF LEFT HYPERFINE LINE＝1，1PE10．2，
$3 / 2 x, 1$ HE IGHT OF CENTRE LINE $=1,8 \mathrm{X}, \mathrm{E} 10.2,12 \mathrm{x}$ ，
4＇HEIGHT OF RIGHT HYPERFINE LINE＝1，E10．2／）
103 FORMAT（／／ $2 \times$ ，IRATIO OF CENTRE LINE TO HYP LINES（BY PERCENT）
2 ）＝＇，F10．2，／／／）
END
SUBROUTINE SIMP（A，B，N，AREA，CON，JO，ALPHA，M，T）
REAL JO
REAL LLJ（200）
DIMENSION PNJ（200）
COMMON PNJ，LLJ
$A N=N$
$H=(B-A) / A N$
$\operatorname{SUM} 1=0.0$
SUM2 $=0.0$
CALL AUX（A，Y，CON，JO，ALPHA＇，M，T）
$Y A=Y$
CALL AUX $(B, Y, C O N, J O, A L P H A, M, T)$
$Y B=Y$
$X=A-H$
$\mathrm{NN}=\mathrm{N} / 2$
DO $30 \mathrm{I}=1$ ，NN
$X=X+2.0 \div H$
CALL AUX（X，Y，CON，JO，ALPHA，M，T）
30
SUMI＝SUM1 $+Y$
$x=A$

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
1.37

138
139
140
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

DO $40 \mathrm{I}=2, \mathrm{NN}$
$X=X+2.0 * H$
CALL AUX $(X, Y, C O N, J O, A L P H A, M, T)$
$40 \quad$ SUM2 $=$ SUM $2+Y$
AREA $=H / 3.0 *(Y A+4.0 * S U M 1+2.0 * S U M 2+Y B)$
$\triangle R E A=A B S(A R E A)$
RETURN
END
SURROUTINE AUX (X, Y, CON, JO, ALPHA,M,T)
REAL JO, MINUS
DATA BOL,AH/2.08E4;118./
REAL LLJ(200)
DIHENSION PNJ(200)
COMMON PNJ, LLJ
ALX=ALUGIO(X)
IF (ALX.LT.O.) GO TO 300
$N=80-$ INT (10.*ALX)
IF (N.LE.1) GO TO 302
GO TO 301
300 CONTINUE
$\mathrm{N}=81-\mathrm{INT}(10 . * \mathrm{ALX})$
IF (N.GT.200) GO TO 302
GO TO 301
CONTINUE
$P J=0.0$
GO TO 303
301 CONTINUE
$P J=-10 . *(A L X-L L J(N-1)) *(P N J(N)-P N J(N-1))+P N J(N-1)$
303
CONTINUE
$R T=S O R T(X * * 2+A H * * 2)$
PLUS $=.5 *(1 .+X / R T)$
MINUS $=.5 *(1 .-X / R T)$
IF (M.GE.2) GO TO 2
$Y=M$ INUS $\because P J * A B S(1 .-E X P((2 . E 4-X-R T) /(2 . * B O L * T)))$
GO TO 1
2 CONTINUE
IF (M.GE.3) GO TO 3
$Y=P L I S S * P J * E X P(-(X+R T) /(2 . * B O L * T)) *(1,-F X P(-1 . E 4 /(B O L * T)))$
GO TO 1
3 cont inue
IF (M.GE.4) GOTO 4
$Y=P L I S * P J * E X P(-(X+R T) /(2 . * B O L * T)) *(E X P(1 . E 4 /(B O L * T))-1$.
GO TO 1
4 CONTINUE
IF (M.EO.5) GO TO 5
$Y=M \operatorname{INUS} * P J *(1 .-E X P(-(2 \cdot E 4+X+R T) /(2 . * B \cap L * T)))$
GO TO 1
5 CONTINUE
$Y=.5 * P J * E X P(-(X+R T) /(2 . * B O L * T))$
$2 *(E X P(1 . E 4 /(B D L * T))-E X P(-1 . E 4 /(B O L * T)))$
CONTINUE
RETURN
END
END OF FILE

