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ABSTRACT:  

 

 The Maillard Reaction (MR) is a non-enzymatic chemical reaction which results in linkage 

between the amino group of amino acids and the carbonyl group of reduced sugars. This reaction 

generates Maillard reaction products (MRPs) which are not present naturally in foods, and are 

responsible for a range of colors, odors, flavors, and other sensory properties. Conflicting reports 

of MRPs impacts on human health are probably due to the fact that bioconversion of these 

digestible molecules by the gut microbiota has been marginally taken into account. This study 

aimed to determine the effects of different MRPs on rodent’s gut microbiota through16S rRNA 

amplicon sequencing over three different studies. Study 1 focused on the impact of 

NƐCarboxymethyllysine (CML) on the composition of mice gut microbiota and potential 

association with severity of experimental colitis. Study 2 focused on the impact of bread 

melanoidins on the composition of healthy and experimental colitis mice gut microbiota. Study 3 

focused on the impact of consumption of increasing amounts of malt melanoidins on mice gut 

microbiota. It was found that CML induced limited changes in gut microbiota profiles of healthy 

mice, but was found to significantly relieve the bacterial dysbiosis imparted by one (but not the 

other) inflammation-inducing chemical, especially the Proteobacteria bloom. Bread crust model 

(high in melanoidins) showed significant decreases of Bacteroides spp. and Enterobacteriaceae, 

while it increased Faecalibacterium spp. Also, bread crust model limited to increase 

Enterobacteriaceae in colitis model. High amounts of malts rich melanoidins rapidly and 

persistently led to significantly different gut microbiota profiles. There was a trend for decrease of 

Lactobacillus and Ruminococcus and increase of Akkermansia and Bifidobacterium with higher 

amounts of dietary melanoidins. We concluded that CML and melanoidins are not detrimental in 

terms of their impact on the gut microbiota, and that they may even have prebiotic properties.  



 

 

ACKNOWLEDGEMENTS: 
 
 I would like to express my special thanks of gratitude to my advisor Dr. Franck Carbonero 

who gave me the opportunity to work on this project and welcomed me in his lab and office. His 

knowledge and experiences are always invaluable to increase my knowledge and success in my 

educational pursuits. He is always willing to assist me with scheduling, research, and guidance 

over the years. I could not have been as successful as I am right now without his help through 

every step. 

  

 I would also like to thank Dr. Pauline Anton-Gay and Dr. Pascale Gadonna at LaSalle 

University for constructive discussions that helped me to do this wonderful project on the topic of 

Maillard Reaction Products and for the valuable information provided by them in their respective 

fields. I would also like to thank my advisory committee members: Professor Steve Ricke, Dr. 

Sami Dridi, and Dr. Charles Rosenkrans for supporting my career. I would like to thank Dr. Ricke’s 

lab for providing equipment, especially Dr. Peter Rubinelli and Thomas Flecker.       

 

 I would also like to thank the Cell and Molecular Biology program for providing me with 

an outstanding education throughout my PhD degree. I also extend my gratitude to all people at 

University of Arkansas for their advice and guidance without which this project would not have 

been possible. My thanks and appreciations also go to King Abdul Aziz University in Saudi Arabia 

for supporting and encouraging which helped me in completion of my degree. Lastly, I thank 

almighty, my family, friends, and lab members for their constant encouragement without which 

this assignment would not be possible.   

 



 

 

TABLE OF CONTENT:  

General Introduction……………………………………………………………............................1 

References…………………………………………………………………………………………5 

Chapter one: Review of the Literature.............................................................................................7 

1.1 Abstract………………………………………………………………………………………..8 

1.2 Introduction……………………………………………………………………………………9 

1.3 The Chemistry of Maillard Reaction Products……………………….…………...…………10 

1.3.1 Maillard reaction in food…………………………………………………………………..10 

1.3.2 Generation of Maillard Reaction Products in vivo...………………….…………………...11 

1.3.3 Important Maillard Reaction Product Molecules..................................................................12 

1.4 Maillard Reaction Products Impact on Nutrition and Health…………………….………….18 

1.4.1 Consequences of the Maillard Reaction in Nutrition………………………………………18 

1.4.2 Effect of Maillard Reaction Products on Health…………………………………………...20 

1.5 MRPs and Gut Microbiome and Metabolome……………………………………………….26 

1.5.1 Human Gut Microbiome and Metabolome……………………………….………………..26 

1.5.2 Known Microbial Interactions between Microbes and MRPs…………….……………….27 

1.6 Conclusions and Perspectives……………………………………………….……………….33 

1.7 References……………………………………………………………………………………35 

Chapter Two: Research Article……………………………………………………………….….55 

2-1 Abstract………………………………………………………………………………………56 

2.2 Introduction………………………………..…………………………………………………58 

2.3 Materials and Methods……………………………………………………………………….60 

2.3.1 Chemicals…………………………………………………………………………………..60 

2.3.2 Animals and Study design…………………………………………………………………60 

2.3.3 Experimental Colitis……………………………………………….………………………61 

2.3.4 DNA Extraction and Amplicon Sequencing Strategy……………….…………………….63 

2.3.5 Library Preparation and Quality Control…………………………….…………………….64 

2.3.6 Bioinformatics and Statistical Analyses…………………………………………………...64 

2.4 Results……………………………………………………………………………………….65 



 

 

2.4.1 Effect of CML on Weight Change and Food Intake in Healthy and Colitic Mice……...…65 

2.4.2 Effect of CML on Macroscopic Lesions and Neutrophil Infiltration in Healthy and Colitic 
Mice…………………………………………………...…………………………………………65 

2.4.3 Gut Microbiota Analyses...………………………………………………………….……..66 

2.4.3.1 Impact of CML on the Gut Microbiota of Healthy Mice……………………………..….66 

2.4.3.2 Impact of TNBS and DSS on the Gut Microbiota……………………………………….66 

2.4.3.3 Impact of CML on the Gut Microbiota of DSS and TNBS-Treated Mice………………68 

2.5 Discussion and Conclusion…………………………………………………………………..68 

2.6 References……………………………………………………………………………………74 

Chapter Three: Research Article…………………………………………………………………93 

3.1 Abstract……………………………………………………………………………….......….94 

3.2 Introduction..............................................................................................................................95 

3.3 Material and Methods..............................................................................................................96 

3.3.1 Bread Preparation…………………………………………………………………………..96 

3.3.2 Animals and Study design…………………………………………………………………97 

3.3.3 DNA Extraction and PCR Amplifications (Polymerase Chain Reaction)…………………98 

3.3.4 Library Preparation………………………………………………………………………...98 

3.3.5 Sequencing, Bioinformatics and Statistical Analyses……………………………………...99 

3.4 Results and Discussion………………………………….………………………………….100 

3.4.1 Impact of TNBS treatment on the gut microbiota……………..…………………………101 

3.4.2 Impact of MFC on the rats gut microbiota………………………………………………..102 

3.4.3 Impact of BCM on the rats gut microbiota……………………………………………….104 

3.5 Conclusions…………………………………...…………………………………………….107 

3.6 References…………………………………………..………………………………………108 

Chapter Four: Research Article…………………..…………….………………………………126 

4.1 Abstract………………………………………….………………………………………….127 

4.2 Introduction............................................................................................................................128 

4.3 Material and Methods………………………………………………………………...…….130 

4.3.1 Experimental Animals……………………………………………………………………130 

4.3.2 Experimental Design………………………………………………………………...……130 



 

 

4.3.3 Fecal Short Chain Fatty Acids (SCFAs) Quantification………………………………….131 

4.3.4 DNA Extraction and PCR Amplifications………………………….…………………….131 

4.3.5 Libraries Preparation and Sequencing……………………………………………………132 

4.3.6 Bioinformatics and Statistical Analyses………………………………………………….133 

4.4 Results………………………………………………………...…………………………….133 

4.4.1 Impact of diet on Feed Intake and Average Daily Gain………………………………….133 

4.4.2 Consequence of SCFAs of Melanoidin Malts on Healthy Mice………………………….134 

4.4.3 Gut microbiota analyses…………………………………………………………..………135 

4.5 Discussion and Conclusion…………………………………………………………………138 

4.6 References………………………………………………..…………………………………143 

General Conclusion……………………………………………………………………………..192 

Appendix………………..………………………………………………………………………193 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF TABLES 

Table 1.1 Examples of MRPs content of commonly consumed foods……………………….….49 

Table 1.2 Previous reports on the impact of MRPs on microorganisms...………………………51 

Table 1.3 Current available data of the effect of MRPs on colonic microbiota…………………52 

Table 2.1 Effect of NƐCarboxymethyllysine treatment on weight change, food intake, 

macroscopic lesions, MDS and myeloperoxidase activity, MPO (U/mg protein) observed 

following either DSS or TNBS experimental colitis………………………………………….…80 

Table 4.1 Temporal variation of Feed intake for all mice considered as one group. Data are 

expressed as mean ± SEM. A p value <0.05 was considered to be significant difference 

(indicated by superscript letters)………………………………………….…………………….148 

Table 4.2: Effect of diet on average daily gain. Data are expressed as mean ± SEM………….149 

Table 4.3: Effects of melanoidin malts on short-chain fatty acids. Data are expressed as mean ± 

SEM…………………………………………………………………………………………….150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF FIGURES 

Figure 1.1: Maillard Reaction Products stages (adapted from the initial description by Hodge in 

1953 to reflect current knowledge)………………………………………………………………53 

Figure 2.1A: NƐ-Carboxymethyllysine (CML) consumption results in modest and inconsistent 

changes in the healthy mice gut microbiota………………………..…………………………….81 

Figure 2.1B-D: NƐ-Carboxymethyllysine (CML) consumption results in modest and inconsistent 

changes in the healthy mice gut microbiota……………………………………………………...83 

Figure 2.2A: DSS and TNBS experimental colitis results in dramatic and distinct alterations of 

the healthy mice gut microbiota……………………………………………………………….…84 

Figure 2.2B-E: DSS and TNBS experimental colitis results in dramatic and distinct alterations of 

the healthy mice gut microbiota………………………………………………………………….87 

Figure 2.3: CML differentially modulates the limitation of DSS and TNBS alterations of the 

mice gut microbiota…………….………………….…………………………………………….88 

Figure 2.4A-D: CML has a limited impact on TNBS-induced gut microbiota dysbioses……….90 

Figure 2.5A-D: CML consumption significantly modulates DSS-treated mice gut microbiota...92 

Figure 3.1: Impact of bread crust model (BCM) and melanoidin-free control (MFC) on the gut 

microbiota of the healthy and TNBS-treated rats (NMDS plot)……..…………………………113 

Figure 3.2:  Impact of bread crust model (BCM) and melanoidin-free control (MFC) on the gut 

microbiota of healthy and TNBS-treated rats in Phyla level…...………………………………116 

Figure 3.3:  Impact of bread crust model (BCM) and melanoidin-free control (MFC) on the gut 

microbiota of healthy and TNBS-treated rats in genera of Bacteroidetes……………………...118 

Figure 3.4: Impact of bread crust model (BCM) and melanoidin-free control (MFC) on the gut 

microbiota of healthy and TNBS-treated rats in family of Proteobacteria 

(Enterobacteriaceae)....................................................................................................................119 



 

 

Figure 3.5: Impact of bread crust model (BCM) and melanoidin-free control (MFC) on the gut 

microbiota of healthy and TNBS-treated rats in genera of Actinobacteria and 

Verrucomicrobia..........................................................................................................................120 

Figure 3.6 (A): Impact of bread crust model (BCM) and melanoidin-free control (MFC) on the 

gut microbiota of healthy and TNBS-treated rats in genera of Firmicutes…………………......122 

Figure 3.6 (B): Impact of bread crust model (BCM) and melanoidin-free control (MFC) on the 

gut microbiota of healthy and TNBS-treated rats in genera of Firmicutes……………………..124 

Figure 3.6 (C): Impact of bread crust model (BCM) and melanoidin-free control (MFC) on the 

gut microbiota of healthy rats and TNBS-treated mice in genera of Firmicutes……………….125 

Figure 4.1: Impact of increasing dietary melanoidin malts on the composition of the gut 

microbiota (NMDS)…………………………………………………………………………….152 

Figure 4.2: Impact of the consumption of malts (regardless of melanoidins content) on the 

abundant phyla during the study (pie chart)……………………………………………………154 

Figure 4.3: Impact of increasing dietary melanoidin malts of the composition of the gut 

microbiota at phylum level during the study…………………………………………………...156 

Figure 4.4: Impact of the consumption of melanoidin malts (regardless of melanoidins content) 

on the abundant genera during the study……………………………………………………….158 

Figure 4.5 A: Impact of melanoidin malts on responsive genera relative abundance among the 

Firmicutes (Lachnospiraceae)…………………………………………………………………..160 

Figure 4.5 B: Impact of melanoidin malts on responsive genera relative abundance among the 

Firmicutes (Lachnospiraceae)…………………………………………………………………..162 

Figure 4.5 C: Impact of melanoidin malts on responsive genera relative abundance among the 

Firmicutes (Lactobacillaceae)………………………………………..…………………………164 

Figure 4.5 D: Impact of melanoidin malts on responsive genera relative abundance among the 

Firmicutes (Ruminococcaceae)…………………………………………………………………166 

Figure 4.5 E: Impact of melanoidin malts on responsive genera relative abundance among the 

Firmicutes (Ruminococcaceae)…………………………………………………………............168 



 

 

Figure 4.6: Impact of melanoidin malts on responsive genera relative abundance among the 

Bacteroidetes……………………………………………………………………………………171 

Figure 4.7 A: Impact of melanoidin malts on responsive genera relative abundance among the 

Actinobacteria phyla (Bifidobacterium)………………………………………………………..173 

Figure 4.7 B: Impact of melanoidin malts on responsive genera relative abundance among the 

Verrumicrobia phyla (Akkermansia)…………………………………………………………...175 

Figure 4.7 C: Impact of melanoidin malts on responsive genera relative abundance among the 

Proteobacteria phyla (Parasutturella)…………………………………………………………177 

Figure 4.8 A: Impact of different portions of dietary melanoidin malts on responsive genera 

relative abundance among Firmicutes phyla (ClostridiumXIVb) throughout study. Significant 

difference (P<0.005) are indicated by different letters...............................................................179 

Figure 4.8 B: Impact of different portions of dietary melanoidin malts on responsive genera 

relative abundance among Firmicutes phyla (Dorea) throughout study. Significant difference 

(P<0.005) are indicated by different letters…………………………………….…………….181   

Figure 4.8 C: Impact of different portions of dietary melanoidin malts on responsive genera 

relative abundance among Firmicutes phyla (Lactobacillus) throughout study. Significant 

difference (P<0.005) are indicated by different letters………………………………………..183   

Figure 4.8 D: Impact of different portions of dietary melanoidin malts on responsive genera 

relative abundance among Bacteroidetes phyla (Alistipes) throughout study. Significant 

difference (P<0.005) are indicated by different letters………………………………………...185   

Figure 4.8 E: Impact of different portions of dietary melanoidin malts on responsive genera 

relative abundance among Actinobacteria phyla (Bifidobacteria) throughout study. Significant 

difference (P<0.005) are indicated by different letters……………………...………………….187   

Figure 4.8 F: Impact of different portions of dietary melanoidin malts on responsive genera 

relative abundance among Verrucomicrobia phyla (Akkermansia) throughout study. Significant 

difference (P<0.005) are indicated by different letters………………...……………………….189   



 

 

Figure 4.8 G: Impact of different portions of dietary melanoidin malts on responsive genera 

relative abundance among Proteobacteria phyla (Parasutterella) throughout study. Significant 

difference (P<0.005) are indicated by different letters……………………………………….191   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

LIST OF PUBLISHED PAPERS: 

Chapters 1 and 2 comes from the published paper: 

ALjahdali, N., & Carbonero, F. (2017). Impact of maillard reaction products on nutrition and 
health: Current knowledge and need to understand their fate in the human digestive system. 
Critical Reviews in Food Science and Nutrition, 1-14. doi:10.1080/10408398.2017.1378865 
[doi] 

ALJahdali, N., Gadonna-Widehem, P., Delayre-Orthez, C., Marier, D., Garnier, B., Carbonero, 
F., & Anton, P. M. (2017). Repeated oral exposure to N epsilon-carboxymethyllysine, a maillard 
reaction product, alleviates gut microbiota dysbiosis in colitic mice. Digestive Diseases and 

Sciences, doi: 10.1007/s10620-017-4767-8 [doi] 

 

 

 

 

 

 

 



1 

 

GENERAL INTRODUCTION:  
 

 A clarification in terms of microbes used in the field of science and medicine is necessary 

before delving into the literature. Microbiome, the most commonly used term, refers to the whole 

genomic content of microorganisms in a given environment. Microbiota should be used when only 

the taxonomy of the microorganisms is surveyed. Microflora has been and is still used, most often 

by clinicians, but it is an incorrect term as microorganisms cannot be considered as plants. 

Metabolome is used to refer to the total composition of metabolites present in organs and fluids, 

typically measure in blood or urine (less often in fecal samples). Evidence is rapidly emerging that 

the gut microbiota has a strong association with health. The gut microbiota has been demonstrated 

to play an important role in the gut maturation, development of innate immunity, production of 

vitamins, and dietary energy harvest. The human body hosts up to 100 trillion (1014) microbes, 

with the majority residing in the gastrointestinal tract (GIT) of humans and animals. This complex 

community consists of taxa from across the tree of life, bacteria, Archaea, eukaryotes (fungi and 

protozoa), and viruses, greatly impacting human physiology (Walter & Ley, 2011).  

 The majority of microbiota in the GIT are bacteria, especially anaerobic bacteria. The 

bacterial phyla that are consistently identified in human stool or intestinal bioptic samples are 

Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, and Actinobacteria. There is a strong 

difference in microbial load between upper GI with amount 102-104 cells/ ml, and the lower GI 

with increased number in the small intestine (104-105 cells/ml) but especially in the colon (large 

intestine, 1011 cells/ml (Walter & Ley, 2011). The generally symbiotic nature between the host and 

microbiota are described in terms of nutrient exchange. The function of gut microbiota is involved 

in energy harvest and storage, as well as in a variety of metabolites (Gill et al., 2006). Gut 
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microbiota plays an essential role in degrading undigested dietary elements and producing a vast 

array of metabolites, which can influence the benefit of the epithelium tissue in the GIT as well as 

the immune system (Martin, Miquel, Ulmer, Langella, & Bermudez-Humaran, 2014; Nicholson et 

al., 2012). It has been shown that the composition of the microbiota is relatively stable within 

healthy adult individuals through time (Caporaso et al., 2011). However, among the environmental 

and genetic factors, dietary habits play an important role in alteration of the gut microbiota 

composition so that the colonic microbiota are linked in the context of health and disease of human 

and animal.  

 The variation in the gut microbiota has been associated with long-term or short-term dietary 

habits. To confirm this hypothesis, the prevalence of Bacteroidetes is associated with animal- 

based diet. In contrast, the dominance of Prevotella is associated with carbohydrates-based diet 

(Wu et al., 2011). Additionally, in an animal-based diet, the prevalence of bile-tolerant bacteria, 

such as Alistipes, Bilophila, and Bacteroises increased whereas the dominance of metabolizing 

plant polysaccharide microorganism decreased (David et al., 2014). The Western diet- typically is 

described by higher consumption of red meat, animal fats, low fiber, and high sugar-has become 

an increasingly popular diet choice in the last decade. Different food preparation methods, such as 

roasting, frying, and toasting, generate Maillard reaction products (MRPs). Maillard reaction (MR) 

is non-enzymatic modification occurring between the carbonyl group of reducing sugar molecules 

with the amino group of amino acids, which produce low-weight and high-weight molecules that 

are not naturally present in foods. These molecules have been found in more than 200 food items 

within the Western diet and are responsible for the aromas, colors, and tastes of foods (Goldberg 

et al., 2004; Hull, Woodside, Ames, & Cuskelly, 2012). For example, coffee and bread are the 

major source of melanoidins, which generate in the last stage of the MR (Fogliano & Morales, 
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2011). Fried and broiled meat are rich in advanced glycation end products (AGEs), which generate 

in the intermediate stage of the MR (Van Nguyen, 2006). Data from metabolic transit found that 

the dietary of NƐCarboxymethyllysine (CML) and melanoidins recovered in urine and feces, but 

the majority of them are not yet accounted for (Faist & Erbersdobler, 2001).  

 Because MRPs are largely present in the Western diet, they may be considered as one of 

the dietary elements that have both a beneficial and detrimental impact on human health, 

specifically through the gut microbiota. CML was found degraded by gut microbiota through in 

vitro studies (Hellwig et al., 2015; Seiquer, Rubio, Jesus Peinado, Delgado-Andrade, & Pilar 

Navarro, 2014). In addition to CML, melanoidins have been used as a carbon source and increased 

growth rates of some bacteria, such as Bifidobacteria, Bacteroides and prevotella (Borrelli & 

Fogliano, 2005; Reichardt, Gniechwitz, Steinhart, Bunzel, & Blaut, 2009). Because the impact of 

MRPs on gut microbiota have been studied most commonly in vitro models, there still remain gaps 

of knowledge about the effect of MRPs on gut microbiota in an in vivo study.  

Objective:    

 The main objectives of this study were to determine the effect of different Maillard reaction 

products on the composition of mice gut microbiota by sequencing 16S rRNA gene. The objective 

was aimed at testing three different studies: 

1- To determine the effect of NƐCarboxymethyllysine (CML) on the composition of mice gut 

microbiota and potential association with severity of experimental colitis.   

2- To determine the effect of bread melanoidins on the composition of mice gut microbiota 

and potential positive modulation of the microbiota profile associated with experimental 

colitis.  
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3- To determine the effect of increased concentration of melanoidin-rich malts on the 

composition of mice gut microbiota and potential prebiotic effects. 
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1.1 Abstract: 

 The Maillard Reaction (MR) is a non-enzymatic chemical reaction which results in the 

linkage between the amino group of amino acids and the carbonyl group of reduced sugars. MR 

products (MRPs) are common components of processed foods, mainly as a result of heating, 

especially in the Western diet. MRPs are classified as into three stages: the initial, intermediate, 

and final stage, indicative of increased complexity and size, incurring different flavor, aroma, and 

texture. MRPs presence are known to reduce the nutritional quality of foods, particularly by 

reducing protein digestibility. Early reports have linked MRPs, especially advanced glycation end-

products (AGEs) present in high concentration in the typical Western diet, to health conditions and 

diseases. However, conflicting data have since been reported, and only a few (acrylamide, 

heterocyclic amines and 5-Hydroxymethylfurfural) MRPs have documented potential toxic or 

carcinogenic effects. High molecular weight MRPs are not available for direct absorption in the 

higher gastrointestinal tract, and are thus mostly metabolized by resident colonic microbes. MRPs 

have been the subject of sparse research interest in comparison with other non-digestible dietary 

elements. In this review, we outline the state of knowledge on MRPs in nutrition and health, and 

highlight the need to develop the limited knowledge on their impact on the gut microbiota and 

which metabolites derive from MRPs fermentation. 

Keywords: Maillard reaction products, Gut microbiota, Metabolomics, Advanced glycation end-

products 
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1.2 Introduction:  

Western diet is becoming the dominant diet worldwide, and this trend is suspected to play 

an important role in the rise of western diseases. Western diet is characterized by higher intakes of 

red meat, fast foods, high-fat dairy products, fried and baked foods, high-sugar drinks, and a 

reduced intake of fibers and whole grains. While higher intake of simple sugars and fat are well 

known to increase disease and health condition risks, there are also specific dietary elements that 

have been reported as detrimental. In this review, we will focus on Maillard Reaction Products 

(MRP), a relatively large class of molecules formed by linkage between carbohydrates and 

proteins/peptides. MRPs are known to occur in high levels in typical Western diet foodstuffs 

resulting from different food preparation methods, such as roasting, frying, and toasting. While 

early studies on MRPs have pointed to their role as biomarkers of Western diet consumption and 

potential correlation with disease risk; there is currently no consensus on the role of MRPs in 

human health. 

Although it has been known for decades that a symbiotic relationship exists between the 

host and microbiota, it is only recently that analytic tools have allowed for precise characterization 

of both microbiota members and their metabolites. It is now well established that colonic microbes 

play an essential role in degrading undigested dietary elements and produce a vast array of 

metabolites. Diet-microbiota interactions are increasingly investigated in the context of health and 

disease (human and animal), with a focus on cancer, inflammatory and metabolic diseases, obesity 

and more recently cognition and neurology. Surprisingly, MRPs and MRPs-rich food interaction 

with the gut microbiota have received little attention from researchers in comparison with other 

dietary elements. 
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The purpose of this review is to outline the current knowledge on MRPs in the context of 

nutrition and health, and provide an overview of the scarce knowledge on metabolic impacts, 

microbiota interaction and metabolomics. We will conclude by summarizing the aspects for which 

extensive knowledge is available, and state the research directions that need to be undertaken to 

complete our knowledge of MRPs metabolic impacts. 

1.3 The Chemistry of Maillard Reaction Products: 

1.3.1 Maillard reaction in food  

 The Maillard reaction (MR) was first described by Louis Camille Maillard in 1912, as the 

non-enzymatic chemical reaction between the carbonyl group of reducing sugar molecules with 

the amino group of amino acids occurring during processing and storage of foods. This reaction 

depends on physical parameters, such as heating, hydration, pH, and NH2 requirements in order to 

form complex compounds that are not naturally in foods and are responsible for a range of colors, 

odors, flavors, and palatability. Thus, these molecules have positive or negative biological actions.  

 MR is divided into three stages: initial, intermediate, and final stage (Hodge. 1953) as 

described in Figure1.1. In the initial stage, colorless products such as sugar-amine condensation 

and Amadori rearrangement products are produced. In the intermediate stage, yellow or colorless 

(with strong UV absorption) compounds are produced, including 5-Hydroxymethylfurfural, 

reductone, and dicarbonyl compounds. In the final stage, brown color compounds are produced, 

such as melanoidins. The coloration occurs during heat pyrolysis of sugar, due to a pH reaction on 

the carbonyl group of sugar, while amino acids are not directly responsible for coloration (Adrian. 

1974). The characteristic color in foodstuff, such as coffee, malt, bread, cocoa, and other roasted 

foods is the result of melanoidins, which are brown nitrogen-containing high molecular weight 
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pigments (Bastos et al. 2012). In addition to desirable color, the intermediate and final stages are 

the most important for developing flavor and aroma, through Strecker degradation (Somoza. 2007, 

Ames. 1990). MR can also affect the texture of food through protein cross-linking (Gerrard. 2002). 

1.3.2 Generation of Maillard Reaction Products in vivo 

 In this review, we will focus on dietary MRPs. However, it is worth noting that MRPs have 

also been shown to be produced endogenously in humans. The knowledge on endogenous MR is 

reviewed extensively in Tessier (2010). The first report of MR in vivo was the glycation of aging 

proteins (Monnier and Cerami. 1981). In biological systems, this reaction is mainly implicated in 

protein modification, and divided into early and advance reaction stages. In the early stage, the 

formation of the Schiff base occurs, which is the interaction between the amine group of proteins 

with the reducing sugar, which generates α-dicarbonely compounds, or rearranges into the 

Amadori product. In the advance stage, the Amadori product undergoes rearrangements, which 

forms advanced glycation end products (AGEs) (Brownlee et al. 1984). The AGEs that have been 

detected in tissue protein are NƐCarboxymethyllysine (CML), Pentosidins, and Glucosepane, and 

CML was the first AGEs isolated and characterized in vivo (AHMED et al. 1986). The receptor of 

AGEs (RAGE) is a multi-ligand member of a cell (Schmidt et al. 2000). Previous studies 

demonstrated that CML/RAGE plays an important role in the induction of a calcification cascade 

in diabetes (Wang et al. 2016). Thus, AGEs are known as metabolic products of glucose toxicity 

and play a significant role in the development of metabolic diseases (Wang et al. 2012). 
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1.3.3 Important Maillard Reaction Product Molecules 

 Evidence indicates that the most important Maillard reaction products in common diets are 

NƐFructoselysine (furosine), 5-Hydroxymethylfurfural (HMF), acrylamide, heterocyclic amines, 

advanced glycation end products (AGEs), and melanoidins. They all impact the nutritional quality 

of foodstuffs and biological systems either positively or negatively, as reviewed by Tuohy et al. 

(2006). Table (1.1) summarizes the example of MRPs content of commonly consumed foods. 

1.3.3.1 NƐFructoselysine (Furosine) (FL): 

 The α-amino and Ɛ-amino group of lysine interact with reducing sugar, such as glucose, 

fructose, and maltose to form glycosylamine that undergo Amadori rearrangement products (ARP) 

in the early stage of the Maillard reaction (Hodge. 1953). Amadori products are measured as 

NƐfructoselysine because it was the first MRPs identified in foods, and is used as an indicator of 

the nutritional quality of foods. Moreover, Furosine (FL) amount is used to estimate protein 

damage caused by heating in the initial stage of MR in cereal products, such as pasta and bread 

(Erbersdobler and Somoza. 2007, Delgado-Andrade et al. 2005, Resmini et al. 1991). For example, 

low FL values may indicate a decrease in pasta quality due to exposure to low temperatures 

(Garcia-Banos et al. 2004). Temperature and time play an important role in the rise or decline of 

FL content in foods. For example, FL levels of soybean was high in extrusion treatments (66.55 

µg/g) at 140 °C for 20-30s, followed by infrared heating (63.93 µg/g) at 110 °C for 50s, and 

microwave heating (56.07 µg/g) at 115C°for 5min (Zilic et al. 2014). Heating foods for a long 

time decreases the level of FL which gives rise to other products in the intermediate stage 

(Erbersdobler and Faist. 2001). 
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1.3.3.2 5-Hydroxymethylfurfural (HMF): 

 5-Hydroxymethylfurfural (HMF) is produced in the intermediate stage of the Maillard 

reaction, and it forms in carbohydrate-rich food during acid-catalyzed dehydration of the Schiff 

base of furfural (Hodge. 1953) (Figure 1.1). HMF is a widely used marker of the nutritional quality 

of foods, such as baked diets and coffee, and it is not present in raw and fresh foods (Erbersdobler 

and Somoza. 2007). The concentration of HMF increases as thermal treatments or storage time of 

foodstuffs increase. Specifically, a positive correlation has been found between HMF content and 

the development of browning color so that reducing the heating period might be possible to reduce 

the concentration of HMF (Capuano et al. 2008). In addition to temperature, increasing pH plays 

an important role in decreasing the quantity of HMF in bakery products (Gokmen et al. 2007). 

Moreover, the type of sugar results in various quantities of HMF molecules. For example, hexose 

produces 4 to 5 times more HMF than pentose in baked foods. In addition to the type of sugars, 

the presence of certain amino acids, such as leucine, valine, and methionine can be linked to the 

concentration of HMF molecules in food products (Adrian. 1974). HMF is also formed through 

the caramelization of sugars (Capuano and Fogliano. 2011). HMF has been found in different 

quantities in various foods. The concentration of HMF in dried fruits and caramel are high, but 

bakery foods and coffee are the major sources of HMF intake (Capuano and Fogliano. 2011, 

Murkovic and Pichler. 2006). It has been reported that coffee is the main source of HMF; the 

concentration of HMF in natural, blend, roasted and soluble coffee were 110, 625, 1734, 2480 mg 

HMF/kg, respectively (Arribas-Lorenzo and Morales. 2010). 
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1.3.3.3 Acrylamide: 

 Acrylamide, which is generated during the intermediate stage of the Maillard reaction, 

results from the interaction between asparagine and reducing sugars, such as fructose and glucose, 

in heat treated bakery products and starchy foods (Hodge. 1953) (Figure 1.1). A diversity of 

chemical pathways lead to the formation of acrylamide in carbohydrate-rich foods (Granvogl and 

Schieberle. 2006, Granvogl and Schieberle. 2007). However, the major pathways are through 

Amadori products that degrade to form dicarbonyl compounds, which react with asparagine via 

Strecker degradation; or by the interaction of reducing sugar and asparagine to form the Schiff 

base without Amadori product (Granvogl and Schieberle. 2007, Granvogl and Schieberle. 2006). 

Like HMF, the formation of acrylamide is dependent on the type and concentrations of sugars, 

amino acids, temperature, and time. A positive correlation has been found between acrylamide 

levels and heating-time during baking of biscuits at 200 degrees °C and in potato chips that were 

fried at more than 248 °F (Nguyen et al. 2016, Tareke et al. 2002). Moreover, the interaction 

between glucose and asparagine generated the highest concentration of acrylamide, compared to 

fructose and asparagine (Capuano and Fogliano. 2011). Indeed, adding asparginase might control 

acrylamide content in potato products (Zyzak et al. 2003). Unlike microwaved and boiled foods, 

the highest acrylamide concentration is formed through roasting, frying, and baking methods. The 

highest level of acrylamide was found in fried potato products. For instance, the average level of 

acrylamide found in potato crisps was 628 µg/kg, compared to biscuits, bread, and coffee, which 

were 317 µg/kg, 136 µg/kg, and 253 µg/kg, respectively (Capuano and Fogliano. 2011). 
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1.3.3.4 Heterocyclic amines (HCAs): 

 Heterocyclic amines (HCAs), produced in the intermediate stage of the Maillard reaction, 

result from the reaction between reducing sugar, amino acids, and their precursor creatine (a 

nitrogenous organic acid found naturally in muscles). To illustrate, the fragmentation of Amadori 

products can form various dicarbonyl compounds that can act with amino acids and creatine to 

form HCAs (JAGERSTAD et al. 1991, Tuohy et al. 2006) (Figure 1.1). Increasing temperature 

and time play an important role in generating HCAs, which are mainly found in muscle foods, 

such as beef, pork, chicken, and fish. The most common of HCAs found and studied in foods are 

2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), 2-amino-3-methyl-imidazo [4,5-

f]quinoline (IQ), 2-amino-3-methylimidazo [4,5-f]quinoxaline (IQx), 2-amino-3,4-

dimethylimidazo [4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline 

(MeIQx) and 2-amino-3,4,8-trimethyl-imidazo [4,5-f]quinoxaline (DiMeIQx) (Knize et al. 

1994,Puangsombat et al. 2012).  

 The levels of HCAs in cooked meat depends on the type of meat and meat preparation 

methods. It has been reported that well done cooked beef had a higher concentration of HCAs, 

compared to medium cooked beef. Moreover, the highest level of total content of HCAs was 

quantified in fried bacon (17.59 ng/g), compared to fried pork (13.91 ng/g), fried beef (8.92 ng/g), 

or fried chicken (7.06 ng/g) (Puangsombat et al. 2012). In addition to total content of HCAs, high 

concentrations of PhIP were found in fried Tilapia (10.89 ng/g), followed by MeIQx (4.00 ng/g) 

and DiMeIQx (3.57 ng/g) in fried bacon, but IQ was not identified (Puangsombat et al. 2012). 

However, another study found that the high levels of IQ was10.5 ng/g in well-done fried bacon, 

which had high content of fat (Johansson and Jägerstad. 1994). It has also been reported that fried 
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meat produced the highest concentration of HCAs, compared to baked meat (Puangsombat et al. 

2012).  

1.3.3.5 Advanced Glycation End products (AGEs):  

 The interaction between glucose and protein or glucose and lipid generate advanced 

glycation end products (AGEs) that are also known as advanced Maillard reaction products 

(Obrien and Morrissey. 1989). AGEs are generated in the intermediate stage of the Maillard 

reaction. The degradation of Amadori products generate reactive dicarbonyl compounds that react 

further with amino acids to form irreversible and highly stable advance glycation end products 

(AGEs) (Tuohy et al. 2006,Cho et al. 2007) (Figure 1.1). AGEs are also produced endogenously 

through glycation metabolic pathways (Monnier and Cerami. 1981). It has been found that Western 

diet is rich in AGEs, so this review concentrates on food-derived AGEs that have been detected 

and measured in more than 200 food items (Goldberg et al. 2004). The highest content of AGEs 

was found in fat food items, such as butter with a mean of 100± 19 kilounits (kU)/g, compared to 

carbohydrate diet that contained the lowest levels of AGEs with a mean of 3.4±1.8 k U/g (Goldberg 

et al. 2004). Moreover, the heating period and preparation methods appear to be more critical to 

form AGE. For example, the highest content of AGE was found in grilled foods at temperatures 

of 230 °C for short time, compared to boiled foods at 100°C for long periods (Goldberg et al. 

2004). There are many types of AGEs, and the most commonly studied are NƐCarboxymethyllsine 

(CML) (non-cross-linking), pyrraline and pentosidine (cross-linking), which are most widely used 

as indicators of the nutritional quality of foodstuffs (Erbersdobler and Somoza. 2007).  

  NƐCarboxymethyllsine (CML) is the most important bioactive marker of MRPs and a 

commonly measured AGE not only in food items (Goldberg et al. 2004) but also in biospecimens 
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(Uribarri et al. 2003, Hofmann et al. 2002, Tessier et al. 2016). CML can be produced by the 

reaction of the carbonyl group of glyoxal from dicarbonyl componds with an epsilon-amino group 

of the lysine or by Amadori rearrangement products that act as a precursor of CML (HODGE. 

1953, Tuohy et al. 2006). Besides furosine, CML was found to be a useful indicator of protein 

damage during the late stage of the Maillard reaction (Van Nguyen. 2006). Hull et al (2012) 

determined the CML content in 257 foods that are typically consumed in Western style diets. 

1.3.3.6 Melanoidins:  

 Melanoidins, which are the final products of MR, are heterogeneous, insoluble, nitrogen-

containing high molecular weight molecules that are generated in the advanced stage of MR. 

Melanoidins are formed by dehydration, rearrangements, isomerization, and condensation of low 

molecules of MRPs formed in the intermediate stage (Hodge. 1953). To illustrate, during the 

intermediate stage, dicarbonyl compounds, aldehydes, and furfural are generated, which react with 

each other to form aldol condensation products that react with amino acid to give rise to low 

molecular weights of MRPs, leading to the high molecular weights of melanoidins (HODGE. 

1953) (Figure 1.1). Temperature and time appear to be significant factors affecting molecular 

weight, while pH plays an essential role in the chemical structure of melanoidins (Wang et al. 

2011). The color of melanoidins that are found in coffee, malt, bread crust, cocoa, and honey, 

derive from the polymerization of MRPs (Hofmann. 1998, Hofmann. 1999). The highest amount 

of melanoidins was found in sourdough loaves (30 g per 100 g of crust), compared to soluble 

coffee (22.8 g per 100 g of coffee), but the quantity of melanoidins depends on the type of bread 

and the degree of roasting in coffee (Fogliano and Morales. 2011). 
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1.4 Maillard Reaction Products Impact on Nutrition and Health 

1.4.1 Consequences of the Maillard Reaction in Nutrition:  

 Western diet, also known as the American standard diet, is characterized by higher intakes 

of red meat, high-fat dairy products, fried and baked foods, high-sugar drinks, and a reduced intake 

of fibers and whole grains. MRPs, which are not naturally present in foods, are common in the 

Western diet (Hull et al. 2012). More than 200 staple food items of the typical Western diet contain 

measurable MRPs. These MRPs are the result of different food preparation methods, such as 

roasting, frying, and toasting, which are responsible for the aromas, colors, and tastes of foods 

(Goldberg et al. 2004, Hull et al. 2012,Zilic et al. 2014). For example, coffee and bread are the 

major source of Melanoidins (Fogliano and Morales. 2011), fried chicken and broiled beef are rich 

in AGEs (Van Nguyen. 2006), and HCAs are found in high concentration in cooked meat 

(Tamanna and Mahmood. 2015).  

 The typical exposure to several dietary MRPs has been reported by different survey-based 

studies. The estimation of dietary exposure to HMF from coffee was 5.26 mg HMF/day (Arribas-

Lorenzo and Morales. 2010). The mean daily HCAs intake from meat products in a typical western 

diet was estimated at 450 ng per day-1, including mainly PhIP, MeIQx and DiMeIQx (Keating et 

al. 1999). The average daily intake level of HCAs in the Malaysia population was 553.7 ng per 

capita day, and the highest level was PhIP followed by MeIQx and MeIQ (Jahurul et al. 2010). 

Based on the Spanish National consumption database, dietary exposure to acrylamide from potato 

crisps (based on a 3-day food record) was 0.053 µg/kg body weight for the adult population (17–

60 years) and 0.142 µg/kg body weight for children (7–12 years), similar to other European 

countries (Arribas-Lorenzo and Morales. 2009). CML exposure from a MRP-high diet was shown 
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to be 11.28 mg/day, while a MRP-low diet resulted in exposure of 5.36 mg/day in adolescents aged 

11-14 years old (Delgado-Andrade et al. 2012). Dietary melanoidins represent the most abundant 

MRP in the human diet and ranges between 10-12 g per day for individuals consuming a typical 

western diet (Fogliano and Morales. 2011, Pastoriza and Rufian-Henares. 2014). For example, the 

estimation of dietary melanoidins from coffee ranged between 0.5 to 2.0 g per day. The intake of 

melanoidins in bread and dry biscuits ranged between 1.8-15 g and 3.2-8.5 g per day, respectively 

(Fogliano and Morales. 2011).  

 When foodstuffs undergo MR, the nutritional value of food is reduced, and some proteins 

are lost or become non-digestible, as reviewed by Tuohy et al. (2006). For example, exposing 

glucose and lysine to different heating periods caused loss of lysine (Adrian. 1974). Moreover, 

protein efficiency ratio (PER) decreases during MR. For example, the interaction between glycine 

and glucose reduced the PER by 22%, which reduced digestibility of nitrogen and metabolism of 

proteins measured in animals (Adrian. 1974). Increased amount of nitrogen in stool samples were 

also measured in young people who consumed a MRPs-rich diet (Seiquer et al. 2006). MRPs 

presence also affects trace element bioavailability. In an in-vitro study, the presence of MRPs in 

the diet (brown diet) reduced iron bioavailability (Mesias Garcia et al. 2009). MRPs decreased the 

digestion of magnesium in MRP-fed rats by 13%, compared to non-MRP-fed animals (Delgado-

Andrade et al. 2007). Moreover, phosphorus bioavailability was linked to the consumption of a 

diet rich in MRPs (Delgado-Andrade et al. 2011). However, some reports indicate that melanoidins 

are likely to play a significant role in the binding of dietary metals; thereby, leading to antioxidant 

and antimicrobial properties (Morales et al. 2012). In particular, melanoidins that were prepared 

from glucose and glycine (GG) had a high chelating affinity towards copper (iron II) (32%), 
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compared to melanoidins obtained from lactose and lysine (LL) and lactose N-acetyllysine (LLa) 

(Borrelli et al. 2002). 

1.4.2 Effect of Maillard Reaction Products on Health: 

 The major concern arising from the Maillard reaction is the formation of compounds that 

are not naturally present in foodstuff. Time, high temperature, and other parameters generate 

products that may have detrimental health effects, such as mutagenicity, carcinogenicity, 

cytotoxicity, and metabolic diseases, or beneficial impacts such as antioxidant, antimicrobial, and 

antihypertensive properties.  

1.4.2.1 Toxicity and Carcinogenicity: 

 The MRPs that have been reported to possess toxic and carcinogenetic properties are HMF, 

Acrylamide, HCAs, and AGEs (Tuohy et al. 2006). HMF is considered a toxicological compound 

because it can be converted into 5‐sulphooxymethylfurfural (SMF) by sulfotransferase (SURH et 

al. 1994) and into 5-chloromethylfurfural (CMF) via allylic chlorination (Surh and Tannenbaum. 

1994). Both compounds are known to be toxic and mutagenic. The highest daily exposure to 

dietary HMF was estimated as 8.57 mg HMF/day (Arribas-Lorenzo and Morales. 2010), and since 

the oral LD50 was found to be 3.1 g/kg body weight in rats (Ulbricht et al. 1984), it can be 

considered that normal HMF intake may only represent a long term health risk. HMF was also 

shown to induce aberrant crypt foci of the colon in experimental animals (Archer et al. 1992). Skin 

papillomas caused by HMF have been reported in studies on rodents (Surh et al. 1994). Moreover, 

DNA damage, cytotoxicity of the kidney, and mutagenicity of the liver have been reported for 

HMF in mammalian cells (Schoental et al. 1971, Janzowski et al. 2000, Capuano and Fogliano. 
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2011, Lee et al. 1995). Specifically, HMF decreased the amount of glutathione, which is an 

important antioxidant that prevents damage to cellular components by reactive oxygen species 

(Lee et al. 1995). 

 Acrylamide was listed as a food-borne toxicant in 2002 by the Swedish National Food 

Administration, and it is considered a potentially carcinogenic and toxic compound (Tareke et al. 

2002). As summarized in a review by Capuano and Fogliano. 2011, several studies demonstrated 

that acrylamide possesses cytotoxic, genotoxic, and tumorigenic activities. In a study using 

rodents, the exposure of acrylamide in different amounts led to an increase in the risk of developing 

cancer in the lung, thyroid, skin, and pancreas (Beland et al. 2013). Previous studies indicated that 

the metabolism of acrylamide further converted to N-acetyl-S-(3-amino-3-oxopropyl)-cysteine 

(AAMA), and the oxidation of AAMA into AAMA-sulfoxide induced kidney and bladder toxicity 

(Ramu et al. 1995, Capuano and Fogliano. 2011). However, the actual mechanisms responsible for 

dietary acrylamide carcinogenicity are still not well documented (Capuano and Fogliano. 2011, 

Tuohy et al. 2006).  

 Because heterocyclic amines (HCAs) are known as mutagenic and carcinogenic 

compounds, several studies indicated that red meat might be a risk factor for colorectal cancer 

(Cross and Sinha. 2004). HCAs are converted into genotoxic compounds by hepatic cytochrome 

P-450 1A2 enzyme (CYP1A2), which is activated by many factors, such as HCAs-rich diet. 

Specifically, CYP1A2 converted dietary HCAs into MeIQx and PhIP that are found in human 

urine (Boobis et al. 1994). In 1993, MeIQ, MeIQx, and PhIP were categorized as carcinogenic 

compounds by the International Agency for Research on Cancer, and IQ might also be a human 

carcinogen. PhIP, but not IQ, has been shown to induce colon tumors in rodents (Canzian et al. 
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1994). Moreover, liver tumors were induced in mice fed 0.06% of MeIQx that was extracted from 

foods (Ohgaki et al. 1987), and 0.03% of MeIQ that was isolated from broiled sardines induced 

tumors in various organs, such as the Zymbal gland, oral cavity, colon, skin, and mammary gland 

of the rat (Kato et al. 1989). Intestinal tumors were found in Nagase analbuminemic rats that were 

fed 0.04% to 0.01% of PhIP (Ochiai et al. 1991). Colonic aberrant crypt (AC) was found in the 

large intestine of rodents after 12 weeks of PhIP oral administration (Takahashi et al. 1991). 

 The potential role of endogenous AGEs and RAGE receptors in cancer risk has been 

extensively studied (Yamagishi et al. 2015). However, the pathological implications regarding the 

dietary AGEs and development of colorectal cancer risks have become more controversial. 

Elevated glyceraldehyde –AGEs levels were associated with the risk of rectal cancer, but were not 

linked to the risk of colon cancer based on 1,055 colorectal cancer cases (Kong et al. 2015). 

Increased risk of pancreatic cancer was found to correlate with dietary CML-AGE consumption, 

particularly in male pancreatic cancer patients (Jiao et al. 2015). In contrast, melanoidins, mainly 

from coffee, have generally been reported as potentially protective against cancer (Vitaglione et 

al. 2012, Gasscht et al. 2015, Ludwig et al. 2014). In vitro studies have shown significant anti-

proliferative effects of melanoidins from heated potato fiber (Langner et al. 2013, Langner et al. 

2011), miso and soy sauce (Kamei et al. 1997) and coffee (Vitaglione et al. 2012). However, 

because melanoidins are likely to behave similarly to fiber in the colonic microbial ecosystem, it 

has been suggested that most anti-cancer properties may derive from microbial fermentation 

metabolites (Ludwig et al. 2014, Jaquet et al. 2009). 
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 1.4.2.2 Metabolic and Cardiovascular Diseases: 

 The more common emerging evidence of MRPs in the pathogenesis of metabolic and 

cardiovascular diseases are dietary AGEs through their binding with the receptor for advanced 

glycation end products (RAGEs) (Goldin et al. 2006,Grillo and Colombatto. 2008,Hartog et al. 

2007). The binding of AGE-RAGE in the endothelial cells activates the transcription nuclear 

factor-kappa B (NF-κB), which induces pro-inflammatory cytokines and up regulates 

inflammation, notably in association with the development of diabetes and cardiac dysfunction 

(Hartog et al. 2007, Goldin et al. 2006). AGEs have been used as health biomarkers of several 

human diseases and conditions (Tessier and Birlouez-Aragon. 2012), such as inflammatory 

processes (Van Puyvelde et al. 2014), cardiovascular and metabolic diseases (Prasad et al. 

2012,Yamagishi et al. 2017,de Vos et al. 2016) and aging (Wagner et al. 2016). Cai et al (2004) 

found that a high-AGE diet enhanced low-density lipoprotein (LDL), which induces vascular 

toxicity through protein kinase stimulants in diabetic patients. In addition to heart failure, dietary 

AGEs were shown to induce Type 1 diabetes in non-obese-diabetic mice (Peppa et al. 2003). A 

diet high in AGEs induced inflammatory mediators such as TNF-α, which contributes to the 

development of diabetes (Vlassara et al. 2003). In addition, a reduction in dietary AGE intake led 

to lower levels of circulating AGE and improved insulin sensitivity in db/db mice (Hofmann et al. 

2002) and reduced possibly cardiovascular associated mortality in renal failure patients (Uribarri 

et al. 2003). AGEs were found to be involved in aging and in neurodegenerative pathways were 

reviewed by Grillo and Colombatto. (2008). 

 CML has been identified in tissues (Wang et al. 2012), plasma (Teerlink et al. 2004), urine, 

and feces (Delgado-Andrade et al. 2012). Although, CML is produced within the organism 
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endogenously (AHMED et al. 1986), several studies indicate that a significant correlation exists 

between dietary AGE content and CML serum in health people, as reviewed by Uribarri et al. 

(2005). A recent study carried out by Tessier et al (2016) found that the accumulation of dietary 

CML-fed mice was high in the kidney, intestine, and lungs, compared to native CML-fed mice. 

Serum levels of CML were found significantly higher in patients with diabetes, compared to 

healthy subjects (Jara et al. 2012). Pyrraline was found in the extracellular matrix of glomerular 

and arteriolar renal tissues from both diabetic and aged nondiabetic people (Monnier et al. 1992). 

The highest level of pentosidine was found in lens proteins of diabetic and uremic patients 

(Monnier et al. 1992). 

 1.4.2.3 Antioxidant, Antimicrobial and Antihypertensive Activities: 

 The beneficial effects of antioxidant properties of MRPs have been detected in some 

compounds, such as FL, HMF, and melanoidins. Amadori compounds might exert a moderate 

effect on the antioxidant activity of dehydrated onion and garlic during storage (Moreno et al. 

2006). The pro-oxidant properties were observed in the early stages (FL) of pasta (Anese et al. 

1999). Beside other wide range of products, HMF was found to play an important role in the 

antioxidant capacity of honey (Gheldof et al. 2002). Although the early and intermediate MRPs 

were shown to exert moderate antioxidant activity (Rufian-Henares and Delgado-Andrade. 2009), 

melanoidins are believed to be the major antioxidant MRPs (Rufian-Henares and Morales. 2007b).  

 Melanoidins are known as antioxidants, thus, several studies point out that food 

melanoidins could prevent gastrointestinal tract cancers (Morales et al. 2012). Melanoidins, 

extracted from different foods, such as roasted barley (malts) (Milic et al. 1975), cocoa (Hofmann. 

1999), bread crust, and coffee (Fogliano and Morales. 2011), have been shown to enhance 
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antioxidant capacity (Somoza et al. 2005). For example, a significant increase of antioxidant 

activity was reported in the plasma of healthy people after an intake of 200 ml coffee (Natella et 

al. 2002). This result was in agreement with those reported by Vitaglione et al (2010), 

demonstrating a decrease in liver damage in rodents fed melanoidins extracted from coffee. In 

addition to coffee, malt and bread crust were found to increase the activity of chemopreventive 

enzymes of the kidney and liver and to decrease oxidative stress levels in the plasma of rodents 

(Somoza et al. 2005). The beneficial effects of MRPs on the antimicrobial and antihypertensive 

properties have been studied with melanoidins (Rufian-Henares and Morales. 2007a, Wang et al. 

2011). Coffee melanoidins demonstrasted higher antimicrobial activities towards Geobacillus 

stearothermophylus var. calidolactis (Rufian-Henares and Morales. 2006). Melanoidin fractions 

were shown to suppress Helicobacter pylori infection in vitro and in vivo studies (Hiramoto et al. 

2004). Moreover, water-soluble melanoidins were shown to possess antimicrobial properties 

towards pathogenic E.coli strains by disrupting their membranes (Rufian-Henares and Morales. 

2008). Data from in vitro and in vivo studies indicated that melanoidins fractions from bread crust 

and coffee have a prebiotic activity similar to that of dietary fiber (Wang et al. 2011, Jaquet et al. 

2009). For example, bread crust stimulated growth of beneficial bacteria, such as Bifidobacterium 

spp (Borrelli and Fogliano. 2005). The antihypertensive activity of melanoidins isolated from 

coffee and beer has been investigated only through in vitro ACE-inhibitory activity (Rufian-

Henares and Morales. 2007b).  
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1.5 MRPs and Gut Microbiome and Metabolome 

1.5.1 Human Gut Microbiome and Metabolome 

 In the last decade, the human microbiome/microbiota has received extreme attention from 

basic and medical scientists, and it is now well established that the human body hosts up to 100 

trillion (1014) microbes. The vast majority of them are located in the human gastrointestinal tract 

(GIT), which has become the most investigated microbial ecosystem (Ley et al. 2006). While 

microbiota composition is subject to strong individuality, the core human gut microbiota can be 

defined (Turnbaugh et al. 2009, Arumugam et al. 2011). The vast majority of colonic 

microorganisms depend on undigested dietary elements to support their metabolic needs, but some 

genera have also evolved to utilize other microbial by-products or host-derived compounds 

(Carbonero et al. 2012). The potential involvement of the gut microbiome has been extensively 

studied and reviewed for diseases, such as intestinal cancer (Candela et al. 2014,O'Keefe et al. 

2015), inflammatory bowel diseases (Wehkamp and Frick. 2017), diabetes and metabolic 

syndrome, obesity (Delzenne et al. 2015,Kahn and Flier. 2000) and more recently brain diseases 

(Fung et al. 2017). 

 Studies revealed a high level of variability in microbiota due to dietary habits, including 

short and long term dietary habits that impact the gut microbiome (Ley et al. 2006). For example, 

it has been reported that long-term diets were associated with the type of enterotypes of gut 

microbiota, but short-term diets were correlated with gut microbiota composition (Wu et al. 2011). 

Wu et al (2011) found that the prevalence of Bacteroides enterotype was strongly associated with 

the consumption of animal protein and saturated fats, but the dominance of the Prevotella 

enterotype was linked to a carbohydrate-based diet. Consequently, the interaction between diet and 
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the gut microbiome has been involved in both etiology and preservation from diseases (Louis et 

al. 2007, O'Keefe. 2016, O'Keefe. 2008).  

 Gut bacteria degrade undigested foods by two main metabolic pathways: saccharolytic and 

proteolytic. On the one hand, saccharolytic bacterial species, such as Bacteroides spp, 

Bifidobacterium spp, Ruminococus spp, Peptostreptococcus spp and Roseburia intestinalis 

hydrolyze non-digestable carbohydrates into monomeric sugars that convert to beneficial products, 

such as short-chain fatty acids (SCFAs), principally acetate, propionate, and butyrate (Gibson and 

Roberfroid. 1995,Duncan et al. 2002). On the other hand, microbial metabolism of proteins, such 

as Bacteroides spp, Propionbacterium spp, Eubacterium spp, and Peptococcus spp degrade 

peptide and amino acids into a variety of products including short or branched-chain fatty acids, 

and other metabolite compounds, some of which are potentially toxic, such as uremic toxins 

(Evenepoel et al. 2009, Macfarlane et al. 1986), phenols and amines. While metabolites from these 

two pathways are arguably dominant in terms of abundance, the complete metabolome comprises 

at least tens of thousands of different molecules (42,003 in the most recent version of the Human 

Metabolome Database) (Wishart et al. 2016). Since MRPs are molecules with both carbohydrate 

and proteic structures, it is likely that there are less bacterial members able to degrade them, and 

that microbial consortia are probably needed to fully metabolize them to end-products. 

1.5.2 Known Microbial Interactions between Microbes and MRPs 

1.5.2.1 Impact of MRPs on Food-Associated Microbes  

 The impact of MRPs and associated environmental parameters on microorganisms has 

been studied mostly by culture-dependent studies, as reviewed in (Helou et al. 2014). The first 
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study was by Hachisuka (1955), describing the impact of heat treatments on germination spores of 

bacteria. The germination time of Bacillus subtilis spores decreased after exposing media to heat 

treatments (Hachisuka et al. 1955). This finding was in agreement with the study reported by 

Viswanathan and Sarma (1957), describing an inhibitory growth of Lactobacillus bulgaricus in 

heated milk powders. On the contrary, Foster observed the growth of lactic acid bacteria in heated 

milk (Foster. 1952). Lately, some studies have attempted to shed light on the effect of MRPs on 

microorganisms. For instance, Stecchini et al (1991) found that MRPs inhibited the growth of 

food-poisoning microorganism, such as Staphylococcus aureus, Salmonella Typhimurium, and 

Salmonella Enteritidis. Several studies indicated microorganisms that were isolated from different 

environments were able to degrade and use MRPs from different stages as shown in (Table 1.2). 

 FL was shown to be preferentially used as a carbon source by Salmonella Typhimurium in 

batch cultures, compared to AGEs and melanoidins (Chalova et al. 2012). Moreover, Escherichia 

coli were found to use FL as an energey substrate. Escherichia coli has fructoselysine-6-phosphate 

deglycase enzyme that catalyzes the ATP-dependent phosphorylation of fructoselysine to 

fructoselysine 6-phosphate, and subsequently to lysine and glucose 6-phosphate. Thus, this 

enzyme reached high activity levels during fructoselysine utilization (Wiame et al. 2002). Another 

study identified glucoselysine-6-phosphate deglycase produced by Enterococcus faecium to 

convert fructoselysine into lysine and glucose 6-phosphate, which was used as an energy source 

(Wiame et al. 2005).   

 Among intermediate MRPs, it was found that SMF and CMF, which are derived from 

HMF, had direct mutagenicity towards Salmonella Typhimurium (Sommer et al. 2003). In addition 

to HMF, the formation of acrylamide during the deep-frying of French fries can be effectively 
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lowered by prior lactic acid fermentation carried out by Lactobacillus plantarum (Baardseth et al. 

2006). Moreover, a recent study described the reduction of acrylamide formation in wheat biscuits 

by lactic acid bacteria fermentation, including Lactobacillus sakei, Pediococcus pentosaceus and 

Pediococcus acidilactici (Bartkiene et al. 2016). In a recent review, several studies indicated that 

acrylamide was catalyzed to ammonia and acrylic acid by some microorganisms, which produce 

amidases (an enzyme found in some microbes) (Duda-Chodak et al. 2016). In addition to above, 

data from microorganism studies found that some gram- positive and gram- negative bacteria could 

detoxify HCAs by binding of HCAs to the peptidoglycan layer and the outer membrane of 

microbes under physiologically conditions, which have been reviewed in details by Knasmuller et 

al (2001).  

 In the advanced products of MR, the reduction of AGEs and melanoidins levels were 37% 

and 15%, respectively, after incubating with Salmonella Typhimurium in batch cultures (Chalova 

et al. 2012). Inhibition of microbial growth by MRPs has been studied (Einarsson et al. 1983). 

High molecular weight MRPs inhibited the growth of Bacillus subtilis, Escherichia coli, and 

Staphylococcus aureus, compared to low molecular weight MRPs (Einarsson et al. 1983). These 

results are in agreement with studies by Rufian-Henares and Morales (2006), demonstrating higher 

antimicrobial activity was found in high molecular weight of melanoidins, such as coffee. This 

approach was successfully tested with darker coffee that exhibited high antimicrobial activity 

against E.coli, and reported that melanoidins can damage both inner and outer membranes of the 

pathogenic bacteria strain (E.coli) (Rufian-Henares and Morales. 2008). Other studies showed that 

the antimicrobial activity of melanoidins were higher towards gram-positive microorganisms 

compared to gram-negative microbes (Rufian-Henares and Morales. 2006, Rufian-Henares and 

Morales. 2007a,b). 
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 1.5.2.2 Known Microbial Metabolites of MRPs: 

1.5.2.2.1 Metabolite of Amadori Products:   

 The available data for metabolism of early MRPs found that the urinary excretion of 

ingested fructolysine was 60-80% in rats and 3-10% in humans (Faist and Erbersdobler. 2001). It 

has been reported that the intestinal absorption rate of Ɛ-fructoselysine was higher than α-

fructoselysine (Erbersdobler et al. 1981). Another study found that excretion of NƐFructoselysine 

in urine and feces was very low 3.68% in humans and 11.2%, in rats (Erbersdobler and Faist. 

2001). Thus, several studies indicated that the remainder of NƐFructoselysine was more likely to 

be degraded by intestinal microorganisms or accumulate in different tissues, according to a review 

(Faist and Erbersdobler. 2001).  

1.5.2.2.2 Metabolite of Advance MRPs (Pre-Melanoidins):  

 HMF is converted to 5-hydroxymethyl-2-furoic acid (HMFA), during its metabolism and 

is excreted through urine in mammals (Godfrey et al. 1999, Husoy et al. 2008). Acrylamide is 

converted into other substances, such as glycidamide or conjugated with glutathione (GSH). Both 

glycidamide and GSH are further converted into N-acetyl-S-(3-amino-3-oxopropyl)-cysteine 

(AAMA) and other substances that are excreted with urine (Boettcher et al. 2006). The excretion 

of CML in feces was high for rich-MRP (3.52 mg/day), compared to low-MRP (1.23 mg/day). 

However, the elimination of CML in urine was not significantly different between high and low 

MRPs (Delgado-Andrade et al. 2012).  The large amounts of dietary CML recovered in urine 

(accounted for 26–29%) and in feces (accounted for 15–22%), but more than 50% of CML was 

not yet accounted for, which might be degraded by the intestinal microbiota (Ames. 1990). 
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1.5.2.2.3 Metabolites of Melanoidins:  

 The urinary excretion rate of melanoidins depends on molecular weight. To clarify, the rate 

of excretion of high molecular weight (HMW) melanoidins was 4.3%, compared to low molecular 

weight (LMW), which was 27% (Finot and Magnenat. 1981). Importantly, several studies 

indicated that major dietary sources of melanoidins remain in the gastrointestinal tract where they 

exhibit biological action, according to a review by Tagliazucchi and Bellesis (2015). 

1.5.2.3 The Limited Knowledge on the Impact of MRPs on Gut Microbiota 

 Most research focused on impact of dietary MRPs using in vitro assays using fermentation 

with human fecal samples or in vivo models by means of animal studies. In the early observation 

of the effect of MRPs on the gut microorganism in vitro study, Jemmali (1969) observed increases 

in the growth rates of three Lactobacilli strains, but no effect on E.coli growth in batch cultures of 

MRPs (Jemmali. 1969). Moreover, Horikoshi et al (1981) detected the impact of browning 

products, prepared from D-glucose and glycine, on the growth both aerobic and anaerobic 

Lactobacilli in the microflora of rats. From the small number of in vitro studies, it appears that 

MRPs stages influence the response of gut microbiota members (Table 1.3).  

 As stated previously, excretion of NƐFructoselysine (FL) in urine and feces is very low 

(Erbersdobler and Faist. 2001), and it has been shown that the human colonic microbiota can 

degrade FL after 4 hours of anaerobic incubation with human fecal samples (Hellwig et al. 2015). 

Moreover, gut bacteria related to Intestinimonas AF211 were found to contain genes coding for a 

butyrate-acetoacetic-CoA transferase that can convert Amadori products into butyrate in the human 

intestine (Bui et al. 2015). A negative correlation between the fecal of Bifidobacteria counts and 
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Amadori product was found in a study using human fecal samples, but no correlations were 

discovered between cecal Bifidobacteria numbers of rats and Amadori product (Seiquer et al. 

2014). 

 Fecal suspensions of NƐCarboxymethyllsine (CML) and pyrraline (PYR), the type of AGEs 

produced from the intermediate stage, were degraded by human gut microbiota after 24 hours 

(Hellwig et al. 2015). However, CML did not impact the growth rates of three strains of E.coli that 

were isolated from human and piglet feces, and there was no degradation of CML observed in the 

presence of E.coli (Helou et al. 2014). The number of Lactobacilli and CML intake correlated 

negatively for both human and animal studies (Seiquer et al. 2014). In addition to CML, negative 

correlations were found between Hydroxymethylfurfural (HMF) intake and Lactobacilli, 

Escherichia, and Shigella counts both in vivo (animal) and in vitro (human) studies (Seiquer et al. 

2014). Moreover, HMF was converted into furfural alcohol, which is less toxic after it was 

incubated with enteric bacteria, such as Klebsiella, Enterobacter, and Escherichia in short time 

incubations. According to authors, these biotransformations might be valuable in the detoxification 

of furfural compounds (Boopathy et al. 1993). IQ, a known HCA as mutagenic compound, was 

converted into innocuous metabolite structures after incubation with human fecal samples (Bashir 

et al. 1987). However, activation of IQ by Eubacterium and Clostridium into potentially mutagenic 

7-hdroxy “IQ” compounds has also been shown in Salmonella (Vantassell et al. 1990). 

 Data from animal studies show that melanoidins escape digestion and pass into the lower 

gastrointestinal tract (Finot and Magnenat. 1981). Subsequently, they are likely to be degraded by 

gut microorganisms (Faist and Erbersdobler. 2001). Indeed, melanoidins have been shown to have 

potential prebiotic activity (Wang et al. 2011). For instance, an increase in the number of gut 
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bacteria was observed during fermentation with bread melanoidins, which could be used as sources 

of carbon and nitrogen, particularly Bifidobacteria strains, which had the highest growth among 

anaerobic bacteria (Borrelli and Fogliano. 2005). Moreover, because melanoidin fractions were 

found in coffee (Daglia et al. 2008), melanoidins might increase the proportion of Bacteroides-

prevotella, compared to total cell counts after healthy human fecal samples were incubated with 

different roasted coffee (Reichardt et al. 2009). According to their findings, the composition of 

human fecal microbiota was changed during incubation with coffee. This result was in accordance 

with those studied by Jaquet et al (2009), showing increase in Bifidobacterium spp and metabolic 

activity in healthy people after a three week test period of the consumption of coffee. 

1.6 Conclusions and Perspectives: 

 The chemistry of dietary MRPs is relatively well known, but the biological impact of these 

molecules is less understood. While acrylamide, HCA and HMF have relatively well established 

detrimental health properties, the normal dietary exposure to these MRPs is arguably low, even in 

the case of the Western diet. More in vitro or animal studies using relevant concentrations of 

MRPs, or actual MRP-rich food products are needed in order to better assess the status of MRPs 

towards different health conditions and diseases. 

 A significant fraction of dietary MRPs are large molecules that mostly escape digestion, 

but little is known about their fate in the gastrointestinal tract and their interaction with microbiota. 

In vitro models have been used most commonly to study the impact of MRPs on gut microbiota. 

However, it can be argued that in vitro models would actually be better suited to determine the 

metabolite profiles resulting from microbiota fermentation of MRPs. In vivo studies are greatly 

needed to track the impact of MRPs on gut microbiota as well as biomarkers of health.  
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        Table 1.1: Examples of MRPs content of commonly consumed foods: 

MRP type Food item Average MRP 

concentration  

References  

NƐFructoselysine (FL) 

Soybean 66.55µg/g (Zilic et al. 2014) 

Fresh Pasta 16-18.8 mg/100 g of 

protein (Garcia-Banos et al. 

2004) Dried Pasta 44.4-462 mg/100 g 

of protein  

5-

Hydroxymethylfurfural 

(HMF) 

Soluble Coffee 110 mg/kg (Arribas-Lorenzo and 

Morales. 2010) 

Cookies (sucrose) 19 µg/g for 10 min 

at 230C° 
(Gokmen et al. 2007) 

Cookies (glucose) 38 µg/g for 10 min 

at 230C° 

Acrylamide 

Potato Chips  628 µg/kg 
(Capuano and 

Fogliano. 2011) 
French Fries 350 µg/kg  

Biscuits  317 µg/kg  

Heterocyclic amines 

(HCAs) 

Fried Bacon  17 ng/g 

(Puangsombat et al. 

2012) 

Fried Tilapia 16.29 ng/g 

Fried Pork 13.91 ng/g 

Fried Beef 8.92 ng/g 

Advanced Glycation 

End products (AGEs) 

 

Butter  100 KU/g  (Goldberg et al. 2004) 

Mayonnaise (fats) 265 KU/g  

(Van Nguyen. 2006) 

American Cheese 

(proteins) 

87 KU/g  

Pancakes 

(carbohydrates) 

 

 

10 KU/g  
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   Table 1.1 (Cont.) 

NƐCarboxymethyllsine 

(CML) 

Sterilized Milk 2066 nM of protein (Ahmed et al. 2005) 

Pasteurized Milk  887 nM of protein 
 

Raw Milk 337 nM of protein  

White Bread Crust 382 mg/kg of protein   

(Assar et al. 2009) Wholemeal Bread 

Crust 

329 mg/kg of protein 

Doner Kebab 2357.87 mg/kg of 

protein 
(Hull et al. 2012) 

Melanoidins 

Sourdough Loaves  30 g/100g of crust  (Fogliano and 

Morales. 2011) Soluble Coffee 22 g/100 g  

Roasted Barley 4.15% of 0.7 to1.0 kg   (Milic et al. 1975) 
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         Table 1.2: Previous reports on the impact of MRPs on microorganisms: 

MRP type Microorganisms  The result of Study  References  

FL 

Salmonella 

Typhimurium 

Utilization 95% of 

FL as carbon and 

energy sources 

(Chalova et al. 

2012) 

E.coli 

Conversion FL into 

lysine and glucose 6 

phosphate 
(Wiame et al. 2002) 

Enterococcus faecium 

Conversion FL into 

lysine and glucose 6 

phosphate 

HMF (SMF)(CMF) 
Salmonella 

Typhimurium 

Mutagenicity in 

Salmonella 

Typhimurium 

(Sommer et al. 

2003) 

Acrylamide 

Lactobacillus 

plantarum 

Reducing the levels 

of acrylamide 

(Baardseth et al. 

2006) 

Lactobacillus sakei, 

Pediococcus 

pentosaceus and P. 

acidilactici 

Reducing the levels 

of acrylamide 

(Bartkiene et al. 

2016) 

AGEs 
Salmonella 

Typhimurium 

Utilization 37% of 

AGEs as carbon and 

energy sources 

(Chalova et al. 

2012) 

Melanoidins 

Salmonella 

Typhimurium 

Utilization 15% of 

Melanoidins as 

carbon and energy 

sources 

(Chalova et al. 

2012) 

E.coli 
Inhibition the growth 

rates 

(Rufian-Henares and 

Morales. 2008) 
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  Table 1.3: Current available data of the effect of MRPs on colonic microbiota: 

The type of 

MRPs 

The type of Gut 

bacteria  

The results of study References 

FL Viable microbiota 

(stability) 

Use as carbon source 

after 4 hours  

(Hellwig et al. 2015) 

Intestinimonas AF211 Conversion FL into 

butyrate   

(Bui et al. 2015) 

Bifidobacteria counts Decrease growth rates (Seiquer et al. 2014) 

CML/PYR Viable microbiota 

(stability) 

Use as carbon source for 

24 hours 

(Hellwig et al. 2015) 

CML E.coli  No effect on growth rates  (Helou et al. 2014) 

CML Lactobacilli counts Decrease growth rates   (Seiquer et al. 2014) 

HMF lactobacilli, 

Escherichia, and 

Shigella counts 

Decrease growth rates   (Seiquer et al. 2014) 

HMF Klebsiella, 

Enterobacter, and 

Escherichia 

Conversion HMF into 

furfural alcohol 

(Boopathy et al. 1993) 

HCAs (IQ) Gut microbiota  Conversion IQ into 

innocuous metabolites  

(Bashir et al. 1987) 

IQ Eubacterium and 

Clostridium   

Conversion IQ into7-

hdroxy 

(Vantassell et al. 1990) 

Melanoidins Bifidobacteria Use as carbon source and 

increase growth rates 

(Borrelli and Fogliano. 

2005) 

Melanoidins Bacteroides-prevotella Increase growth rates (Reichardt et al. 2009) 
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Figure 1.1: Maillard Reaction Products stages (adapted from the initial description by Hodge in 
1953 to reflect current knowledge). 1. Early stage: condensation of the carbonyl group of 
reducing sugar with the amino group of amino acids (Reaction A), resulting in N-substituted 
glycosylamine and water. 2. Intermediate stages: Conversion of glycosylamine through 
Amadori rearrangement to form ketosamines (Reaction B) and other products. Amadori products 
are dehydrated and hydrolyzed to form 5-Hydroxymethylfurfural (HMF) (Reaction C), which 
gives rise to either Aldose or N-free polymers (Reaction F). Reductones can be formed from either 
dehydration of sugars or Amadori product (Reaction C) leading to Aldose and N-free polymers 
(Reaction F) or Stecker Aldehydes (Reaction E). Stecker aldehydes are formed by fragmentation 
of amino acids, which enter browning reactions either by the aldehyde formed that can take part 
in aldol condensation which forms nitrogen-free polymers (Reaction F). Amadori product and N-
substituted glycosylamines can be fragmented fission products (Reaction D and H). In addition, 
fragments of MRPs produce reactive dicarbonyl compounds that can act as precursors of 
acrylamide, heterocyclic amines, advanced glycation end products (AGEs), and low molecular 
weight compounds (Reaction C). 3. Advanced stages: Melanoidins include a wide array of 
heterogeneous colored molecules Dehydroreductones, fission and dicarbonyl compounds, 
furfural and Aldose react with amino acids (Reaction G) to form melanoidins. 
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2.1 Abstract: 

Background: Diet is suggested to participate in the etiology of Inflammatory Bowel 

Diseases (IBD). Repeated exposure to Maillard reaction products (MRPs), molecules resulting 

from reduction reactions between amino acids and sugars during food heating, have been reported 

to be either potentially detrimental or beneficial to health. 

Aims: the aim of this study is to determine the effect of repeated oral ingestion of 

NCarboxymethyllysine, an advanced MRP, on the onset of two models of experimental IBD and 

on the composition of the gut microbiota of mice. 

Methods: Mice received either saline (control) or NCarboxymethyllysine daily for 21 

days. For the last week of treatment, each group was split into sub-groups, receiving Dextran 

sulfate sodium salt (DSS) or Trinitrobenzene sulfonic acid (TNBS) to induce colitis. The intensity 

of the inflammation was quantified and cecal microbiota was characterized by bacterial 16S rRNA 

amplicon sequencing. 

Results: Daily oral administration of NCarboxymethyllysine did not induce intestinal 

inflammation and had limited impact on the gut microbiota composition (Bacteroidaceae increase, 

Lachnospiraceae decrease). DSS and TNBS administration resulted in an expected moderate 

experimental colitis with a shift of Bacteroidetes/Firmicutes ratio and a significant Proteobacteria 

increase, but with distinct profiles: different Proteobacteria taxa for DSS, mainly 

Enterobacteriaceae for TNBS. While NCarboxymethyllysine exposure failed to prevent the 

inflammatory response, it allowed maintenance of healthy gut microbiota profiles in DSS (but not 

TNBS) treated mice. 
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Conclusions: Repeated oral exposure to CML limits the dysbiosis in experimental colitis. 

IBD patients may modulate their microbiota profile by regulating the level and type of dietary 

MRP consumption.  

Keywords: Maillard Reaction Products -  N-Carboxymethyllysine – Intestinal 

microbiome – Inflammation – Dextran Sulfate Sodium salt colitis – TriNitroBenzene Sulfonic acid 

colitis  
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2.2 Introduction:  

Gut microbiota has been the focus of the exponentially increasing numbers of studies 

because of its purported role in a variety of diseases [1-3]. Gut microbiota (or microbiome) is the 

complex community of microorganisms, such as Archaea, protozoans, fungi, and for the vast 

majority of bacteria that inhabit the gastrointestinal tract (GIT) of humans and other animals, which 

mainly ferment and degrade undigested dietary compounds [3, 4]. Arguably dietary habits are 

considered to be one of the main factors contributing to the diversity and shaping of human gut 

microbiota, since there is growing evidence that human associated microbes have been lost through 

the transition from ancestral to Western diet [5-7]. Inflammatory Bowel Diseases (IBD) and colon 

cancer are well known to be epidemiologically associated with Western diet consumption [5, 6], 

and gut microbiota dysbiosis (imbalanced composition) has been shown to be a potential 

contributor to their associated inflammatory process [8, 9]. Gut microbiota dysbiosis has also been 

shown in different animal models of IBD, including Trinitrobenzene sulfonic acid (TNBS) and 

Dextran sulfate sodium salt (DSS)-induced colitis in mice [10-12]. These two models have been 

widely used to study intestinal inflammation since they induce different immune, mucosal and 

microbiota alterations that reflect the clinical signs observed in IBD patients. While literature 

depicts links between diet composition and the intestinal microbiome [13], there are few data 

supporting the potential links between the mode of food preparation, such as food heating and 

chronic gut inflammation. 

Heat processing of food generates several neoformed compounds among which Maillard 

reaction products (MRPs), a group of several compounds that influence the color, flavor, texture 

and nutritional value of food, are suspected to have health implications [14]. The intensity of such 

heating determines the types of MRPs present in food, being classified as initial (Amadori 
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Compounds), intermediate (i.e N-Carboxymethyllysine, acrylamide, etc.) and final stage 

(melanoidins, etc.) [15]. MRPs are also produced in living bodies. To avoid any confusion, food 

intermediate compounds are named dietary advanced glycation end products (dietary AGEs) to 

discriminate them from endogenous AGEs. It has been established that Western diet, richer in 

lipids and proteins, is a significant source of dietary AGEs known to be a chronic risk for 

cardiovascular and kidney damage [16]. Among the two types of AGEs, N-Carboxymethyllysine 

(CML) – a product of both lipoxidation and glycoxidation [17] –is considered to be the most 

important biomarker of MRP commonly measured in human blood and urine. CML levels are also 

used to infer the amount of AGEs consumed by individuals [18, 19]. Endogenous CML has been 

reported to be a reliable biomarker of oxidative stress and of long-term damage to proteins [20]. 

In some studies, CML has been associated with various diabetes complications[21-24] and age-

related health conditions [25-27] while, in others, CML has been reported to be not correlated or 

negatively correlated with inflammation [28-30]. Dietary CML, present in more than 200 food 

items [16, 31], can be produced either by Amadori rearrangement products or by Amadori 

compound degradation, such as Fructoselysine (FL) that further reacts with proteins to form 

irreversible and highly stable compounds [31]. Since circulating CML is known to derive either 

from endogenous Maillard reaction, or CML present in food, or of conversion of AGEs by the gut 

microbiota [32, 33], the potential contribution of dietary CML on the onset of the inflammatory 

process has been hard to determine.  

As MRPs may be largely present in the Western diet, they may be considered as one of the 

many dietary elements potentially incurring detrimental impact on human health. However, their 

fate in the digestive tract, specifically through the gut microbiota has been sparsely studied, and 

mainly in vitro [34-36]. The gut microbiota was shown to degrade MRPs, such as CML, pyrraline 
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(PYR) and maltosine (MAL) after anaerobic batch incubations with fecal suspension from healthy 

humans and they used them as a source of energy, carbon, and nitrogen [34]. Using quantitative 

polymerase chain reaction (qPCR) analysis, no differences were found in the total bacteria of 

adolescents who consumed white diet (low MRPs) versus brown diet (high MRPs), but a 

significant decrease was shown when rats consumed similar diets [37]. Recently, we have 

determined that ingestion of highly heated food protected mice against an experimental colitis and 

dysbiosis [38]. This food contained higher levels of dietary AGEs (such as CML), but also higher 

levels of final stages MRPs (i.e., melanoidins). In summary, all these studies relied on culture-

dependent or targeted quantitative PCR approaches, but none were aimed at enabling an extensive 

and specific characterization of CML (or other MRPs) impact on the gut microbiota.  

In order to gain a better understanding, this study aimed to determine the effect of repeated 

daily exposure to CML alone not only on the onset of the colonic inflammatory reaction, but also 

on the expected intestinal dysbiosis observed following both TNBS and DSS-induced 

experimental colitis in mice. 

2.3 Materials and Methods:  

2.3.1 Chemicals: 

 N-Carboxymethyllysine (CML) was obtained from Polypeptide laboratories in Sigma-

Aldrich in France. Dextran sulfate sodium salt (DSS) was purchased from MP Biomedicals while 

Trinitrobenzene sulfonic acid (TNBS) was purchased from Sigma-Aldrich in France.   

2.3.2 Animals and Study Design:   

 Fifty male Balb/c mice 7 weeks old (18-20 g) were housed in stainless steel cages under a 

controlled temperature (21 ± 1°C) and a 12H light-dark cycle, with free access to food and water. 

Experiments were conducted at the Animal House Unit of LaSalle Beauvais after receiving the 
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prior approval of both the animal protocol review committee and the Picardy Counsil of Veterinary 

Office in France (C60-200-01). Mice were split in two groups and orally received CML (1.6 

mg/kg/d po – 50 µl/mouse/d) or saline (50 µl/mouse/d) orally every day for 3 weeks. The last week 

of the experiments, each group was divided into three subgroups: two (n=9/subgroup) submitted 

to either Dextran Sulfate Sodium (DSS) or TriNitroBenzene Sulfonic acid (TNBS) colitis, and one 

serving as a control (n=7/subgroup).  

 At the end of the experiment, animals were sacrificed by cervical dislocation under general 

anesthesia (ketamine/xylazine 100 mg/kg i.p. 50% v/v). A midline laparotomy was then realized, 

macroscopic lesions were assessed and then pieces of colon were immediately removed and snap 

frozen until further analysis. To perform the analysis of the incidence of each treatment on the 

microbiota profile, caeca were ligated at both the ileo-caecal and the caeco-colonic junctions 

before their removal, and their contents were immediately collected under anaerobic conditions 

and snap frozen until further determination.  

2.3.3 Experimental Colitis 

 Colitis models: In order to confirm that the effects of CML on colonic inflammation were 

not model-dependent, colitis was induced using two models widely used in the literature. The 

TNBS solution was diluted in 50% ethanol (100mg/kg, 50 µL IR) before being injected 

intrarectally (IR) via lubricated silicone tubing (4cm from the anus) under general anesthesia 

(ketamine/xylazine 100 mg/kg, 50% v/v, 1mL/kg ip). Animals were then kept head-down on a 

heating pad until full recovery from the anesthesia [39].  

DSS (36-42000 Da) was solubilized in the drinking water (3% w/v) and was administered for five 

days. Bottles were changed every other day. For the last 2 days of the experiment, DSS was 

removed from the bottles [40]. 
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 Macroscopic lesions: The level of macroscopic lesions was represented as macroscopic 

damage scores (MDS) and expressed in arbitrary units (AU) according to the literature. Briefly, 

DSS lesions severity was evaluated based on weight loss (from 0 non loss – to 4 more than 20% 

loss), stool consistency (from 0 consistent to 4 diarrhoea), occult or gross bleeding (from 0 none 

to 4 gross bleeding) and gross blood content (from 0 non blood to 3 blood in more than 2/3 of the 

colon) [40, 41]. TNBS-induced lesions were evaluated based on the level of ulceration (from 0 

normal appearance to 5 inflammation on more than 1cm), presence of adhesions (from 0 none to 

2 major) and diarrhea (0 no – 1 yes) [39]. 

 Myeloperoxidase Activity: The inflammatory reaction is a process associated with immune 

cell activation and neutrophil infiltration. Myeloperoxidase (MPO) is exclusively found in 

neutrophil cytoplasmic granules, and thus considered a reliable marker for quantifying the level of 

inflammatory reaction [42]. MPO activity assay was first described by Bradley et al [43]. MPO 

was extracted from colonic tissues collected at sacrifice as previously described [44].  

 Briefly, tissue samples were lysed in a phosphate buffer (50mM, pH=6) containing 

hexadecyl trimethyl ammonium bromide (0.5% m/v) with a polytron (PT 1200E, Kinematica AF, 

Switzerland). Homogenates were then submitted to 3 cycles of freezing and thawing (-80°C – 10 

min / 37°C for 15 min), and then sonicated (Bioblock scientific, France) before centrifugation 

(6000 g – 4°C – 15 min). Supernatants were collected to measure MPO activity and protein 

concentration. MPO activity was assessed on supernatants diluted on a reaction buffer containing 

O-dianisidine dihydro-chloride (1mg/mL) and hydrogen peroxide (5 x 10-4 % v/v); purified MPO 

(1 U/mL) from human leucocytes (Sigma Aldrich, France) as a standard. Absorbance was 

measured at 450 nm after 15 minutes of incubation at room temperature. Supernatants total protein 

content was assessed based on Lowry method following the manufacturer’s recommendations (Bio 
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Rad DC Protein Assay, France). The results were expressed as MPO units/mg protein where 1 unit 

of MPO is the amount of peroxidase necessary for transforming 1 µmol of hydrogen peroxide in 

1 min at 25°C. 

2.3.4 DNA Extraction and Amplicon Sequencing Strategy 

 Genomic DNA was extracted from cecal samples. Briefly, 100 mg cecal content and 1 mL 

of ASL buffer (Qiagen, Courtaboeuf, France) were pooled in 2 mL Lysing Matrix E tubes (MP 

Biomedicals, Santa Ana, USA). After mixing for 1 min with a vortex, the tubes were heated at 

95°C for 5 min in a Thermomixer (Eppendorf, Montesson, France) then cooled in ice for 5 min.  

The tubes were transferred into the FastPrep® (MP Biomedicals, Santa Ana, USA) bead-beater 

for 2 runs of 1 min each at 6 m/s. After centrifugation (16000g at 4℃ for 1 min), the total DNA 

was extracted from the obtained lysates using a commercial kit (QIAamp DNA stool Mini Kit) 

following the manufacturer’s protocol [42]. 

 Illumina (San Diego, USA) MiSeq sequencing was used to investigate the gut microbiota 

by targeting the V4 region of the bacterial 16S rRNA gene of each group following the dual-

indexed strategy developed by Kozich et al [45]. PCR amplifications were performed in 25 μL 

reactions with 22 μL of KAPA Hifi master mix (KAPA Biosystems, Wilmington, USA), 1 μL of 

DNA template and 2 μL of index primers. PCR was performed with initial denaturation at 95 °C 

for 3 min, followed by 25 cycles of denaturation at 98 °C for 30 sec, primer annealing at 55 °C for 

30 sec, and extension at 72 °C for 1 min, with final extension at 72 °C for 7 min. PCR amplicons 

were examined on agarose gel electrophoresis by using 6 μL of ethidium bromide fluorescent dye 

to confirm the successful PCR. 
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2.3.5 Library Preparation and Quality Control:   

 Normalization of PCR products was performed with a SequalPrep kit (Invitrogen) 

following the manufacturer’s instructions. Normalized amplicons were pooled and checked on 

agarose gels. Gel extraction of the correct amplicon was achieved by running agarose gel 

electrophoresis on 100 μL DNA, then extracting DNA from excised bands using the Min Elute 

Gel Extraction kit (Qiagen, Hilden, Germany). Library quality checks were performed by means 

of real-time q-PCR (RT-q-PCR) and TapeStation (Agilent®, Santa Clara, USA) to determine the 

concentration and size of DNA libraries, respectively. Q-PCR was performed with the KAPA 

Library Quantification Kit (KAPA Biosystems) following the manufacturer’s recommendations. 

The q-PCR plate was placed in a thermocycler for initial activation at 95 °C for 5 min followed by 

35 cycles. Amplicon size was determined again after gel extraction on the TapeStation (378 bp 

and 372 bp). 

2.3.6 Bioinformatics and Statistical Analyses:  

 Data relating to inflammation are expressed as mean ±stand error of the mean (SEM). They 

were analyzed using Graph Pad Prism Software. Macroscopic lesion scores were compared using 

Kruskal-Wallis nonparametric test followed by Dunn’s multiple comparisons post hoc test. All 

other data were submitted to analysis of variance (ANOVA) followed by Tukey post hoc test. P 

value <0.05 was considered to be significant. 

 All sequences were analyzed by using the Quantitative Insight into Microbial Ecology 

(QIIME) software package following the script in Ref. [46], which performs microbial community 

analysis. The results of microbiota counts were analyzed by Kruskal-Wallis test using past3 

software. P value of <0.05 was considered to be significant between each group. Microbiota data 

were visualized by Non-Metric Multidimensional Scaling (NMDS) using the Bray-Curtis 
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similarity index. The significance of clustering by subgroups was tested by analysis of similarities 

(ANOSIM) with the Bray-Curtis similarity index. P value <0.05 was considered to be significant. 

2.4 Results: 

2.4.1 Effect of CML on Weight Change and Food Intake in Healthy and Colitic Mice: 

 Since both the colitis models used here are known to induce weight loss, we expressed the 

weight variation as the percentage of final weight on initial weight (D1 = day 1) for each animal. 

A result over 100 % reflects weight gain. As expected, DSS resulted in significant (P<0.001) 

weight loss as compared to control animals (92 ± 2.39 % vs 104.1 ± 1.25 %) and CML significantly 

limited the weight loss in DSS treated mice (101.3 ± 1.69 % vs 92 ± 2.39 %; P<0.001) (Table 2.1). 

DSS colitis was not associated with any modification of food intake. Following TNBS exposure, 

mice lost up to 20% of initial weight (85.09 ± 1.52% vs 104.1 ± 1.25 %; p<0.001), a loss which 

was associated with a significant (P<0.001) reduction of food consumption (2.10 ± 0.26 g vs 3.88 

± 0.24 g in controls) (Table 2.1). However, in this model of colitis, CML failed to limit this loss 

since mice lost up to 25% in comparison with the CML treated group (81.62 ± 0.82 % vs 107.2 ± 

1.41 % in controls; P<0.001), while mice had a normal food intake (2.48 ± 0.41 g vs 3.57 ± 0.21 

g in the CML group) (Table 2.1). 

2.4.2 Effect of CML on Macroscopic Lesions and Neutrophil Infiltration in Healthy and 

Colitic Mice: 

 CML administration during three weeks did not induce any macroscopic lesions (Table 

2.1). By contrast, DSS colitis was associated with significant (P<0.001) lesions (3.12 ± 0.29 AU 

vs 0.17 ± 0.16 AU in controls), which were not limited by ingestion of CML (3.69 ± 0.16 AU vs 

3.12 ± 0.29 AU in the DSS group) (Table 2.1). Significant lesions (P<0.01) were also observed in 

mice submitted to TNBS colitis (6.30 ± 0.89 AU vs 0.17 ± 0.17 AU in controls), which were also 
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not limited by CML ingestion (7.75 ± 0.39 AU vs 6.3 ± 0.89 AU in the TNBS group) (Table 2.1). 

Furthermore, daily exposure to CML did not result in any neutrophil infiltration. However, MPO 

activity was significantly increased (P<0.01) after DSS (0.77 ± 0.07 U/mg vs 0.25 ± 0.02 U/mg de 

proteins in controls) and TNBS (0.64 ± 0.07 U/mg vs 0.25 ± 0.02 U/mg proteins) was exposure as 

expected (Table 2.1). In mice submitted to either DSS or TNBS, CML repeated ingestion was 

unable to limit the inflammatory reaction (0.70 ± 0.07 U/mg vs 0.77 ± 0.07 U/mg proteins in DSS 

group and 0.54 ± 0.06 U/mg vs 0.64 ± 0.07 U/mg proteins in the TNBS group) (Table 2.1).  

2.4.3 Gut Microbiota Analyses: 

 A total of 2,102,977 sequences from 123 samples (17097 ± 10992 per sample) were 

obtained.  

2.4.3.1 Impact of CML on the Gut Microbiota of Healthy Mice:  

 At the phylum level, CML consumption did not affect gut microbiota (Figure 2.1A). Using 

multivariate analyses at different taxonomic levels, only slight (not statistically significant by 

ANOSIM) differences in gut microbiota were found between control and CML mice gut 

microbiota at the genus level (Figure 2.1A). However, CML consumption significantly increased 

the relative abundance of several Bacteroidetes families (Bacteroidaceae, Odoribacteraceae and 

the numerically marginal Porphyromonadaceae) (Figure 2.1B), as well as, the Desulfovibrionaceae 

(Proteobacteria) (Figure 2.1D) and Dorea (Firmicutes) (Figure 2.1C). CML consumption resulted 

in a significant decrease in Lachnospiraceae (Firmicutes) (Figure 2.1C) and the low abundant 

Sutterella (Proteobacteria) (Figure 2.1D). 

2.4.3.2 Impact of TNBS and DSS on the Gut Microbiota:   

 At the phylum level, similar trends were observed for TNBS and DSS treatments (Figure 

2.2A). As indicated on the pie charts, DSS treatment resulted in a significant decrease of Firmicutes 
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(from 77 to 34%) and increase in Bacteroidetes (from 20 to 41%) and Proteobacteria (from 1 to 

12%). TNBS treatment resulted in a significant decrease of Firmicutes (from 77 to 39%) and an 

increase in Bacteroidetes (from 20 to 42%) and Proteobacteria (from 1 to 14%). On multivariate 

analyses at different taxonomic levels, significant differences were observed at all taxonomic 

levels between control, TNBS, and DSS groups (Figure 2.2A; ANOSIM P<0.05 for each 

comparison). Consequently, the different treatments led to distinct dysbiotic microbiota 

compositions. 

 DSS treatment resulted in a sharp significant increase of Bacteroidaceae and 

Porphyromonodaceae, while Prevotellaceae were significantly depleted (Figure 2.2B). 

Lachnospiraceae, but not Ruminococcaceae, were also decreased (Figure 2.2C). DSS treatment 

resulted in significant (P<0.05) increases of a wide range of Proteobacteria members (Figure 

2.2D), with a much less marked increase in Enterobacteriaceae than under TNBS (Figure 2.2D), 

as well as a notable increase in Actinomycetales (Figure 2.2E).  

 TNBS treatment also resulted in a sharp significant increase of Bacteroidaceae and 

Prevotellaceae (Figure 2.2B), and somewhat unexpectedly Lactobacillus and Enterococcus 

(Figure 2.2C). It decreased very significantly (P<0.05) the relative abundance of Lachnospiraceae 

and Ruminococcacceae (Figure 2.2C).The significant (P<0.05) increase in Proteobacteria induced 

by TNBS was solely due to a massive increase of Enterobacteriaceae reaching 13.5% (Figure 

2.2D), but other Proteobacteria were not affected or even decreased significantly 

(Desulfovibrionaceae) (Figure 2.2D). Finally, TNBS significantly (P<0.05) reduced 

Coriobacteriacease (P<0.05), while had no incidence on Actinomycetales (Figure 2.2E).  
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2.4.3.3 Impact of CML on the Gut Microbiota of DSS and TNBS-Treated Mice:   

 At the phylum level, no effect of CML was observed (Figure 2.3) in TNBS-treated mice, 

with Firmicutes slightly decreasing (39 to 36%), Bacteroidetes stable (42%) and Proteobacteria 

slightly increasing (14 to 18%) as indicated on pie charts. In contrast, CML consumption 

significantly modulated the gut microbiota towards the control/CML state, with increased 

Firmicutes (34 to 58%), and decreased Bacteroidetes (41 to 32%) and Proteobacteria (12 to 3%). 

On multivariate analyses at different taxonomic levels, no differences were observed between 

control and CML mice exposed to TNBS colitis (Figure 2.3). On the other hand, very significant 

(ANOSIM p<0.05) differences between control and CML mice exposed to DSS colitis was 

observed (Figure 2.3). For the TNBS mice, no significant difference was observed for genera 

representing more than 0.001% of the total microbiota (Figure 2.4B and 2.4C). Intriguingly, CML 

consumption appeared to result in a numerical increase of Enterobacteriaceae (Figure 2.4D) and 

to some extent Bacteroidaceae (Figure 2.4A).  

 CML consumption significantly (P<0.05) reverted the increase in Bacteroidaceae and 

Porphyromonodaceae (Figure 2.5A) and Actinomycetales (Figure 2.5C) due to DSS treatment. It 

also decreased the abundance of all Proteobacteria groups associated with DSS-treatment, with the 

exception of Desulfovibrionaceae (Figure 2.5D). These trends were associated with increases in 

Lachnospiraceae, Ruminococcaceae and other Clostridiales (Figure 2.5B). 

 

2.5 Discussion and Conclusion:   

 Maillard reaction products (MRPs) have been subject of negative perception by consumers 

due to early reports of detrimental effects [14, 47, 48]. Acrylamide, an AGE well known as a 

carcinogen, for which there is substantial evidence for detrimental health impacts, has been 
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associated with ocular and renal diabetic complications [22-25, 49, 50]. However, novel evidence 

has suggested that MRPs, due to the wide range of compounds that can be formed, should not be 

considered as a collective of detrimental class of molecules. In fact, beneficial impacts on health, 

and potential antioxidant properties have been reported [51, 52]. We report herein that repeated 

oral ingestion of CML, a major marker of MRPs in food, does not compromise mucosal integrity 

of the colon since we observed neither macroscopic lesions nor colonic inflammation in healthy 

mice exposed to CML during 21 days. CML has been commonly used as a biomarker for AGEs 

in food and in circulatory blood. However, little is known about its effects on health. In high-fat 

diet fed rats, CML consumption led to an increase in LDL, fasting glucose and energy expenditure, 

and to the alteration of liver and renal function[53]. Here we did not observe any impact of CML 

consumption on mice general health, but it should be noted that the dose of CML we used was 30 

times lower than in the previous study and is more representative of a regular daily exposure, and 

that the animals were fed a standard diet.  

 We also report that repeated consumption of moderate amounts of CML has limited 

impacts on the taxonomic composition of gut microbiota of normal healthy mice. The impact of 

MRPs on gut microbiota has been scarcely studied, mainly in vitro studies. In fact, only very recent 

studies have shown that gut microbiota can degrade selected glycated amino acids, including CML 

[34], and metabolites from MRP bacterial degradation could not be characterized with available 

Mass Spectrometry instruments. A bifidogenic impact was reported in another in vitro assay with 

an Amadori product resulting from a protein glycated with galactose, lactulose, and galacto-

oligosaccharides [54]. However, this result is more probably due to the known bifidogenic impact 

of those “prebiotic” polysaccharides. In the present work, we observed a limited impact of CML 

consumption on the murine gut microbiota. It appears that CML was preferentially fermented by 
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Bacteroides species, which may be in line with previous reports of Bacteroides growth from 

advanced MRPs [55] and bread crusts rich in some melanoidins [56]. The significant increase of 

Desulfovibrio further suggests that CML stimulated fermentation rates in the mouse cecum [4, 57]. 

Nonetheless, it should be noted that the observed changes were modest numerically, possibly 

indicating that CML can be fermented by a relatively wide diversity of bacterial species. 

 In this study, we also compared the dysbiosis TNBS versus DSS. Gut microbiota unbalance 

is a known contributor of IBD [58, 59], and also suspected to be directly involved in the 

inflammatory process of both these chemically induced colitis models [11]. Furthermore, links 

between gut microbiota disruption and diet are regularly suggested in the literature. However, 

somewhat surprisingly, there is little knowledge regarding typical gut microbiota responses to DSS 

or TNBS insult, since those models are commonly used in conjunction with other parameters (diet, 

genetic alteration, etc.). DSS and TNBS are two of the most popular chemicals used to mimic 

human inflammatory bowel disease in mice. DSS treatment results in chronic intestinal 

inflammation by disruption of the colonic epithelial barrier, resulting in Ulcerative Colitis (UC)-

like damages and immune response [41]. It has also been shown to be suitable to study epithelial 

repair mechanisms [60]. On the other hand, TNBS initiates acute IL-12 driven (Th1 immune 

response emphasis) intestinal inflammation, more similar to Crohn’s Disease (CD) symptoms and 

etiology [61]. The TNBS model is useful to study T helper cell-dependent mucosal immune 

responses [62] and many important aspects of gut inflammation, including cytokine secretion 

patterns, mechanisms of oral tolerance, and cell adhesion. Recent literature has been reported that 

both models result in increased abundance of Enterobacteriaceae and Bacteroides [11], with 

Clostridium spp. and Akkermansia spp. also reported for DSS [63]. We report herein strongly 

contrasting alteration of gut microbiota between TNBS and DSS models. As already shown in a 
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previous work, we indeed observed Enterobacteriaceae and Bacteroidaceae (mainly Bacteroides) 

as the main groups involved in TNBS colitis [44]. Their increase was correlated with a sharp 

decrease of Lachnospiraceae and Ruminococcaceae, two of the families most commonly 

associated with production of anti-inflammatory short-chain fatty acids (butyrate in particular). 

Remarkably, Lactobacillus and Enterococcus, two genera generally considered beneficial also 

increased significantly in TNBS-exposed mice. Lactobacillus spp. in particular are known for their 

ability to control pathogenic Enterobacteriaceae numbers, associated with the induction/progress 

of the inflammatory process. Since Enterobacteriaceae were clearly not inhibited, it is likely that 

Lactobacillus absolute numbers did not increase, but were maintained relative to other taxa. DSS 

treatment only resulted in a modest increase in Enterobacteriaceae, but also in a general increase 

of a wide range of Proteobacteria, suggesting an increased role for nonpathogenic species in 

inflammatory response. On the other hand, DSS also resulted in less marked depletion of 

Firmicutes, with maintenance of Ruminococcaceae levels. In slurries derived from Ulcerative 

Colitis patients, glycated bovine serum albumin was found to increase the numbers of Clostridia, 

sulfate-reducing bacteria and Bacteroides with the decrease of Bifidobacteria[64]. Overall, it 

appears that the bacterial dysbiosis incurred by DSS in comparison to the TNBS is due to the 

different course of the inflammatory process.  

 CML consumption had virtually no impact on the gut microbiota dysbiosis and on the 

inflammatory reaction of TNBS-treated mice. In contrast, CML limited the severity of weight loss 

and the gut microbiota dysbiosis in DSS-treated mice, but not the inflammatory response. Overall, 

these data suggest that CML has the potential to improve the DSS dysbiosis, by incurring more 

significant changes than in the healthy microbiota. Remarkably, the changes in Bacteroidetes and 

Firmicutes brought by CML in DSS animals were opposite to those observed in healthy mice. 
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Firmicutes, specifically Lachnospiraceae, Ruminococcaceae (Oscillospira and Ruminococcus 

being the most abundant genera) and Clostridiales, were strongly stimulated by CML consumption 

only in DSS-treated mice, while initial levels were comparable in both models. While Oscillospira 

is still a poorly understood member of the mammalian gut microbiota, there is evidence that they 

can consume host-derived glycoproteins [65]. Thus, they may be primary degraders of dietary 

CML as well as other MRPs. The beneficial effect of CML in this case probably results from the 

control of the Proteobacteria bloom, which may be direct [35] or indirect through competitive 

exclusion. The observation of opposite dynamics for Bacteroidaceae (Bacteroides) after CML 

consumption demonstrates that different species are stimulated by DSS and TNBS, and that the 

species involved in DSS colitis may not be able to utilize CML as well as those associated with 

TNBS colitis. 

 Overall, we show here that consumption of CML, a surrogate of Advanced Glycation End-

products, has little impact on healthy gut microbiota, but alleviates gut microbiota dysbiosis in 

DSS-treated mice only. These data confirm that determining the health effects of MRPs is more 

complex than it would seem. They cannot be analyzed as a whole but rather studied one by one 

under clearly specified conditions. We may also suggest that the response of animals could be 

different if CML was given in already colitic animals. It is possible that selected MRPs may be 

used for preventive purposes, with anti-inflammatory potential mediated by gut microbiota. 

However, a better understanding of MRPs fate in the gut microbiota environment will be needed 

before suggesting any health claims. Their effects on altered intestinal mucosa needs further 

investigation to make food heating recommendations especially for patients suffering from chronic 

inflammation.  
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Table 2.1: Effect of NƐCarboxymethyllysine treatment on weight change, food intake, 
macroscopic lesions, MDS and myeloperoxidase activity, MPO (U/mg protein) observed 
following either DSS or TNBS experimental colitis:  
 Control  CML DSS DSS+CML TNBS TNBS+CML 

Weight change 
(% Day 1) 

104.1± 
1.25 

107.2 
±1.41 

92 ± 2.39 
a 

101.3 ± 1.69 
c 

85.09 ± 
1.52 a 

81.62 ± 0.82 b 

Food intake 
(g/d/mouse) 

3.88 ± 
0.24 

3.57 ± 
0.21 

3.14 ± 
0.26 

3.77 ± 0.23 2.1 ± 
0.26 a 

2.48 ± 0.41 

Macroscopic 
damage scores 

(AU) 

0.17 ± 
0.16 

0.71 ± 
0.36 

3.12 ± 
0.29a 

3.69 ± 0.16b 6.3 ± 
0.89a 

7.75 ± 0.39b 

MPO activity 
(U/mg protein) 

0.25 ± 
0.02 

0.23 ± 
0.05 

0.77 ± 
0.07a 

0.7 ± 0.07 b 0.64 ± 
0.08 a 

0.53 ± 0.06 b 

 
 
Weight change corresponds to the ratio of final weight on Day 1 weight (in %). Food intake 
illustrates the amount in grams (g) eaten per animal and per day. Macroscopic lesions were 
illustrated as macroscopic damage scores (MDS) and expressed in arbitrary units (AU). MPO 
activity is expressed in U/mg of total protein content in the sample. Data are expressed as mean ± 
SEM. A P value <0.05 was considered to be significant.  
a significantly different (P<0.05) from control.  
b significantly different (P<0.05) from the CML group. 
 c significantly different (P<0.05) from the DSS group. DSS and TNBS colitis induced significant 
(P<0.05) weight loss, macroscopic damage and increase of MPO activity. This was partially 
limited in DSS colitic mice treated with CML but not in TNBS colitic mice. 
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3.1 Abstract:  

 Bread melanoidins are produced during the last stage of the Maillard reaction (MR). The 

high amounts of melanoidins are found in bread crust, compared to bread crumbs. Melanoidins are 

known to have a high molecular weight (HMW), which are indigestible and reach the large 

intestine. Several studies showed that melanoidins are fermented by gut microbiota. The aim of 

this study was to determine the effect of bread melanoidins on the composition of rat’s gut 

microbiota and potential positive modulation of the microbiota profile associated with 

experimental colities. Forty eight rats received either pellet (chow), bread crust model (BCM), or 

melanoidin-free control (MFC) for 29 days. In the last week, each group was split into sub-groups, 

receiving Trinitrobenzene sulfonic acid (TNBS) to induce colitis. The consumption of BCM and 

MFC resulted in a significant decrease of Bacteroides and Enterobacteriaceae, compared to the 

control. However, the BCM limited to increase Enterobacteriaceae TNBS model. Significant 

increases were observed in Faecalibacterium in BCM model. In contrast, the relative abundances 

of Biofidobacteria and Lactobacillus were decreased in rats that consumed BCM, compared to a 

group that consumed MFC.  

Keywords: Maillard reaction products, Bread Melanoidins, Gut microbiota 
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3.2 Introduction 

 Melanoidins are polymeric, high molecular weight, brown compounds produced by the 

Maillard reaction during thermal processing of foods containing amino acids and reduced sugars 

(HODGE, 1953). Melanoidins are particularly prevalent in the Western diet, with high amounts 

reported in bakery products, roasted coffee (Fogliano & Morales, 2011), roasted barley (Milic, 

Grujicinjac, Piletic, Lajsic, & Kolarov, 1975), and many other foods subjected to intense heating 

(Hofmann, Bors, & Stettmaier, 1999). The chemical structure of melanoidins depends on the types 

of sugars, proteins, and physical parameters, such as temperature, heating time, pH, water activity, 

and other factors (Martins & van Boekel, 2003). Coffee and bread melanoidins have been given 

more attention in research due to their nutrition and health properties (Fogliano & Morales, 2011; 

Hofmann et al., 1999), and several studies reported that food melanoidins possess antioxidant, 

antihypertensive, antimicrobial, and prebiotic properties (ALJahdali & Carbonero, 2017; Wang, 

Qian, & Yao, 2011).  

 Bread melanoidins are only found in the crust, and the amount of melanoidins measured in 

the crust of sourdough loaves, sliced bread, and baguette were 30, 18, and 14 / 100 g, respectively 

(Fogliano & Morales, 2011). The intake of bread melanoidins ranged between 1.8-15.0 g per day 

(Fogliano & Morales, 2011). The principal constituents of bread melanoidins are starch and 

proteinaceous material (Hofmann et al., 1999). However, because bread melanoidins are insoluble 

high molecular weight molecules, they are poorly absorbed through digestive processes and reach 

the large intestine mostly intact (Helou et al., 2017; Helou et al., 2015; Tagliazucchi & Bellesia, 

2015). It is now well established that undigested dietary elements are subject to intense 

fermentation by resident microbes, and there has been extensive research on the impact of diet on 

the human and animal gut microbiota (O'Keefe et al., 2015; Su et al., 2015). However, the majority 
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of studies on the diet, and the gut microbiota have focused on the basic nutrients: carbohydrates 

and fibers (Martinez, Kim, Duffy, Schlegel, & Walter, 2010; Zhang et al., 2016), proteins (Louis, 

Hold, & Flint, 2014) and fat (Devkota et al., 2012), while Maillard reaction products in general 

and melanoidins in particular have been sparsely studied (ALJahdali & Carbonero, 2017). Previous 

studies investigated the impact of bread melanoidins on the composition of gut microbiota in vitro. 

In one in vitro study, bread crust melanoidins were found to increase the abundance of 

Bifidobacterium species (Borrelli & Fogliano, 2005), while a recent study in vivo showed that 

bread melanoidins had no bifidogenic effect (Helou et al., 2017). Also, an in vitro study showed 

that bread melanoidins were able to inhibit the development of Enterobacteriaceae in stool cultures 

(Helou et al., 2015). The in vitro results suggest that bread crust melanoidins may act as prebiotics; 

however, in vivo studies are crucial to strengthen conclusions on prebiotic properties. The aim of 

this study was to determine the impact of model bread crusts containing melanoidins or not on the 

composition of the gut microbiota of healthy and chemically-induced colitic rats. 

3.3 Material and Methods 

3.3.1 Bread Preparation 

 Fiber-free models of bread crust were prepared as described previously (Helou et al., 2017). 

Briefly, for the bread crust model (BCM) starch, gluten, D-glucose and water (52.25%, 10.5%, 

2.75%, and 34.5% of the dough weight, respectively) were homogenized and kneaded with a 

Kenwood Cooking Chef KM089 premium (De Longhi Kenwood, Clichy, France) and baked at 

220 °C for 16 min in an Air-o-Speed ventilated oven (Electrolux, France). For the melanoidin-free 

control (MFC), the same preparation was followed, except that gluten was heated separately to 

prevent melanoidin formation. 
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3.3.2 Animals and Study design 

 Experiments were conducted at the Animal House Unit of LaSalle Beauvais under approval 

from the local animal protocol review committee (C60-200-01) and the French Ministry of Higher 

Education, Research and Innovation (CEEA n°116 and MENESR n°1688.V02) (Helou et al., 

2017). Forty eight male Sprague-Dawley rats 7 weeks old (75-99 g) purchased from Harlan 

Laboratories (Ganat, France) were housed in stainless steel cages under controlled temperature (21 

± 1°C) and 12H light-dark cycle with unlimited access to food and water. During the first week, 

all rats were fed normal A04 pellets (Safe, Epinay sur Orge, France) and tap water ad libitum. 

After this adaptation week, the rats were divided into three groups of 16: one received A04 pellets, 

the others received pellets of A04 supplemented with, BCM or MFC pellets for 29 days ad libitum. 

BCM and MFC pellets were obtained from a special line by mixing of A04 powder with 13% 

(w/w) of BCM or MFC followed by compaction (Safe, Epinay sur Orge, France). During the last 

week, the three groups were divided into two sub-groups (6 groups, n=8 in each group): control 

and Trinitrobenzene sulfonic acid (TNBS) colitis. The TNBS solution (Sigma-Aldrich) was diluted 

in 50% ethanol (40 mg/kg – 50 µL IR) before being injected intrarectally (IR) with a lubricated 

silicone tubing (4cm from the anus) under general anesthesia (ketamine/xylazine 100 mg/kg – 50% 

v/v – 1mL/kg i.p.). Animals were then kept head down on a heating pad until full recovery from 

the anesthesia. 

 At the end of the experiment, animals were sacrificed by cervical dislocation under general 

anaesthesia (ketamine/xylazine – 100 mg/kg i.p. – 50% v/v). A midline laparotomy was then 

completed, macroscopic lesions were assessed and pieces of the colon were immediately removed 

and snap frozen until further analysis. To perform the analysis of the incidence of each treatment 

on the microbiota profile, caeca were ligated at both the ileo-caecal and the caeco-colonic junctions 
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before their removal and their contents were immediately collected under anaerobic conditions and 

snap frozen until further determination. 

3.3.3 DNA Extraction and PCR Amplifications (Polymerase Chain Reaction) 

 Genomic DNA was extracted from ceca samples. Briefly, 100 mg cecal content and 1 mL 

of ASL buffer (Qiagen, Courtaboeuf, France) were pooled in 2 mL Lysing Matrix E tubes (MP 

Biomedicals, Santa Ana, USA). After mixing for 1 min with a vortex, the tubes were heated at 

95°C for 5 min in a Thermomixer (Eppendorf, Montesson, France) and were then cooled in ice for 

5 min.  The tubes were transferred into the FastPrep® (MP Biomedicals, Santa Ana, USA) bead-

beater for 2 runs of 1 min each at 6 m/s. After centrifugation (16000g at 4℃ for 1 min), the total 

DNA was extracted from the obtained lysates using a commercial kit (QIAamp DNA stool Mini 

Kit) following the manufacturer’s protocol. 

 Dual-index PCR targeting the V4 region of the bacterial 16S rRNA gene was performed 

following previously described protocols (Kozich, Westcott, Baxter, Highlander, & Schloss, 

2013). Briefly, PCR reactions were conducted in 27 μL reaction containing: 2 μL of DNA 

template; 2 μL of index primers; and 23 μL of AccuPrime™ Taq DNA Polymerase (Invitrogen, 

USA) following the manufacturer’s protocol. Amplifications were performed by initial 

denaturation at 95°C for 3 min, followed by 25 cycles of denaturation at 98°C for 30 sec, primer 

annealing at 55°C for 30 sec, and extension at 72°C for 1 min. PCR amplicons were examined on 

agarose gel electrophoresis by using 6 μL of ethidium bromide fluorescent dye to confirm the 

success of the PCR. 

3.3.4 Library Preparation 

 Normalization of the PCR products was performed with a SequalPrep kit (Invitrogen) 

following the manufacturer’s instructions. Normalized amplicons were pooled and checked on 
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agarose gels. Gel extraction of the correct amplicon was accomplished by running 100 μL of DNA 

on an agarose gel electrophoresis, and then extracting DNA from excised bands with the Min Elute 

Gel Extraction kit (Qiagen, Hilden, Germany).   

 Library quality checks using by means of real-time q-PCR and TapeStation (Agilent®, 

Santa Clara, USA) were performed to know the concentration and the size of DNA libraries, 

respectively. Q-PCR was performed with the KAPA Library Quantification Kit (KAPA 

Biosystems) following the manufacturer’s recommendations. The dilutions were prepared from 

the gel extraction by taking 5 μL of DNA and adding it to 45 μL of H2O, and dilution was created 

starting from: 1:10, 1:100, 1:1000, 1:2000, and 1:4000. Then, the q-PCR plate was prepared by 

running 4 μL triplicate of standards with 6 μL of Primer premix and 4 μL triplicate of library 

dilutions with 6 μL of Primer premix. The Q-PCR plate was placed in the thermocycler by 

following initial activation at 95 °C for 5 min and 35 cycles. Amplicon size was determined again 

after gel extraction on the TapeStation, which was 421pb. 

3.3.5 Sequencing, Bioinformatics and Statistical Analyses 

 Amplicon pools were diluted to 0.70 nM with 0.2 N fresh NaOH following recommended 

Illumina protocols. Denatured libraries were diluted to 6 pm as a final concentration, with addition 

of 15 pm of Phix control V3. The diluted denatured libraries were loaded on an Illumina MiSeq 

sequencing cartridge V2-500 cycles, with index primer, Read 1, and Read 2 sequencing primers 

(Kozich et al., 2013). The runs were monitored with Sequence Analysis Viewer with particular 

emphasis on appropriate cluster density (900-1000k/mm2) and quality scores (final >Q30 score of 

>80%). 

 All sequences were downloaded from the Illumina Basespace server in Fastq files format. 

All reads were analyzed using the MOTHUR software package 1.39.5 following the Illumina SOP 
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script (Schloss et al., 2009). All reads were carried out using the SILVA database as a reference 

for assignation of operational taxonomic units (OTUs) with 97% of identity. The results of bacteria 

counts were analyzed by Kruskal-Wallis and Mann-Whitney pairwise with  𝑃 < 0.05 , which was 

considered to indicate a significant difference among groups. Additionally, we used Non-Metric 

Multidimensional scaling (NMDS) based on count-distance metrics (Bray-Curtis similarity index; 

ANOSIM:𝑝 < 0.05) considered to be significant similar between groups using Past3 software 

(Hammer, Harper, & Ryan, 2001). 8,383,167 raw sequences were obtained from 47 samples, and 

6,328,091 high-quality sequences were used for bioinformatics analyses, with an average of 

74031± 28677 reads per sample. 

3.4 Results and Discussion 

 Dietary high molecular weight of MRPs are largely insoluble in water. They are 

indigestible molecules that remain in the gastrointestinal tract, which is the major site for biological 

activities. To illustrate, melanoidins bind to dietary metals, thereby, leading to antioxidant and 

antimicrobial properties (Morales, Somoza, & Fogliano, 2012). Melanoidin molecules have been 

shown to suppress Helicobacter pylori infection in vitro and in vivo studies (Hiramoto et al., 2004). 

The results of studies carried out on MRPs remain controversial impact on health due to the fact 

that bioconversion of these digestible molecules by the gut microbiota (Hellwig et al., 2015; 

Seiquer, Rubio, Jesus Peinado, Delgado-Andrade, & Pilar Navarro, 2014). Gut microbiota have 

been shown to use bread melanoidins as a carbon and nitrogen source and had bifidogenic effects 

in vitro study (Borrelli & Fogliano, 2005), while another in vitro study showed the inhibition of 

enterobacteria (Helou et al., 2015). The objective of this study was to determine the effect of a 

bread melanoidin model on the composition of rat’s gut microbiota and potential positive 

modulation of the microbiota profile associated with experimental colitis.                                                                                                                                                  
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3.4.1 Impact of TNBS treatment on the gut microbiota 

 There were slight differences (not statistically significant) at all taxonomic levels between 

control and TNBS groups (Figure 3.1A). At the phylum level, the relative abundances of 

Firmicutes were lower in the TNBS group, compared to the control (Figure 3.2; P<0.05). However, 

there were no significant differences in the relative abundances of Bacteroidetes, Proteobacteria, 

Actinobacteria, and Verrucomicrobia between control and TNBS groups (Figure 3.2). There were 

no significant differences between TNBS and control groups of the relative abundance of several 

Bacteroidetes genera (Parabacteroides, Bacteroides, and Prevotella) (Figure 3.3), as well as, the 

Enterobacteriaceae (Proteobacteria) (Figure 3.4), Bifidobacterium (Actinobacteria), Akkermansia 

(Verrucomicrobia) (Figure 3.5), and several Firmicutes genera (Oscillibacter, Faecailibacterium, 

Blautia, ClostridiumXIVa, Dorea, Lactobacillus, and ClostridiumXI) (Figure 3.6 A, B, C).  

 However, the relative abundances of Lachnospiraceae (Firmicutes) were lower in the 

TNBS group, compared to the control (Figure 3.4; 3.6 B; P <0.05). In a previous study, TNBS 

resulted in decreases of Firmicutes and Lachnospiraceae (ALJahdali et al., 2017). However, this 

study and many others (Ettreiki et al., 2012) also reported that Proteobacteria, specifically 

Enterobacteriaceae bloom was the most notable impact of TNBS treatment. The absence of such 

a bloom in our study suggests that the TNBS treatment was not as strong in inducing colitis and 

dysbiosis as expected. Indeed, low-grade inflammation was observed, with no weight loss or 

changes in feed intake, but significant alteration of inflammation markers (Data not shown). 
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3.4.2 Impact of MFC on the rats gut microbiota  

 By using the NMDS plots, slight differences (not statistically significant) were observed at 

all taxonomic levels between MFC and control groups (Figure 3.1B). At the phylum level, there 

were no significant differences of Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia 

between control and MFC, but a significant increase of Actinobacteria was observed in MFC, 

compared to the control (Figure 3.2B; P> 0.05). The current findings are in line with the previous 

report that demonstrates no impact of MFC (low on melanoidins) on Firmicutes, Bacteroidetes and 

lactic flora using a real time quantitative polymerase chain reaction and cultivation approaches in 

an in vivo study (Helou et al., 2017). However, this study found that the relative abundance of 

Actinobacteria was higher in MFC, compared to the control, which may be in line with the previous 

report of increases in the proportion of the population of Bifidobacteria (Actinobacteria) in rats 

that consumed whey-fortified breads (low on melanoidins) (Wronkowska et al., 2017). 

 There were no significant differences among MFC and control groups in the relative 

abundance of several Firmicutes genera (Oscillibacter, Faecailibacterium, Blautia, 

ClostridiumXIVa, Dorea, and ClostridiumXI) (Figure 3.6 A, B, C), as well as, Akkermansia 

(Verrucomicrobia; Figure 3.5), and Prevotella (Bacteroidetes; Figure 3.3). Significant decreases 

of Parabacteroides and Bacteroides were observed in MFC group, compared to the control (Figure 

3.3; P<0.05). Decreased proportions of Parabacteroides and Bacteroides were also seen in rumen 

microbiome of buffaloes fed wheat and maize grain (Kala et al., 2017). However, increases the 

proportions of the relative abundances of Bacteroides and Parabacteroides were found in mice 

fed high proteins and low carbohydrates (Kim, Kim, & Park, 2016). Also, a significant decrease 

of Enterobacteriaceae (Proteobacteria) was observed in rats that were fed MFC, compared to the 

control (Figure 3.4; P<0.05). The current findings are in line with the previous report that the 
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relative abundance of enterobacteria decreased in individuals who consumed bread (Helou et al., 

2015).     

 However, the consumption of MFC resulted in a significant increase of Lactobacillus, 

compared to the control (Figure 3.6 C; P>0.05), which may be in line with the previous report of 

increases in the proportion of the intestinal Lactobacillus spp. after adding pre-melanoidins 

products (low on melanoidins) in batch cultures (Jemmali, 1969). The relative abundances of 

Bifidobacterium (Actinobacteria) were significantly different the in the MFC group, compared to 

the control (Figure 3.5; P>0.05). A significant increase of Bifidobacterium was observed in mice 

fed a MFC diet (Helou et al., 2017).    

 By using the NMDS plots, there were slight differences between TNBS and MFC-TNBS 

group at all taxonomic levels (Figure 3.1C). At the phylum level, the relative abundances of 

Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria showed no significant differences 

between TNBS and MFC-TNBS groups (Figure 3.2). However, there were significant differences 

in the relative abundance of Verrucomicrobia between TNBS and MFC-TNBS groups (Figure 3.2; 

P>0.05). There were no significant differences of Firmicutes, Proteobacteria, Verrucomicrobia, 

and Actinobacteria between MFC and MFC-TNBS groups (Figure 3.2). However, the relative 

abundances of Bacteroidetes were significantly different in the MFC-TNBS group, compared to 

MFC group (Figure 3.2; P>0.05).    

 There were no significant differences among TNBS and MFC-TNBS groups in the relative 

abundances of several Bacteroidetes genera (Parabacteroides, Bacteroides, and Prevotella) 

(Figure 3.3), as well as, Enterobacteriaceae (Proteobacteria; Figure 3.4), and several Firmicutes 

genera (Faecailibacterium, Blautia, ClostridiumXIVa, Dorea, and ClostridiumXI) (Figure 3.6 A, 

B, C).  However, the relative abundances of Akkermansia (Verrucomicrobia) were significantly 
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lower in the MFC-TNBS group, compared to the TNBS group (Figure 3.5; P>0.05). Akkermansia 

muciniphila had beneficial effects on the immune system by alleviating inflammation (Wu et al., 

2017). The high abundance of Akkermansia muciniphila was found in humanized rats fed 

inulin and arabinoxylans, which are important ingratiates in baked products (Van den Abbeele et 

al., 2011).        

 The abundance of Oscillibacter and Lactobacillus (Firmicutes Figure 3.6A C; P>0.05) as 

well as Bifidobacterium (Actinobacteria; Figure 3.5; P>0.05) were higher in the MFC-TNBS 

group, compared to TNBS group. There were no significant differences between MFC and MFC-

TNBS groups in the relative abundance of Prevotella (Bacteroidetes; Figure 3.3), 

Enterobacteriaceae (Proteobacteria; Figure 3.4), Akkermansia (Verrucomicrobia; Figure 3.5), 

Bifidobacterium (Actinobacteria; Figure 3.5), and several genera of Firmicute (Oscillibacter, 

Faecailibacterium, ClostridiumXIVa, Dorea, Lactobacillus and ClostridiumXI) (Figure 3.6 A B 

C). However, significant increases in Parabacteroides and Bacteroides (Bacteroidetes) were 

present in the MFC-TNBS group, compared to the MFC group (Figure 3.3 P>0.05). Also, the 

relative abundances of Ruminococcaceae and Blautia (Firmicutes) were increased significantly in 

the MFC-TNBS group, compared to the MFC group (Figure 3.6A B P>0.05).   

3.4.3 Impact of BCM on the rat’s gut microbiota  

 By using the NMDS plots, there were significant differences between control and BCM 

groups at all taxonomic levels (Figure 3.1B; ANOSIM P<0.05). At the phylum level, the 

consumption of BCM resulted in a significant increase of Firmicutes, compared to the control 

(Figure 3.2; P<0.05). However, there were decreased abundances of Bacteroidetes and 

Verrucomicrobia, compared to the control group (Figure 3.2; P<0.05). There were no significant 

differences in the relative abundances of Proteobacteria and Actinobacteria between BCM and 
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control groups (Figure 3.2). A decrease of Bacteroidetes was detected in individuals who 

consumed refined wheat breads (Lappi et al., 2013). In contrast, there was no impact of phyla level 

in mice that consumed BCM, compared to the control group (Helou et al., 2017).  

 The relative abundance of Parabacteroides (Bacteroidetes; Figure 3), Bifidobacterium 

(Actinobacteria; Figure 3.5), and several Firmicutes genera (ClostridiumXIVa, Dorea, and 

ClostridiumXI) were not significantly different between BCM and control groups (Figure 3.6A B 

C). BCM consumption resulted in significant increase of Ruminococcaceae, Oscillibacter, 

Faecalibacterium,  Lachnospiraceae, and Blautia  (Firmicutes; Figure 3.6A B P>0.05), which may 

be in line with a previous study of an increase of Oscillibacter found in individuals who consumed 

diets high in resistant starch (RS) and carbohydrate diets (Walker et al., 2011). Faecalibacterium 

prausnitzii is important commensal bacterium produced butyrate and known for their ability of 

anti-inflammatory effects in the gut (Sokol et al., 2008).  

 However, there were significant decreases of the relative abundance of Prevotella and 

Bacteroides (Bacteroidetes; Figure 3.3 P<0.05), as well as, Enterobacteriaceae (Proteobacteria; 

Figure 3.4 P<0.05), Akkermansia (Verrucomicrobia; Figure 3.5 P<0.05) and Lactobacillus 

(Firmicutes; Figure 3.6 C P<0.05) in the group that consumed BCM, compared to the control 

group. In the same line to our results, a limited growth of Enterobacteriacea and Bacteroides spp. 

was present after 10 hours of fermentation on bread crust melanoidins in an in vitro study (Borrelli 

& Fogliano, 2005). There were no significant differences between Enterobacteriacea and 

Bacteroides spp in mice that consumed bread crust, compared to a control group (Delgado-

Andrade et al., 2017). However, there was significant decrease of Lactobacillus spp. in mice that 

were fed bread crust diet, compared to a control group (Delgado-Andrade et al., 2017). Also, 

Lactobacillus spp. showed a low ability to use bread melanoidins for their growth (Borrelli & 
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Fogliano, 2005). Species related to Bacteroides and Prevotella decreased in individuals who 

consumed refined wheat breads (Lappi et al., 2013). On the other hand, another study on the 

consumption of coffee melanoidins resulted in increases of species belonging to Bacteroides-

Prevotella in an in vitro study (Gniechwitz, Reichardt, Blaut, Steinhart, & Bunzel, 2007).  

 By using the NMDS plots, there were significant differences between TNBS and BCM-

TNBS groups at all taxonomic levels (Figure 3.1C; ANOSIM P<0.05). At the phylum level, the 

relative abundances of Firmicutes and Verrucomicrobia showed significant differences between 

TNBS and BCM-TNBS groups (Figure 3.2; P<0.05). However, there were no significant 

differences of Bacteroidetes, Proteobacteria, and Actinobacteria between the BCM-TNBS group 

and the TNBS group (Figure 3.2). There were no significant differences of Firmicutes, 

Bacteroidetes, Proteobacteria, Verrucomicrobia, and Actinobacteria between BCM and BCM-

TNBS groups (Figure 3.2). Highly heated food rich in Maillard reaction products protected against 

inflammation of experimental colitis in mice (Anton, Craus, Niquet-Leridon, & Tessier, 2012). 

We showed that consumption of BCM had to limit the gut microbiota dysbiosis in BCM-TNBS 

groups. NƐ-carboxymethyllysine, an advanced Maillard reaction products, alleviates gut 

microbiota dysbiosis in colitic mice (ALJahdali et al., 2017).    

 There were no significant differences between TNBS and BCM-TNBS groups in the 

relative abundances of several Bacteroidetes genera (Parabacteroides, Bacteroides, and 

Prevotella) (Figure 3.3), as well as, Bifidobacterium (Actinobacteria; Figure 5), and several 

Firmicutes genera (Oscillibacter, Faecailibacterium, Blautia, Dorea, Lactobacillus and 

ClostridiumXI) (Figure 3.6 A, B, C). The relative abundances of Enterobacteriaceae 

(Proteobacteria; Figure 3.4 P<0.05) and Akkermansia (Verrucomicrobia; Figure 3.5 P<0.05) were 

significantly lower in the BCM-TNBS group, compared to the TNBS group. NƐ-
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carboxymethyllysine, an advanced Maillard reaction products, limited Enterobacteriaceae 

dysbiosis in colitic mice (ALJahdali et al., 2017). Akkermansia spp. are known as mucin-degrading 

bacteria that consumed glycated proteins as an energy source (Tailford, Crost, Kavanaugh, & Juge, 

2015). Akkermansia muciniphila is known to possess anti-inflammatory effects. However, the 

abundances of Lachnospiraceae (Firmicutes) and Clostridium XIVa were higher in the BCM-

TNBS group, compared to the TNBS group (Figure 3.6 B; P <0.05).  

 There were no significant differences between BCM and BCM-TNBS groups in the 

relative abundance of Parabacteroides (Bacteroidetes; Figure 3.3), Enterobacteriaceae 

(Proteobacteria; Figure 3.4), Akkermansia (Verrucomicrobia; Figure 3.5), Bifidobacterium 

(Actinobacteria; Figure 3.5), and several genera of Firmicute (Blautia, ClostridiumXIVa, and 

Dorea) (Figure 3.6 B). Significant increases of Prevotella and Bacteroides (Bacteroidetes) were 

present in the BCM-TNBS group, compared to the BCM group (Figure 3.3 P>0.05). Also, the 

relative abundances of Ruminococcaceae and several genera of Firmicutes (Oscillibacter and 

Faecailibacterium) were significantly higher in the BCM group, compared to the BCM-TNBS 

group (Figure 3.6A P>0.05). Conversely, the relative abundances of ClostridiumXIVa, 

Lactobacillus and ClostridiumXI were significantly higher in BCM-TNBS group, compared to the 

BCM group (Figure 3.6 B&C P >0.05). 

3.5 Conclusions 

 We concluded that MFC increased the relative abundances of Bifidobacterium spp. and 

Lactobacillus spp., while BCM increased beneficial microorganisms Faecalibacterium spp. In 

addition, both MFC and crust had to limit increases of Enterobacteriaceae. The BCM -TNBS group 

might be able to limit gut microbiota dysbiosis in colitic mice.  
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4.1 Abstract: 

 Melanoidins are the final Maillard reaction products produced in food by prolonged and 

intense heating, and are protein-carbohydrate complexes with high molecular weights. Dietary 

melanoidins from bread crust and coffee have been reported as harmless and even potentially 

beneficial. Here, we assessed the impact of consumption of increasing amounts of malt 

melanoidins on mice gut microbiota, another dietary source that has not been studied so far. 

Seventy five mice were divided equally into 5 groups, the control group consumed a diet with 0% 

of melanoidin-rich malts, and other groups received melanoidin malts in increments of 25%, up to 

100% melanoidin malts. Feces were sampled at days 0, 1, 2, 3, 7, 14 and 21, and microbial DNA 

was extracted from fecal sample. Microbiota was determined V4 bacterial 16S rRNA amplicon 

sequencing, and short-chain fatty acids (SCFA) by Gas Chromatography. The consumption of 

malts resulted in a significant decrease of Firmicutes and a distinctive increase of Bacteroidetes, 

Actinobacteria, Verrucomicrobia, and Proteobacteria during the study. Increased melanoidins was 

found to result in significantly divergent gut microbiota profiles all along the study, as well as to 

maintain SCFA production to the baseline levels. The relative abundance of Dorea, Oscillibacter, 

and Alisitpes were decreased, but the relative abundance of Lactobacillus, Parasutterella, 

Akkermansia, Bifidobacterium, and Barnesilla were increased throughout the study. 

Bifidobacterium spp. and Akkermansia spp. were significantly increased in mice consuming the 

highest melanoidins amounts. The results support the hypothesis that malt melanoidins have 

remarkable prebiotic properties that may be valorized in food development.  

Keywords: Maillard reaction products, Melanoidins, Short-chain fatty acids, Gut microbiota, 

Prebiotic 

  



128 

 

4.2 Introduction:  

 The Maillard reaction (MR) generates several low weight molecules from reducing sugars 

and amino acids during food thermal processing and storage, such as Amadori rearrangement 

products, furfural, reductones, and other dicarbonyl compounds. These low weight compounds are 

often recombined through a range of advanced MR to form Melanoidins 1, which are the final 

products of the MR 2. Melanoidins are brownish, heterogonous, insoluble molecules, and were 

traditionally considered as high molecular weight (HMW) molecules 3,4, but recent reports have 

shown that melanoidins also include a low molecular weight (LMW) fraction 5. Melanoidins 

produced in foods are predominantly HMW, and melanoidins is molecular weight that is directly 

correlated with heating intensity and time 6. For example, the average molecular weight (MW) of 

unroasted malts were <10 Kilodalton (kDa), whereas the roasted malts were around 320 kDa 7. 

The chemical structures of melanoidins are complex and difficult to determine, but the 

concentration of sugars and amino acids of roasted barley have been identified 8. During the 

roasting of barley, significant increases of total sugar, dextrin, and melanoidins were detected, 

while hemicellulose and starch significantly decreased 8.  

 In contrast with other MRPs, melanoidins are generally considered harmless, and even 

potentially beneficial to human health 9. Though some studies reported that dietary melanoidins 

might display moderate genotoxicity and cytotoxicity effects 10,11, several studies reported 

potential health benefits including antioxidant, antihypertensive, antimicrobial, and prebiotic 

properties of food melanoidins 12,13. Data from metabolic transit studies showed that melanoidins 

can escape digestion and pass into the upper gastrointestinal tract (GIT), where they are likely 

subject to fermentation by resident gut microbes 14,15. To illustrate, only 27% of the LMW 
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constituents of melanoidin products were absorbed in the intestine; and only 4.3% of the HMW 

melanoidins were excreted in feces and urine 16.  

 It has actually been suggested that dietary melanoidins may possess prebiotic properties 6, 

due to their structural similarities with fibers17. Interestingly, studies on the interaction between 

gut microbiota and melanoidins have initially focused on antimicrobial activity, predominantly in 

batch cultures 18-20. For instance, data from in vitro and in vivo studies showed that melanoidins 

could suppress Helicobacter pylori infection 21. Moreover, melanoidins were shown to kill 

Escherichia coli by causing irreversible changes in both the inner and outer membranes 22. While 

knowledge on the role of the gut microbiota in non-digestible polysaccharides and fiber 

fermentation has become extensive 23,24, gut microbiota fermentation of MRPs has been scarcely 

studied 25, with even less knowledge on melanoidins 26. In an in vitro study, melanoidins were 

shown to increase the growth of gut anaerobes during mixed culture growth 27. Bifidobacteria 

strains were shown to use bread melanoidins as a carbon source in batch cultures 26, while coffee 

melanoidins increased the number of anaerobic bacteria belonging to Bacteroides-prevotella 

during fermentation in an in vitro study 28. Another food rich in melanoidins is beer, where 

melanoidins are present in malts, and HMW melanoidins being are more abundant in kilned malts 

29; and this melanoidins source has never been assessed for its effect on the gut microbiota. The 

objective of this study was to determine the impact of long-term consumption of increasing 

melanoidins concentration from barley malts on the gut microbiota and fermentation patterns of 

healthy mice. 
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4.3 Material and Methods:  

4.3.1 Experimental Animals:  

 The animal study was conducted at the Animal House Facility of the University of 

Arkansas after receiving approval from the Institutional Animal Care and Use Committee 

(IACUC). Seventy-five male mice (Mus musculus strain C57BL/6J) aged 8 weeks (20g) were 

purchased from Jackson Laboratory (Farmington, USA). Mice were housed in stainless steel cages 

under controlled temperature (70 °F) and a 12 h light-dark cycle, with free access to water and 

food. Before dietary intervention, mice were provided with Teklad (standard) 40 g of chow pellets 

(Envigo, Madison, WI). 

4.3.2 Experimental Design: 

 Melanoidin-free and melanoidin-rich barley malts were purchased from Weyermann 

Company (Northern Brewer, USA). Melanoidin-free malts were considered as normal barley 

grains pre-germinated to release saccharolytic and amylolytic enzymes for beer brewing purposes 

and containing low amounts of LMW melanoidins (Briess 2-row Malt). Melanoidin-rich malts 

were considered as enriched in HMW melanoidins due to intense toasting (Weyermann® 

Melanoidin) resulting in grains browning and specific organoleptic properties 8,30. Mice were 

assigned to receive 40 g of melanoidin malts in the first week. The malts portion was increased by 

20g increments each consecutive week 23. They were divided into groups of five with a total of 15 

mice in each group, and each major group was split into five sub-groups of three individuals:  

Group (1).  Melanoidin-free malts (0% melanoidins) only.  

Group (2). 75% of melanoidin-free malts and 25% of melanoidin-rich malts. 
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Group (3). 50% of melanoidin-free malts and 50% of melanoidin-rich malts 

Group (4). 25% of melanoidin-free malts and 75% of melanoidin-rich malts 

Group (5). Melanoidin-rich malts (100% melanoidins) only.  

Malts were added in stainless cages twice a week, and the unconsumed amounts were measured 

before adding new malts. Body weight was measured at 7, 18, and 25 days. Mice were transferred 

from stainless steel cages to metabolic cages (Tecniplast Cdd, 170013) for 6 hours/day in order to 

collect feces at day 0, 1, 2, 3, 7, 14 and 21. Day 0 samples represented the baseline, with all groups 

previously fed chow pellets. After that, each group was provided with their specific melanoidin 

malts amounts, over the 21 days. 

4.3.3 Fecal Short Chain Fatty Acids (SCFAs) Quantification:  

 Short chain fatty acids (SCFAs), specifically acetate, propionate, and butyrate, were 

measured by gas chromatography (GC) for 0% and 100% groups. Briefly, 1 g of fecal samples 

were transferred into centrifuge tubes, and 9 ml of distilled water were added. After vortexing and 

centrifugation, 900 μL of the supernatant were transferred into 2 ml tubes containing 100 μL of 

buffer containing the internal standard 4-methyl-valeric acid (50mM), and meta-phosphoric acid 

(50%) and copper sulfate (1.56mg/ml). After vortexing and centrifugation, 1 μL of samples were 

loaded to GC. SCFAs concentrations were estimated from integration of peak areas in relation 

with acetate, propionate, and butyrate standards (Sigma-Aldrich, Germany) 31. 

4.3.4 DNA Extraction and PCR Amplifications:   

 Genomic DNA was extracted from mice fecal samples using commercial QIAamp DNA 

stool Mini Kit (Qiagen, Germany) following the manufacturer’s protocol, with addition of bead-
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beating at 5 m/s for 60 seconds twice 32. PCR amplifications were performed in 25 μL reactions 

with: 1 μL of DNA template, 2 μL of universal primer (8F and 1541R), and 22 μL of KAPA HiFi 

mastermix (KAPA Biosystems, Wilmington, USA), followed by agarose gel electrophoresis by 

using 1 μL of SYBR safe DNA Gel Stain (Thermo Fisher Scientific, USA) fluorescent dye to 

confirm the success of the PCR. PCR index was accomplished by targeting the V4 region of the 

bacterial 16S rRNA gene 33. Briefly, PCR dual-indexed strategy was performed in 27 μL reaction 

components with: 2 μL of DNA template; 2 μL of index primers; and 23 μL of AccuPrime™ Taq 

DNA Polymerase (Invitrogen, USA) following the manufacture’s protocol. Amplifications were 

performed by initial denaturation at 95 °C for 3 min, followed by 25 cycles of denaturation at 95 

°C for 30 sec, primer annealing at 55 °C for 30 sec, and extension at 72 °C for 1 min. 

4.3.5 Libraries Preparation and Sequencing: 

 Illumina MiSeq sequencing was used to study the composition of gut microbiota by 

targeting the V4 region of the bacterial 16S ribosome RNA gene of each group following the dual-

indexed strategy 33. Normalization of the PCR products was completed to elute short primers, 

unincorporated dNTPs, enzymes, short-failed PCR products, and salts from PCR reactions using 

Invitrogen SequalPrep kits following the manufacturer’s protocol. Q-PCR was performed with the 

PerfeCta NGS library quantification kits (Quanta Biosciences, USA) following the manufacturer’s 

protocol. Quality check was also performed on a Tape-Station 2100 (Agilent, USA) to provide the 

exact size of DNA, which were 394 base pair and 424 base pair. 

 Libraries were pooled, denatured with NaOH, and diluted to 0.75 nM following 

recommended Illumina protocols. Pooled denatured libraries were diluted to 6 pm as a final 

concentration, with the addition of 20 pm of Phix V3. The diluted denatured libraries were loaded 

on an Illumina MiSeq sequencing cartridge V3-600 cycles, with the addition of 3 sequencing 
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primers due to the use of different indices as described by Kozich et al (2013). The runs were 

monitored with Sequence Analysis Viewer with particular emphasis on appropriate cluster density 

(700-800k/mm2) and quality scores (final >Q30 score of >70%). 

4.3.6 Bioinformatics and Statistical Analyses: 

 FASTQ files were readily demultiplexed by the built-in BaseSpace Sequence Hub program 

and downloaded from the BaseSpace website. 16S amplicon reads were analyzed by using the 

MOTHUR software package 1.39.5 following the Illumina SOP 34 

(https://www.mothur.org/wiki/MiSeq_SOP). Briefly, sequences were screened and aligned to the 

Silva database for 16S r RNA gene sequences. Subsequently, Operational Taxonomic Units 

(OTUs) were picked and assigned to taxonomic groups. Resulting OTUs and taxonomic tables 

were exported to Excel sheets for basic analysis. 

 The results of feed intake, average daily gain, and short-chain fatty acids were analyzed by 

analysis of variance (ANOVA) followed by a Tukey post hoc test with P <0.05 as considered to 

be significant difference between groups. The results of microbiota counts were analyzed by 

Kruskal-Wallis and Mann-Whitney pairwise with 𝑃 < 0.05 as considered to be significant 

difference between groups and by Non-Metric Multidimensional scaling (NMDS) based on count-

distance metrics (Bray-Curtis similarity index; ANOSIM: 𝑃 < 0.05) considered to be significant 

similarities between groups using Past3 software  35. 

4.4 Results:  

4.4.1 Impact of diet on Feed Intake and Average Daily Gain:  

 Feed intake varied considerably during the study for all mice. A significant increase was 

observed between 4 and 7 day, followed by a return to the baseline feed intake afterwards. 
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Intriguingly, feed intake decreased significantly after day 18 (Table 4.1). Dietary treatments had 

little impact on feed intake; with only slight (but significant) increase of feed intake for the 25% 

group (0.54±0.02 g/day) relative to groups that consumed 0% and 100% melanoidin malts 

(0.48±0.02 g/day and 0.44±0.02 g/day).  

 Average daily weight gain (ADG) varied during the study (P<0.05; Table 4.2).The 0% and 

25% groups had significantly lower ADG during the first 7 days, and significantly higher ADG in 

the last 7 days. The 50 and 75% groups had completely inverse dynamics in ADG (Table 4.2). The 

100% group maintained relatively low ADG throughout the study.  

4.4.2 Consequence of SCFAs of Melanoidin Malts on Healthy Mice: 

 The quantity of SCFAs measured in feces from 0% and 100% groups are shown in Table 

3 from day 0 to day 21. Overall the total SCFAs production decreased significantly in mice that 

received 0%, but they remained stable in mice fed 100% of melanoidin malts over the experiment. 

There were no apparent differences in the proportion of acetate in mice fed 0% and 100% at days 

0, 3, 7, and 14. However, there were significant differences of acetate in mice that received 0% of  

melanoidin malts with mice that consumed 100% of melanoidin malts at day 21 (P<0.05; Table 

4.3) and consumption of melanoidins maintained acetate production at stable levels, while 

consumptions of non-melanoidin malts resulted in significant decrease. Significant decreases in 

the quantity of propionate were observed in mice fed 0% at days 14 and 21 and in mice that 

consumed 100% of melanoidin malts at days 7, 14, and 21. The amount of propionate between 0% 

and 100% of melanoidin malts was significantly different at day 21 (P<0.05; Table 4.3), and also 

melanoidin-malt consumption allowed for maintenance of higher propionate production. 

Significant decreases in the amount of butyrate were observed in mice fed 0% at days 14 and 21 

and in mice that consumed 100% of melanoidin malts at days 3, 7, 14, and 21. The quantity of 
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butyrate between 0% and 100% of melanoidin malts was significantly different at day 14 (P<0.05; 

Table 4.3). 

4.4.3 Gut microbiota analyses:  

 From 175 samples, a total of 10,123,928 raw sequences were obtained, of which 9,290,708 

high quality reads were used for further analysis. Samples yielding less than 3000 high-quality 

reads (n=9) were discarded; the remaining samples analyzed had an average 50, 20, 20 ± 37, 097 

SE reads per sample. All reads were analyzed together in the MOTHUR1.39.5 pipeline. 

4.4.3.1 Impact of diet on gut microbiota profiles and dynamics: 

 The NMDS plots for the five days 0, 3, 7, 14, and 21 showed that the gut microbiota profiles 

of the five groups became distinctly different at days 3, 7, 14, and 21 (ANOSIM P<0.05), while  

they were not distinguishable on day 0 (Figure 4.1). On day 3, the groups that consumed higher 

percentage of melanoidin malts (75% and 100%) were significantly different from the other groups 

(0% and 25%), while the 50% group was not significantly different from any group (Figure 4.1; 

ANOSIM P<0.05). On day 7, the groups that consumed melanoidin malts (25%, 50%, 75%, and 

100%) were all significantly different from the group that consumed 0% of melanoidin malts 

(Figure 4.1; ANOSIM P<0.05). On day 14, the 75% and 100% groups clustered significantly apart 

from the 0% and 25% groups (Figure 4.1; ANOSIM P<0.05). Long-term (Day 21) consumption 

of melanoidins resulted in significant clustering distinguishing the 50%, 75%, and 100% groups 

on one side, and the 0% and 25% groups on the other side (Figure 4.1; ANOSIM P<0.05). 

4.4.3.2 Impact of melanoidin malts on the composition of the gut microbiota: 

 Overall, the most abundant phyla detected were Firmicutes, Bacteroidetes, Actinobacteria, 

Verrucomicrobia, and Proteobacteria. The consumption of any combination of malts resulted in a 
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significant decrease of Firmicutes. Conversely, malts consumption resulted in a distinctive 

increase of Bacteroidetes, Actinobacteria, Verrucomicrobia, and Proteobacteria during the study 

(Figure 4.2). Although there were no or slight differences among groups for the three most 

abundant phyla, long-term melanoidin consumption resulted in a significant increase of 

Actinobacteria in the group that received 100% of melanoidin malts (Figure 4.3). Increased 

abundance of Verrucomicrobia was observed in groups fed 50%, 75%, and 100% of melanoidin 

malts at day 21 (Figure 4.3). Regardless of treatment, the abundance of Dorea, Oscillibacter, and 

Alisitpes were decreased, but the relative abundance of Lactobacillus, Paresutterella, 

Akkermansia, Bifidobacterium, and Barnesilla were increased during the study (Figure 4.4). In 

addition, there were no significant differences at day 0 among groups of all genera, except that the 

25% group had significantly higher Bacteroides and Parasutterella and lower Alistipes.  

 Several genera among the Firmicutes were found to be significantly affected by the amount 

of melanoidins from day 3 to day 21. The relative abundance of Clostridium XIVa generally 

increased at days 3 and 7, with significantly lower abundances in high melanoidins groups, but the 

differences decreased over the long-term (Figure 4.5A). The abundance of Dorea was higher at 

day 0 but after melanoidin malts consumption, Dorea decreased and resulted in slight or non-

significant differences among groups at days 3, 7, 14, and 21 (Figure 4.5B). Clostridium XIVb, 

Roseburia, and Lactobacillus resulted in gradual significant increases at days 3, 7, 14, and 21. 

Lower abundances of Clostridium XIVb and Lactobacillus were found in the high melanoidin 

groups compared to other groups at days 7 and 14 (Figure 4.5B & C). The 75% and 100% groups 

had a higher abundance of Roseburia at day 14 (Figure 4.5B). The relative abundance of 

Oscillibacter decreased at days 3, 7, 14, and 21, but there was no significant differences among 

groups (Figure 4.5D). Long-term melanoidin consumption resulted in a significant decrease of 
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Pseudoflavonifractor at day 21, and there were no significant differences among groups (Figure 

4.5E). Ruminococcus was found in high abundance at days 14 and 21 in the 0% group, which was 

significantly different from the 100% group (Figure 4.5E). ClostridiumIV showed a slight 

difference among groups at days 3 and 7 (Figure 4.5E). 

 The melanoidin malt consumption resulted in significant increases in Barnesiella 

(Bacteroidetes) at days 7, 14, and 21. Barnesiella abundance was significantly higher in low 

percentage melanoidin malts (Figure 4.6). The relative abundance of Alistipes was significantly 

depleted during the study at days 3, 7, 14, and 21 although abundances were slightly different 

among groups (Figure 4.6). The relative abundance of Bacteroides resulted in an increase during 

the study and a sharp increase showed in the 25% group (Figure 4.6). The abundant genus of 

Actinobacteria was Bifidobacterium, which increased throughout the study, with significantly 

higher abundance for the 100% group that consumed melanoidin malts (Figure 4.7A). The 

consumption of melanoidin malts resulted in a gradual increase of Akkermansia at days 3, 7, 14, 

and 21. There was significant difference among groups at days 3 and 21, and the high abundance 

of Akkermansia was in the group that consumed 100% of melanoidin malts (Figure 4.7B). The 

responsive genus among Proteobacteria was Parasutterella; which exhibited a sharp significant 

increase throughout the study, but we observed only slight differences among groups (Figure 

4.7C). 

 The relative abundance of several Firmicutes genera (Clostridium XIVb and Lactobacillus) 

(Figure 8 A&C), as well as Bifidobacterium (Figure 8E), and Akkermansia (Figure 8F) were 

increased significantly in all groups that consumed 0%, 25%, 50%, 75%, and 100% of melanoidin 

malts throughout the study from day 0 to day 21, and there were slight or significant difference 

among days (P < 0.005). Significant increases in Parasutterella were observed in the mice that 
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were fed 0%, 25%, and 50% of melanoidin malts during the study, while the relative abundance 

of Parasutterella was extremely low in groups that received 75% and 100% throughout the study 

(Figure 8G). The relative abundance of Dorea (Firmicutes; Figure 8B) and Alistipes 

(Bacteroidetes; Figure 8D) were decreased gradually through the study from 0 day to 21 day in all 

mice that were fed 0%, 25%, 50%, 75%, and 100% of melanoidin malts, and there were significant 

differences between days (P < 0.005).  

4.5 Discussion and Conclusion:  

 The purpose of this study was to investigate the impact of melanoidins-rich malts, which 

may represent a major source of specific dietary melanoidins for humans, on the composition of 

the gut microbiota and their potential prebiotic effects. During food processing, melanoidins are 

the final products of the Maillard reaction and have been suggested to exert health benefits due to 

their purported antioxidant, antimicrobial, antihypertensive, and prebiotic properties 6,36. 

Melanoidins isolated from coffee and biscuits have been shown to damage the outer membrane of 

a pathogenic E.coli strain 22. In addition, roasted barley produced strong antioxidant properties 37. 

It has been reported that a large proportion of the HMW melanoidins are excreted in feces and 

urine 14. We noted the brownish color of the feces and urine from mice that fed 100% of melanoidin 

malts, compared to mice that consumed 0% of melanoidin malts after 21 days in the present study. 

Several studies reported that the dietary melanoidins could escape digestion and pass through the 

gastrointestinal tract where they may be fermented by the intestinal microbiota 14,17,38. Dietary 

melanoidins have already been suggested as behaving like dietary fiber by enhancing the growth 

of beneficial gut bacteria 36.   

 The consumption of coffee melanoidins had no effect on the weight gain of rats that were 

being fed a high-fat diet 39. However, the consumption of germinated barley (malt) resulted in 
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significant decreases in body weight in mice 40. In this study, we found that the average daily gain 

was initially increased but subsequently lowered by the consumption of melanoidins-rich malts, 

confirming that dietary melanoidins have limited impact on weight gain.          

 The quantification of SCFAs in feces is a useful index of the fermentative potential of the 

gut microbiota. In this study, the proportion of acetate was stable during the study, but the quantity 

of propionic and butyrate was decreased. The concentration of butyrate, acetate, and propionate 

were higher in mice that consumed 100% of melanoidin malts, compared to 0% of melanoidin 

malts at day 14 and 21, respectively. The total SCFAs were stable in mice that received 100% of 

melanoidin malts (4.68 mmol/L), compared to mice that consumed 0% of melanoidin malts (2.29 

mmol/L) at 21 days with a significant decrease. Along the same line as, the total production of 

SCFAs was increased in rats that were fed bread crust (81.0 μmol/g), compared to controls 

(42.7μmol/g) 41.There was a significant increase of propionate in rats that received bread crust, but 

butyrate and acetate were decreased 41. These results are in favor of the hypothesis that melanoidins 

modulate the gut microbiome and fermentation patterns in a similar fashion than dietary fibers. 

 In this study, the relative abundance of Firmicutes decreased, but Bacteroidetes, 

Verrucomicrobia, Acinobacteria, and Proteobacteria increased during the study, which is 

consistent with a previous study that included higher abundance of Verrucomicrobia and 

Acinobacteria and lower abundance of Firmicutes in rats fed barley malt 23. The impact of two 

barley products, whole-grain barley and barely malt with different chemical structures, on cecal 

microbiota in rats fed a high-fat diet has been reported 23. Zhong et al found that consumption of 

whole-grain barley resulted in the increase of Akkermansia spp. and Ruminococcus spp. while 

Roseburia spp. and Lactobacillus spp. were more abundant in rats fed barley malt, compared to 

the control group that was enriched in Oscillospira spp. and Dorea spp. 23. We observed that 
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Ruminococcus spp. and Lactobacillus spp. had a higher abundance in mice fed 0% of melanoidin 

malts. However, there was a significant decrease of Dorea and Oscillibacter throughout the study, 

which may be in line with a previous study of the reduction of some genera belonging to 

Firmicutes, such as Dorea after oral supplementation of glutamine 42. A significant increase of 

Roseburia spp. was observed during the study, which may be in line with a study on Roseburia 

growth in healthy humans who consumed whole-grain barley for 60 days 43. The effects of dietary 

fiber sources, alfalfa diet, showed an increase of Clostridium cluster XIVb, compared to the pure 

cellulose diet of suckling piglets 44. We indeed observed increases of Clostridium cluster XIVb 

during the study with slight differences among groups.  

 In this present study, we observed a significant increase of Bacteroides spp. in mice that 

were fed fewer melanoidin malts, especially 25% of melanoidin malts which may be in line with 

the previous in vitro report of an increase in the proportion of Bacteroides spp. in light and medium 

roasted coffee, compared to dark roasted coffee 28. Bacteroides spp. are known for their ability to 

ferment different mucin polysaccharides because they possess a wide range of carbohydrate-

depolymerizing enzymes 45. Moreover, in the present study, we observed the significant difference 

of average daily gain and proportion consumed found in mice that consumed 25%, which had a 

higher abundance of Bacteroides spp. The relative abundance of genus Barnesiella spp. were 

found at low levels, which makes up less than one percent of an individual’s total gut bacteria; 

they, in particular, are known for their ability to control the spread of highly antibiotic-resistant 

bacteria 46,47. Significant decreases of Barnesiella were detected in a guinea pig model fed Western 

diets associated with metabolic syndrome 48. However, dietary resistant starch resulted in 

significant increases of Barnesiella, Ruminococcus, and Bifidobacterium in a rodent colitis-

associated colorectal cancer model, which suggested resistant starch might have a beneficial effect 
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on patients with ulcerative colitis 49. In the present study, significant increases of Barnesiella were 

observed, especially in mice fed 0% and 25% at 21 days. Decreased abundance of Alistipes showed 

in the present study. Wang et al similarly showed that oligosaccharide treatment decreased the 

levels of Alistipes of mice with constipation 50.    

 Akkermansia spp. are known as mucin-degrading bacteria that use glycated proteins as an 

energy source 51. Akkermansia muciniphila is known for their ability of anti-inflammatory effects 

in the intestine. A significant decrease of A. muciniphila was found in colitic mice 52. We detected 

a high abundance of Akkermansia spp in mice that were fed melanoidin-rich malts. 

Bifidobacterium spp. were also found in high abundance in the melanoidin-rich-malt group. 

Dietary fiber can enhance the growth of Bifidobacterium spp.36. Coffee consists of soluble fiber, 

mainly galactomannans and arabinogalactans 28. The roasted coffee silverskin, which has 60% 

total dietary fiber, enhanced preferential growth of Bifidobacterium spp. in vitro compared to other 

anaerobic bacteria 53. An increase in the population of Bifidobacterium spp. was also shown after 

the consumption of coffee in humans 54. In addition to coffee, bread crust melanoidins promoted 

the growth of Bifidobacterium spp. using a static batch culture 26. The type of melanoidins plays 

an important role in enhancing the growth of Bifidobacterium spp. Coffee melanoidins are 

characterized by a considerable carbohydrate, but bread crust melanoidins consist of the 

prevalence of amino acids 26. Thus, the coffee melanoidins increased the growth of 

Bifidobacterium spp., compared to bread crust melanoidins 26. The structures of melanoidin malts 

are similar to coffee melanoidins by containing a considerable amount of carbohydrates and fibers. 

Furthermore, distinct increases of Parasutterella, known as saccharolytic strain, were detected 

during study, which might be in line with previous reports of the proportion of Parasutterella that 

were elevated by carbohydrate solutions consumption on  rodent models 55.    
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 We conclude that the long term consumption of melanoidin malts increased beneficial 

microorganisms, such as Bifidobacterium, Akkermansia, and Lactobacillus although there were no 

significant differences in the population of Lactobacillus between groups that consumed 0% and 

100% of melanoidin malts. These results confirm that gut microbiota responds differently to 

different melanoidins-rich food, and that melanoidins-rich malts appear to exert particularly 

beneficial changes, a property that could potentially lead to the development of novel prebiotic 

foods. 
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Table 4.1: Temporal variation of Feed intake for all mice considered as one group. Data are 
expressed as mean ± SEM. P value <0.05 was considered to be significant difference (indicated 
by superscript letters): 

Feed intake by days (g/day).  Estimated Mean 

4 days 0.53±0.014b 

7 days  0.74±0.012a 

11 days  0.46±0.014cd 

14 days  0.45±0.014d 

18 days  0.49±0.014c 

21 days  0.33±0.013f 

25 days  0.38±0.013e 
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       Table 4.2: Effect of diet on average daily gain. Data are expressed as mean ± SEM:  

Average Daily Gain 

(g/day) 

7 days  18 days  25 days  

Free-Melanoidins 0.17±0.068abcA 0.19±0.068aA 0.31±0.068abA 

25% Melanoidins 0.048±0.068cB 0.34±0.068aA 0.47±0.068aA 

50% Melanoidins 0.28±0.068abA 0.18±0.068aA 0.18±0.068bA 

75% Melanoidins 0.34±0.068aA 0.20±0.068aAB 0.14±0.068bB 

100% Melanoidins 0.13±0.068bcA 0.19±0.068aA 0.23±0.068bA 

Different letters indicate significant difference (P<0.05; ANOVA) 

The lowercase letters indicate significant difference (P<0.005; ANOVA) in the same day with different 
groups  

The capital letters indicate significant difference (P<0.05; ANOVA) in the same group with different days 
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 Table 4.3: Effects of melanoidin malts on short-chain fatty acids. Data are expressed as mean ±     
SEM:  

 Melanoidins  day 0   day 3  day 7  day 14  day 21  

Acetate 

(mmol/L) 

0% 4.01±0.68a 3.1±0.94aA 4.1±1.33aA 2.35±0.97aA 2.13±0.63aB 

100%  4.01±0.68a 3.7±1.33aA 3.6±1.41aA 4.14±1.05aA 4.51±0.43 aA 

Propionate 

(mmol/L) 

0% 0.25±0.03a 0.21±0.03aA 0.16±0.04aA 0.07±0.03bA 0.06±0.01bB 

100%  0.25±0.03a 0.14±0.05aA 0.11±0.04bA 0.09±0.02bA 0.09±0.03 bA 

Butyrate 

(mmol/L) 

0% 0.42±0.17a 0.27±0.04aA 0.18±0.07aA 0.06±0.03bB 0.10±0.01bA 

100%  0.42±0.17a 0.13±0.04bA 0.09±0.02bA 0.14±0.01bA 0.08±0.02 bA 

Total SCFAs 0% 4.7±0.88 3.6±1.01 4.44±1.44 2.5±1.03 2.29±0.62 

100% 4.7±0.88 3.8±1.42 3.8±1.5 4.4±1.08 4.68±0.48 

 Same letters indicate no significantly difference  

 Different letters indicate significantly difference (P<0.05; ANOVA) 

 The small letters indicate significantly difference (P<0.005; ANOVA) in the same diet with different days  

 The capital letters indicate significantly difference (P<0.05; ANOVA) in the same day with different diets 
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GENERAL CONCLUSION:  

 

 Gut microbiota plays an important role in maintaining human health, providing energy for 

hosts, and developing the immune system. Considerable attention has been dedicated to the study 

of the impact diet on gut microorganisms of humans and rodents. However, Western diets gained 

more attentions due to the changing composition of gut microbiota. Data from food sciences 

indicated that Western diets are rich in MRPs. Up to now, analyzing data on the actual impact of 

dietary MRPs on intestinal microbiota was scarce. While recent studies have provided robust 

evidence on the influence MRPs on gut bacteria in vitro studies, there are still a lot of gap in the 

current knowledge related to the effect dietary MRPs on gut microbiota in vivo studies.  In this 

project, we assessed the impact of different MRPs (CML, bread melanoidins, and malt 

melanoidins) on the murine gut microbiota through three studies.  

 We concluded that the composition of gut microbiota of CML group was similar to the 

composition of gastrointestinal microbiota control group. Additionally, CML inhibited dysbiosis 

gut microbiota in DSS not TNBS models. This project showed that bread melanoidins have no 

bifidogenic effect, while malt melanoidins have bifidogenic effect. Both bread and malt 

melanoidins have no impact to increase Lactobacillus. Melanoidins appeared to have a prebiotic-

like impact for the malts and inhibition of potentially pathogenic Proteobacteria for bread crust. 

Thus, melanoidins structure are extremely variable from one food to another, therefore additional 

studies will be needed to better assess their potential beneficial properties on gut health. Finally, 

we found that CML and melanoidins have no negative effects on the gut microbiota. 
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APPENDIX: 

IACUC approval for mice study  
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