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Determination of the location and order of the drying transition
with a molecular-dynamics simulation
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The wetting transition is mostly found to be first order, but the nature of the drying transition in real-
istic systems is debated. We have simulated the wetting and drying of a wall and, by a careful inspection
of the variation of the contact angle on the approach of the transition, find strong evidence for a continu-
ous drying transition. Moreover, the drying point is located an order of magnitude more accurately with

respect to previous attempts.

Wetting and drying phase transitions have drawn a
substantial interest in the past decade! not only for their
importance in technical applications but also as demon-
strations of genuine surface phase transitions. After their
discovery by Cahn? and by Ebner and Saam? on theoreti-
cal grounds and the experimental demonstration by
Moldover and Cahn,* most of the theoretical studies have
taken place in the context of lattice models,’ on a meso-
scopic level as variants of Landau’s mean-field theory"¢
or in the framework of density-functional theories.”®
None of these theories is capable of making an accurate
prediction for the nature of the wetting and drying transi-
tions for realistic systems. The lattice-gas models involve
interactions which are too much simplified to describe
the delicate balance between the driving forces in the
wetting or drying of a real substrate. In its simplest
form, the basic symmetry between particles and holes
makes wetting and drying two mirror images of the same
physical mechanism. The Landau-type mean-field
theories help to classify the possible scenarios for wetting
and drying but cannot make contact with a microscopic
Hamiltonian. Density-functional theory should in princi-
ple be able to yield information on the phase diagram of
realistic systems and some impressive results have indeed
been obtained, e.g., by Velasco and Tarazona.®! The
strength and weakness of the density-functional theory
have recently been reviewed by van Swol and Hender-
son.”

In this situation, computer simulations are
most welcome but so far rare because a large system is
needed to accommodate the various phases involved and
large fluctuations occur near the phase transitions, which
slow down the approach to equilibrium. The results of
simulations and density-functional calculations, tailored
to the simulated systems, can be compared directly. Both
yield in general a first-order wetting transition 'and agree
on the location of the wetting point. The situation about
the drying point is less clear. The simulations™!® of Hen-
derson and co-workers indicate a first-order drying tran-
sition for both square-well and truncated Lennard-Jones
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systems. They consider!® a smooth interpolation of the
fluid’s structure between a substrate-liquid and
substrate-vapor interface, characteristic for a continuous
transition, unlikely. = Nevertheless, their density-
functional calculation predicts a continuous (second-
order) drying transition that is also located rather far
from the simulation result. They attribute the first-order
nature of the transition to large-scale fluctuations which
are naturally present in the simulations but are not treat-
ed accurately by the density-functional theory. Velasco
and Tarazona carried out a density-functional calculation
on a Lennard-Jones system and initially found the drying
transition to be weakly first order.® An improved calcula-
tion however showed second-order drying.!! Their loca-
tion of the drying transition was inconsistent with the re-
sults of the simulation? of Sikkenk er al. but this
discrepancy has been removed by improved simula-
tions,'>»1* which, however, could not decide on the order,
being consistent with a continuous as well as a weakly
first-order transition. In this Brief Report, we describe a
simulation experiment that improves the accuracy by an
order of magnitude, thereby clarifying the simulation re-
sults on the drying point.

The simulated system consists of a three-
dimensional cubic box with periodic boundary conditions
in which a substrate is constructed by three layers of a fcc
lattice of substrate particles. The remaining volume is
occupied by a Lennard-Jones fluid consisting of a liquid
and a vapor phase at a fixed temperature. By the bound-
ary conditions, the fluid can wet or dry both sides of the
substrate wall (see Fig. 1). The Lennard-Jones interac-
tions ¢ ,p between particles of type A and B, where A4
and B stand for s in case of a solid and f in case of a fluid
particle, are characterized by an energy scale € 45 and a
length scale o 4. They are truncated at 2.50 ,5 and
shifted such as to remove the discontinuity at the trunca-
tion point. The reduced temperature T*, defined as
T*=kpT /es is kept at 0.9 and the system contains
8400 fluid particles in a box with a linear dimension L of
29.10 sr. We are able to simulate such large systems for
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FIG. 1. The fluid’s density n averaged over the x-y plane as a
function of the position z between the outer layers of the wall.
The density and position are expressed in reduced units: n*
equals n /0% and z™ denotes z /o ;. The dotted lines give the
positions of the outer wall layers. The profile is calculated as an
average over 5200 particle configurations, obtained in a run of
67000 time steps at &, =0.25¢ ;.

long simulation runs because of the availability of a spe-
cial purpose computer: the Delft Molecular-Dynamics
Processor (DMDP).!> The phase transitions are driven
by varying the strength g, of the interaction between
wall and fluid particles. Our setup is particularly suited
to study the partially wet (or dry) situation where
g4 <g; <g, with g, and g, the values of €, where the
drying and the wetting transition take place. In this situ-
ation of partial wetting and drying, the free energy favors
one of the substrate sides to be covered by the liquid
phase and the other by the vapor phase. Thus we have
simultaneously realized a substrate-liquid, a substrate-
vapor, and a liquid-vapor interface and we can obtain
their surface tensions y,, ¥;,, and y,;, as integrals over
pressure tensor components. > This situation is analo-
gous to a liquid droplet adsorbed at a substrate making a
contact angle 8 with the substrate. The simulation data
are thus interpreted in terms of a contact angle through
Young’s relation’

cos0=M . (1)
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It turns out!>!* that the difference (y,,—7,,) is obtained
most accurately when the wall particles are frozen in at
their lattice positions. So we use an inert wall representa-
tion, where the wall can be viewed as an external poten-
tial ¢°** acting on the fluid. The results for cosf as a
function of the ratio €, =g, /e, are shown in Fig. 2.
The drying transition, i.e., the point ¢; where cosf= —1,
is difficult to locate while the wetting point €, is fairly ac-
curately given by the cosf data. The reason is that cos@
cuts the line cos@=1 at a steep angle while it joins the
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FIG. 2. cosf as a function of €,. The bars denote the mea-
sured cos6, the curve is obtained by integrating the d cos6/d¢,,
data (see Fig. 3). The lengths of the bars denote the uncertainty
in the measurement. They are calculated as the standard devia-
tion in subaverages over 5200 time steps each. The data points
comprise 5—25 subaverages.

line cos6@= —1 much more smoothly. This is related to
the nature of the phase transitions: cosf being essentially
a free energy, the behavior of its derivative with respect
to €, gives the order of the phase transition. On the
basis of these cosf measurements, the wetting and drying
transitions were estimated'* at e,=0.62+0.01 and
€4=0.2010.05, respectively (with £, and €, expressed in
units of € /).

The key to a more accurate analysis is a direct evalua-
tion of the derivative dy,/0e;,. For an inert wall, the
derivative is given by the simple expression

d s z, ext
Vf:%fL/z dxdyf dzn(r)ﬁ——'(—r') . (2)
dg;,  L2Y-Ln2 0 Ef

Here, n(r) is the fluid density, L the box size and z, the
cutoff in the substrate-fluid interaction, which is in our
case 2.50,, away from the outer layers of the wall. An
accurate determination of the fluid density inside the po-
tential of the substrate suffices to evaluate the derivative
of y,,. The derivative of cos0 is obtained from Young’s
law. Equation (2) follows from a direct differentiation of
the partition function.’

As already indicated in Fig. 2, we simulated a series of
partially wet (or dry) systems over a range of €, varying
from 0.1 to 0.8. Typical runs involve 16000 time steps
for equilibration and some 100000 time steps during
which the system is sampled for accurate statistics. The
longest simulation runs occurred around the drying tran-
sition where the fluctuations turned out to be large. Er-
ror bars in the data denote the standard deviation as cal-
culated from subaverages over 400 configurations.

For g,y <g4, the liquid slab is pushed to the middle of
the volume and both sides of the substrate are covered
with vapor. For g,,>¢,, the liquid slab is attracted to
one of the sides of the substrate and this remains so even
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beyond €, =¢,, where it is more favorable that the liquid
slab splits into two parts, both covering a side of the sub-
strate with a vapor layer in between. Thus the partially
wet state can be continued easily as a metastable state
into the wet region (the reverse is also true for wet states
in the partially wet region). These features can be recog-
nized in Fig. 3 in which the d cos6 /e, data are plotted
as a function of g;,. Whereas the derivative reaches a
plateau near the wetting point €,, it drops sharply to
zero near €4. This means that the drying transition is
continuous while the wetting transition is first order. A
continuous drying transition is characterized by a behav-
ior of cos0 as

cosf=—1+cle;,—¢g,), g,Zgy (3)

with ¢ an arbitrary, positive constant. Renormalization

calculations!®!7 predict x =2/(1—w) with w given by
kgT
0=— — @
47T§u Y

with &, the bulk correlation length of the vapor phase. It
is difficult to estimate this length in such a dilute vapor
phase as we encounter, but taking &, to be larger than
Ospr @ is smaller than @ =0.3. Our data are not accurate
enough to obtain a precise estimate of », which would
also require a very precise knowledge of the drying point
g4. They are, however, consistent with the bound on w
given above.

The consistency between the directly measured cos@
and the measurements of its derivative can be seen in Fig.
2, which shows that the cosines can be reconstructed by
integrating the dcos6/de,, data with respect to g,,. As

d cos @
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FIG. 3. The measured derivative of cosf with respect to &,
as a function of €,. The error bars are of the order of the sym-
bol size. The vertical dotted lines denote the positions of the
drying and wetting transition.

an aid to the numerical integration, a cubic spline was
fitted to the d cos6 /e, data, which fit was then integrat-
ed from the point cosd= —1 at €, =0. 1 onwards.

The points in Figs. 2 and 3 are obtained by decreasing
€,. We also tested on the occurrence of hysteresis, which
should not appear at a continuous transition, by increas-
ing g, from a completely dry system at £,=0.10 on-
wards. The two branches of dcosw /e, are shown in
Fig. 4 zooming in on the drying transition. The branch
of increasing €, (circles) remains a little longer in the
completely dry state, resulting in a difference in
dcosf/de;, of the increasing and decreasing branch
(crosses) at €,=0.175. The small differences at £,=0.19
and 0.22 seem not significant in view of the large fluctua-
tions included in the averages. The fluctuations around
the drying transition result primarily from small move-
ments of the liquid slab. As the slab moves somewhat
closer to the wall, the number of fluid particles in the first
adsorbed layer increases significantly and dy, /0g,, drops
while the opposite effect occurs when the slab moves a lit-
tle bit further away from the wall. Compared with the
fluctuations in the derivative of y;, the derivative of y,,
is virtually constant. We followed many of these systems
until we had obtained 20 subaverages over 5200 time
steps. We sometimes noticed correlations between three
to five consecutive subaverages, indicating large scale
fluctuations. The circles in Fig. 4 give values of
dcos0/0e;, that point at an g,~0.174 whereas the
crosses point at £;,=~0.163. The total surface free energy
of the two branches does not differ significantly and
therefore, we cannot decide which of the two branches is
thermodynamically most stable. Thus, the occurrence of
two branches can hardly be viewed as representing a hys-
teresis loop indicative of a first-order transition, but we
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FIG. 4. The derivative of cosf with respect to €, as a func-
tion of €, around the drying transition. The crosses are the
same points as in the previous figure, they are obtained by de-
creasing €,. The circles are obtained by increasing &, from
€,=0.1 onwards. If error bars are omitted, they are of the or-
der of the symbol size. The two vertical dotted lines give the es-
timated bounds on the location of the drying transition.
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attribute it to the large and persistent fluctuations around
the phase transition. Contrary to Henderson and van
Swol,? we see the large fluctuations as precursor effects of
the continuous drying transition. Our best estimate is
therefore £, =0.169+0.005.

We must pay some attention to the center-of-mass
motion, i.e., the “drift,” that is generated in the system
by the finite numerical accuracy of the molecular-
dynamics calculation. As is customary in such simula-
tions, the total momentum of the fluid is regularly set to
zero (once every 5200 time steps in our case) to prevent
the drift from getting a chance to become too large, and
since almost all the fluid’s mass is concentrated in the
liquid slab, this most likely implies a slowing down of the
slab’s motion. Although we observed that the absence of
any drift correction changes the motion of the liquid slab
in systems around the drying transition, we could not
detect a systematic feature in these differences.

So we conclude that, by an inspection of dcosf/0g,,
instead of cosf, we strongly improved the accuracy in the
determination of both the order and location of the dry-
ing transition. Our simulations, treating large and rather
realistic systems, show a surprising difference in charac-
ter between the wetting and drying transition. Continu-
ous drying transitions are also displayed by the density-
functional calculations of both Velasco and Tarazona!l
and van Swol and Henderson.”’ In our simulations we
see the structure smoothly change from a substrate-liquid
to a substrate-vapor profile.

It is not yet clear where the differences with the results

of Henderson and co-workers’ originate from. Possible
causes are the different representations of the wall or the
much larger wall area in our simulations. The argument
of Adams and Henderson that our simulations seriously
underestimate the difference between the liquid and va-
por bulk densities n; —n, seems unlikely as we have en-
countered the bulk densities n;* =0.66401t0.006 and
n¥=0.0456+0.006 in a series of simulations!>!*!® and
these values are consistent with recent simulations!® of
phase equilibria. We consider their objection that our
computational box would be too small in the z direction
to accommodate the type of fluctuations they observe,
unlikely too. The continuous decrease of dcos6/0d¢e, al-
ready occurs in the range 0.25<g,<0.40 when the
liquid slab is still securely bound to the wall. The fluctua-
tions in the slab’s position very close to the drying transi-
tion seem not hindered by the presence of the wall oppo-
site to the one at which the slab is adsorbed. Therefore,
we have no indication that our geometry suppresses fluc-
tuations that drive the liquid slab away from the wall and
cause a discontinuous jump in dcosf/de;, to
dcosf/de,,=0.
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