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ABSTRACT

We present the results of a spectroscopic monitoring campaign of the OB-star companions to the eclipsing X-ray pulsars SMC X−1,
LMC X−4 and Cen X−3. High-resolution optical spectra obtained with UVES on the ESO Very Large Telescope are used to determine
the radial-velocity orbit of the OB (super)giants with high precision. The excellent quality of the spectra provides the opportunity to
measure the radial-velocity curve based on individual lines, and to study the effect of possible distortions of the line profiles due to
e.g. X-ray heating on the derived radial-velocity amplitude. Several spectral lines show intrinsic variations with orbital phase. The
magnitude of these variations depends on line strength, and thus provides a criterion to select lines that do not suffer from distortions.
The undistorted lines show a larger radial-velocity amplitude than the distorted lines, consistent with model predictions. Application
of our line-selection criteria results in a mean radial-velocity amplitude Kopt of 20.2±1.1, 35.1±1.5, and 27.5±2.3 km s−1 (1σ errors),
for the OB companion to SMC X−1, LMC X−4 and Cen X−3, respectively. Adding information on the projected rotational velocity
of the OB companion (derived from our spectra), the duration of X-ray eclipse and orbital parameters of the X-ray pulsar (obtained
from literature), we arrive at a neutron star mass of 1.06+0.11

−0.10, 1.25+0.11
−0.10 and 1.34+0.16

−0.14 M⊙ for SMC X−1, LMC X−4 and Cen X−3,
respectively. The mass of SMC X−1 is near the minimum mass (∼1 M⊙) expected for a neutron star produced in a supernova. We
discuss the implications of the measured mass distribution on the neutron-star formation mechanism, in relation to the evolutionary
history of the massive binaries.
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1. Introduction

A neutron star is the compact remnant of a massive star (M �

8 M⊙) with a central density that can be as high as 5 to 10 times
the density of an atomic nucleus. The global structure of a neu-
tron star depends on the equation of state (EOS) under these ex-
treme conditions, i.e. the relation between pressure and density
in the neutron star interior (e.g. Lattimer & Prakash 2004). Given
an EOS, a mass-radius relation for the neutron star and a corre-
sponding maximum neutron-star mass can be derived. The “stiff-
ness” of the EOS depends e.g. on how many bosons are present
in matter of such a high density. As bosons do not contribute to
the fermi pressure, their presence will tend to “soften” the EOS.
For a soft EOS, the maximum neutron-star mass will be low (e.g.
<1.55 M⊙ for the EOS applied by Brown & Bethe 1994); for a
higher mass, the object would collapse into a black hole.

The accurate measurement of neutron-star masses is there-
fore important for our understanding of the EOS of matter
at supra-nuclear densities. Currently, the most massive neu-
tron star in an X-ray binary is the X-ray pulsar Vela X−1

⋆ Based on observations obtained at the European Southern
Observatory at Paranal, Chile (ESO program 68.D-0568).
⋆⋆ Tables 2, 5 and Figs. 2, 3 are only available in electronic form at
http://www.aanda.org
⋆⋆⋆ Fits data to Table 3 are only available in electronic form at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/473/523

(Barziv et al. 2001; Quaintrell et al. 2003) with a mass of
1.86±0.16 M⊙. The millisecond radio pulsar J0751+1807 likely
has an even higher mass: 2.1 ± 0.2 M⊙ (Nice et al. 2005). Both
results are in favor of a stiff EOS (see also Srinivasan 2001).
Neutron stars also have a minimum mass limit. The minimum
stable neutron-star mass is about 0.1 M⊙, although a more real-
istic minimum stems from a neutron star’s origin in a supernova.
Lepton-rich proto neutron stars are unbound if their masses are
less than about 1 M⊙ (Lattimer & Prakash 2004; Haensel et al.
2002).

Another issue is the neutron-star mass distribution: the de-
tailed supernova mass ejection mechanism accompanying the
formation of the neutron star is not understood, but it is likely
that the many neutrinos that are produced during the formation
of the (proto-) neutron star in the centre of the collapsing star
play an important role (e.g. Burrows 2000). Timmes et al. (1996)
present model calculations from which they conclude that type II
supernovae (massive, single stars) will give a bimodal neutron-
star mass distribution, with peaks at 1.28 and 1.73 M⊙, while
type Ib supernovae (such as produced by stars in binaries, which
are stripped of their envelopes) will produce neutron stars within
a small range around 1.32 M⊙. Despite the fact that it is in a bi-
nary, the massive neutron star in Vela X−1 may belong to the
second peak in this mass distribution.

Neutron stars are detected either as radio pulsars, single or
in a binary with a white dwarf or neutron star companion, or as
X-ray sources in binaries with a (normal) low-mass (LMXB) or a
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Table 1. Orbital parameters of SMC X−1, LMC X−4 and Cen X−3 obtained from Wojdowski et al. (1998), Levine et al. (2000) and Nagase et al.
(1992), respectively. T0 is the mid-eclipse time and corresponds to orbital phase φ = 0.0. The eccentricity is obtained from Bildsten et al. (1997)
and references therein. All the reported errors are 1σ values unless stated otherwise. For SMC X−1 the range of semi-eclipse angle θe includes
observations obtained by Primini et al. (1976), Bonnet-Bidaud & Van der Klis (1981) and Schreier et al. (1972a); for LMC X−4 those of Li et al.
(1978), White (1978) and Pietsch et al. (1985); for Cen X−3 we list the result of Clark et al. (1988).

SMC X−1 LMC X−4 Cen X−3
T0 (MJD) 42836.18278(20) 51110.86579(10) 40958.35(1)
Porb (days) 3.89229090(43) 1.40839776(26) 2.08713845(5)
Ṗorb/Porb (yr−1) −3.353(14) × 10−6 −9.8(7) × 10−7 −1.738(4) × 10−6

Pspin (s) 0.708 13.5 4.82
aX sin i (lt-s) 53.4876(4) 26.343(16) 39.56(7)
e <4 × 10−5(2σ) 0.006(2) <1.6 × 10−3(90%)
θe (deg) 26–30.5 25–29 32.9 ± 1.4
OB companion B0 Ib O8 III O6.5 II-III

high-mass companion star (HMXB). Presently, all accurate mass
determinations have been for neutron stars that were almost cer-
tainly formed in type Ib supernovae and that have accreted little
since. Exceptions are J1909−3744, a pulsar (+white dwarf) with
a mass of 1.438±0.024 M⊙ (Jacoby et al. 2005), and the massive
neutron star in J0751+1807, which may have originated from an
LMXB. The most accurate masses have been derived for the bi-
nary radio pulsars. Until recently, all of these were consistent
with a small mass range near 1.35 M⊙ (Thorsett & Chakrabarty
1999).

We focus here on the initially most massive systems, which
consist of a massive OB supergiant and a neutron star or a black
hole (Kaper 2001; Kaper & Van der Meer 2005). The main mo-
tivation to concentrate on these systems is that they are the most
likely hosts of massive neutron stars. About a dozen of these
systems are known1; five of them contain an eclipsing X-ray
pulsar. The masses of all but one (Vela X−1) are consistent
(within their errors) with a value of about 1.4 M⊙. However,
most spectroscopic observations used for these mass determi-
nations were carried out more than 20 years ago, before the ad-
vent of sensitive CCD detectors and 8m-class telescopes, which
allow high-resolution spectroscopy of the optical companions.
The uncertainties in the earlier radial velocity measurements (see
Van Kerkwijk et al. 1995a) are too large to measure a significant
spread in mass among these neutron stars, if present.

In this paper we present new, more accurate determinations
of the mass of the neutron star in three of these systems, i.e.
SMC X−1, LMC X−4, and Cen X−3 using the high-resolution
Ultraviolet and Visual Echelle Spectrograph (UVES) on the ESO
Very Large Telescope (VLT). These systems are in a phase of
Roche-lobe overflow (Savonije 1978, 1983), have well deter-
mined, circular orbits (Porb of a few days), and an optical coun-
terpart of V ≃ 14 mag, i.e. well within reach of VLT/UVES.

In Sect. 2 we introduce the three HMXBs. In Sect. 3 we de-
scribe the acquired observations and data reduction procedure. In
Sect. 4 we present the spectral analysis and the resulting radial-
velocity curves. In Sect. 5 we evaluate the measured radial-
velocity amplitudes and derive the mass of the neutron star in
these three systems. In Sect. 6 we summarise our conclusions
and in Sect. 7 we compare these to the predictions of supernova
models.

1 Recently, several new hard X-ray sources have been detected with
INTEGRAL that show the characteristics of a heavily obscured HMXB
with an OB-supergiant companion, called supergiant fast X-ray tran-
sients (Negueruela et al. 2006; Lutovinov et al. 2005).

2. Eclipsing high-mass X-ray binaries; review

of earlier work

Five high-mass X-ray binaries are known to host an eclipsing
X-ray pulsar: Vela X−1, 4U 1538−52, SMC X−1, LMC X−4
and Cen X−3. The eclipse provides an important constraint on
the orbital inclination i, an essential parameter for the mass de-
termination. For the eclipsing X-ray source 4U 1700−37 with
the O6.5 Iaf+ companion HD 153919 (Jones et al. 1973; Mason
et al. 1976) no X-ray pulsations have been detected, although
the compact object most likely is a neutron star (Reynolds et al.
1999; Van der Meer et al. 2005). The absence of X-ray pulsations
prohibits the accurate determination of the orbital parameters of
the neutron star, and thus its mass.

Van Kerkwijk et al. (1995a) present an analysis of the
neutron-star mass determinations for these systems hosting an
X-ray pulsar and conclude that the accuracy of the (then) avail-
able observations does not allow to discriminate between one
“canonical” neutron-star mass or a mass distribution. Recent
analyses of the radial-velocity curve of the wind-fed system
Vela X−1 (Barziv et al. 2001; Quaintrell et al. 2003) with its
B0.5 Ib companion (Hiltner et al. 1972; Vidal et al. 1973)
have shown that the neutron star in this system has a mass of
1.86 ± 0.16 M⊙. Such a high neutron-star mass provides an im-
portant constraint on the EOS at supra-nuclear density.

Since the work of Reynolds et al. (1992), included in
the analysis by Van Kerkwijk et al. (1995a), no new optical
spectroscopy of the B0 supergiant companion (QV Nor) of
4U 1538−52 has been reported in literature. Van Kerkwijk et al.
(1995a) list 1.06+0.41

−0.34 M⊙ for the mass of 4U 1538−52.

We have obtained VLT/UVES spectra of the three Roche-
lobe overflow systems SMC X−1, LMC X−4 and Cen X−3. The
orbital parameters (Table 1) of their X-ray pulsars are accurately
known, based on X-ray pulse time delay measurements. The
X-ray pulsars in these systems have short spin periods (seconds)
compared to those in wind-fed systems (minutes), as the mass-
and angular-momentum accretion rate in Roche-lobe overflow
systems is much higher than in wind-fed systems. The photo-
metric light curves indicate that in all three systems an accretion
disc is present (Tjemkes et al. 1986; Heemskerk & Van Paradijs
1989). The X-ray eclipse duration is best measured in hard
X-rays, since at lower energies the eclipses are systematically
longer due to soft X-ray absorption by the stellar wind of the
OB companion. The eclipse duration can thus be used to deter-
mine the radius of the OB companion.
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2.1. SMC X−1

The B0 supergiant Sk 160 (V = 13.3 mag) is the companion
to the eclipsing X-ray pulsar SMC X−1 (Schreier et al. 1972a;
Liller 1973), located in the “wing” of the Small Magellanic
Cloud at a distance of 60.6 kpc (Hilditch et al. 2005). The spin
period of the pulsar is 0.71 s and the orbital period is 3.89 d,
which is decaying on a timescale of 3× 106 yr due to tidal inter-
action (Levine et al. 1993). A super-orbital, though not strictly
periodic variation of ∼60 d is present in the system, most likely
due to a precessing tilted accretion disc (Wojdowski et al. 1998;
Clarkson et al. 2003).

The most recent determination of the radial-velocity orbit
of Sk 160 has been performed by Val Baker et al. (2005).
Optical spectra covering the wavelength range 4300–5100 Å
were obtained with the grating spectrograph on the 1.9 metre
Radcliff telescope at the Sutherland Observatory, with a resolv-
ing power R ∼ 4000. The majority of the 56 usable spectra
were secured during one week of observations in September
2000. Based on a cross-correlation analysis similar to the one
used by Reynolds et al. (1993), a radial-velocity amplitude of
Kopt = 18.0 ± 1.8 km s−1 was measured, which becomes
21.8 ± 1.8 km s−1 when taking the effects of X-ray heating into
account; the rest-frame (γ) velocity is 174 km s−1. To simu-
late the effects of X-ray heating, a model is used that generates
velocity corrections based on contributions from different ele-
ments of the projected stellar disc. The models do not take into
account the presence of an accretion disc, which may well re-
duce the effect of X-ray heating (Van Kerkwijk et al. 1995a).
The results of Val Baker et al. (2005) are significantly differ-
ent from the results obtained by Reynolds et al. (1993) who ar-
rive at Kopt = 27.5 ± 1.9 km s−1 following a similar procedure.
According to Val Baker et al. (2005), this discrepancy could be
due to the limited phase coverage of the dataset of Reynolds
et al. (1993) and to the fact that Reynolds et al. (1993) assume
a significantly higher value for LX when determining the non-
Keplerian corrections. The latter would, however, not explain the
difference in Kopt before applying the X-ray heating corrections.
Val Baker et al. (2005) derive lower (edge-on system) and upper
limits (Roche-lobe filling system) to the mass of SMC X−1 of
0.91 ± 0.08 M⊙ and 1.21 ± 0.10 M⊙, respectively. The mass of
the optical companion is around 16.7 M⊙ in both cases.

2.2. LMC X−4

After the first detection of LMC X−4 by the Uhuru satellite
(Giacconi et al. 1972), the binary nature of its optical coun-
terpart was confirmed by Chevalier & Ilovaisky (1977). The
V = 14.0 mag O8 III companion (Sanduleak & Philip 1976;
Kaper et al., to be submitted) is in a 1.41 d orbit (Li et al. 1978;
White 1978), which is decaying on a timescale of ∼500 000 yr
(Levine et al. 2000). The optical light curve shows ellipsoidal
variations and a super-orbital period of ∼30 d due to a precess-
ing accretion disc (Heemskerk & Van Paradijs 1989). The X-ray
light curve includes regular eclipses as well as a pronounced flux
modulation of a factor ∼60 with a period of 30.5 d (Lang et al.
1981). This long-term variation is attributed to the precessing
accretion disc. Kelley et al. (1983) discovered the 13.5 s X-ray
pulsations of LMC X−4.

Chevalier & Ilovaisky (1977) reported on photographic
spectra obtained with the 1.5 m ESO telescope from which
they derived radial-velocity variations with an amplitude of
475 ± 25 km s−1 for the He ii 4686 Å line, and a phase
dependence suggesting an origin near the X-ray source.

Hutchings et al. (1978) collected 18 spectrograms using the
Cassegrain image-tube spectrograph of the CTIO 4m telescope
in November 1977, with an effective spectral resolution of R ∼
3000. For the hydrogen lines (Hβ to H9 , and an empirically
determined correction to the blended Hδ line) they derive a
radial-velocity amplitude of Kopt = 50 ± 5 km s−1; for the He i

lines Kopt = 60 ± 9 km s−1 is measured. For the He ii 4686 Å
line Hutchings et al. (1978) derive Kopt = 498 ± 14 km s−1,
with a phase difference compared to the H and He i absorp-
tion lines of 0.79 Porb, consistent with Chevalier & Ilovaisky
(1977). Kelley et al. (1983) combined the radial-velocity data
of the hydrogen absorption lines presented by Hutchings et al.
(1978) with measurements by Petro & Hiltner (1982) and ar-
rive at Kopt = 37.9 ± 2.4 km s−1. Van Kerkwijk et al. (1995a)
use Kopt = 38 ± 5 km s−1 and obtain MX = 1.47+0.44

−0.39 M⊙ and
Mopt = 15.8+2.3

−2.0 M⊙.

2.3. Cen X−3

Cen X−3 was discovered by Chodil et al. (1967) and became the
first detected binary X-ray pulsar (Giacconi et al. 1971; Schreier
et al. 1972b). The V = 13.3 mag optical counterpart V779 Cen
was identified by Krzeminski (1974), an O6-7 II-III star (Ash
et al. 1999) in a 2.09 d circular orbit with the 4.84 s X-ray pul-
sar. The optical light curve indicates the likely presence of an
accretion disc, but no strong evidence is found for X-ray heating
(Tjemkes et al. 1986). The X-ray light curve includes episodes
of high and low X-ray flux with a characteristic timescale of
120–165 d (Priedhorsky & Terrell 1983; Paul et al. 2005).

Based on photographic spectra, Hutchings et al. (1979)
derive Kopt = 24 ± 6 km s−1, confirmed by Aslanov &
Cherepashchuk (1982) who also report Kopt = 24 ± 6 km s−1.
The most recent radial-velocity measurements of V779 Cen are
presented by Ash et al. (1999) who determine two very dif-
ferent values of Kopt based on two datasets obtained with the
4m Anglo-Australian Telescope and the RGO spectrograph. The
wavelength range of these spectra is 4300–4700 Å; the spectral
resolution R ∼ 3000. Ash et al. (1999) discard the results of the
first dataset and arrive at Kopt = 24.4± 4.1 km s−1. The resulting
neutron-star mass is MX = 1.21 ± 0.21 M⊙ and the mass of the
O-type companion Mopt = 20.5 ± 0.7 M⊙.

3. Observations

We have obtained high-resolution (R ∼ 40 000) spectra of the
three systems with UVES (Dekker et al. 2000) on the VLT in ser-
vice mode in the period October 2001 to March 2002 at Paranal,
Chile. The total exposure time was 17.6 h spread over 13 ex-
posures of 1400 s of SMC X−1, 13 exposures of 2000 s of
LMC X−4 and 12 exposures of 1600 s of Cen X−3. The in-
strument was used with standard setting “390+564” and a slit
width of 1.0′′. This yields a wavelength range of 3580–4500 Å
in the blue arm and 4625–5585 Å and 5680–6640 Å in the red
arm. To determine the orbital phase of the systems we used the
ephemeris of Wojdowski et al. (1998), Levine et al. (2000) and
Nagase et al. (1992) for SMC X−1, LMC X−4 and Cen X−3,
respectively (see Table 1). The log of observations is listed in
Table 2.

In order to reduce the data to normalised spectra we used the
UVES pipeline (version 1.2.0) and the ESO reduction package
MIDAS (version 03SEPpl1.1). All raw echelle frames were bias
and flatfield corrected. Subsequently the different orders were
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Fig. 1. Normalised spectra in the wavelength range 3580–4500 Å of SMC X−1 at orbital phase φ = 0.06 (top spectrum), LMC X−4 at orbital
phase φ = 0.04 (middle spectrum) and Cen X−3 at orbital phase φ = 0.09 (bottom spectrum), respectively. The line identifications are shown
above the spectrum of SMC X−1. Note that the reddening of Cen X−3 (E(B − V) ∼ 1.4) clearly affects the S /N in this wavelength range.
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Fig. 4. Example of Gaussian fits for the He  line at 4387.93 Å (upper

panel), the He  line at 4713.17 Å (middle panel) and the He  line at
5047.74 Å (lower panel) in the spectrum of the B supergiant companion
to SMC X−1. The spectra and the Gaussian fits are shown at four dif-
ferent quadratures. To better visualise the fits the spectra are smoothed.
Note that the Gaussian profile fits represent the rotationally broadened
line profiles very well. Furthermore, the orbital motion of the B super-
giant companion is easily observed.

extracted using the optimal extraction routine available within
the UVES pipeline. High signal-to-noise (S/N >∼ 50) spectra
extracted with this routine show a ripple effect. In our spectra this
effect is only marginally present in some spectra of SMC X−1
in the wavelength range 5100–5585 Å. This range contains the
He ii 5411.53 Å line, but we do not use it for the determination
of the radial-velocity amplitude of the system (Sect. 4.2).

Cosmic ray hits were removed by rejecting the affected
wavelength bins and subsequent interpolation. After this, the
spectra were normalised by fitting the continuum with a spline
over the whole wavelength range of one spectral arm. The nor-
malised spectra of the three systems are shown in Figs. 1 to 3.

We verified the long-term stability of UVES by measuring
the position of the interstellar lines of Ca ii K at 3933.66 Å,
Ca ii H at 3968.47 Å, Na i D1 at 5895.92 Å and Na i D2 at
5889.95 Å for all spectra. This resulted in a deviation of less
than 1 km s−1 throughout the whole observing period of each
system, i.e. several months.

Fig. 5. Example of radial-velocity curves obtained from the H13 line at
3734.37 Å. Some datapoints are shown twice to better visualise trends
with orbital phase. The error bars indicate 1σ errors. The lower panels
show the residuals of the fit.

4. Spectral analysis

To obtain a radial-velocity measurement often the complete
spectrum is cross-correlated with a template spectrum. This ap-
proach has many advantages when using spectra with relatively
low spectral resolution and poor signal-to-noise. In our case the
spectra are of such high quality that the radial-velocity amplitude
can be determined for each line separately. The advantage of
such a strategy is that it is possible to assess the influence of pos-
sible distortions due to e.g. X-ray heating and gravity darkening,
as in these systems the OB star is irradiated by a powerful X-ray
source (Lopt ≃ LX) and is filling its Roche-lobe. Furthermore,
the extended OB-star wind is focused into a shadow wind which
possibly produces a strong shock (a so-called photo-ionisation
wake, see e.g. Blondin 1994; Kaper et al. 1994) where the fast
shadow wind catches up with the stagnant flow inside the X-ray
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Fig. 6. The upper panels show the radial-velocity amplitude (Kopt in km s−1) measured for a given line as a function of its mean line equivalent
width (〈EW〉). The error bars indicate 1σ errors. Especially for SMC X−1 a clear trend is visible with line strength: for large mean EW Kopt is
systematically lower. The finally adopted Kopt is represented by the horizontal dotted line. The middle panels show the γ-velocity and the bottom
panels show Kopt as a function of the line variability parameter η; lines with η > 9 are rejected (see text for motivation). The lines that are rejected
because of this and other criteria (such as blending) are represented by open squares. The filled circles indicate the lines that are used to determine
the (mean) radial-velocity amplitude. These selections show less spread in Kopt.

ionization zone. The shadow wind and photo-ionization wake
induce orbital modulations of spectral lines formed in the stel-
lar wind (i.e. strong spectral lines such as the first lines of the
Balmer series and the strongest helium lines).

Figures 1 to 3 show that the spectra contain mostly lines
that are identified with transitions from H and He . Only a few
He  lines and some metal lines are detected, consistent with the
modest metallicity of the Magellanic Clouds and OB supergiant
spectral types. We show the spectra observed near X-ray eclipse
(orbital phase φ ∼ 0.0). Some of the lines are blended or show
a slight asymmetry. A comparison of the spectra obtained at dif-
ferent orbital phase reveals that several lines also vary in line
strength. Still, Fig. 4 demonstrates that many lines are well rep-
resented by a Gaussian profile (i.e. as one would expect for a

rotationally broadened profile). Therefore, Gaussian profiles are
fit to all individual lines to determine the radial-velocity curve
(Sect. 4.1). Subsequently, the observed line profiles are exam-
ined on asymmetry and variations with orbital phase (Sect. 4.2).

4.1. Radial-velocity curves

We determine the line centre, and thus the Doppler shift with
respect to the heliocentric restframe, by fitting the profile with
a Gaussian. The Gaussian sets the full-width at half maximum
(FWHM), the central line depth and the central wavelength of
the profile, i.e. three free parameters. A χ2 minimalization pro-
cedure delivers the best fit Gaussian profile and defines the
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Table 3. List of lines that have been fitted with a Gaussian. The rest wavelength of the line is given as well as the mean equivalent width (EW, in
Ångström) with its 1σ error. The magnitude of the variations in line EW is expressed as the ratio η of the standard deviation of the line EW to the
error on the mean EW. Rejected lines are indicated with a remark: lines marked with an “B” are blends; a “V” stands for lines exhibiting strong
EW variations (η > 9); a number (e.g. 0.5) indicates a deviation in the EW at that orbital phase. Electronic tables that contain the radial-velocity
amplitude, EW and FWHM variations for each line are available as on-line material at the CDS.

SMC X−1 LMC X−4 Cen X−3
Identification λrest (Å) µEW (Å) η Remarks µEW (Å) η Remarks µEW (Å) η Remarks
H Balmer series
Hβ 4861.33 1.265(4) 44.1 V,0.5 1.905(7) 22.6 V,0.5 1.491(6) 20.4 V,0.5
Hγ 4340.46 1.287(5) 24.2 B,V,0.5 1.796(8) 14.9 B,V,0.5 1.638(10) 8.6 B,0.5
Hδ 4101.73 1.503(7) 17.5 B,V,0.5 2.216(9) 7.6 B,V,0.5 2.264(16) 7.0 B,0.5
Hǫ 3970.07 1.640(13) 8.5 B,0.5 1.742(11) 10.4 B,V,0.5 1.356(23) 22.7 B,V,0.5
H8 3889.05 1.173(4) 9.7 V,0.5 1.538(6) 10.0 V,0.5 1.278(11) 6.5 0.5
H9 3835.38 1.260(5) 9.2 B?,V,0.5 1.523(7) 9.2 B?,V 1.211(12) 7.9 B?,0.5
H10 3797.90 1.039(5) 8.2 1.259(7) 8.4 0.843(12) 5.9 0.5
H11 3770.63 1.007(6) 8.6 1.200(10) 6.8 0.980(18) 7.0 0.5
H12 3750.15 0.779(6) 6.6 0.638(10) 7.4 B 0.413(15) 5.3 B
H13 3734.37 0.745(6) 6.5 0.588(12) 6.1 0.548(22) 4.5
H14 3721.94 0.513(8) 5.9 B − − − −

H15 3711.97 0.470(11) 4.6 − − − −

H16 3703.85 0.545(8) 8.3 B 0.764(237) 3.1 B 0.466(96) 3.0 B

He I 3P-3D series
He  2p-3d 5875.66 0.981(5) 31.3 V,0.0 1.159(11) 8.6 0.0 1.194(7) 21.3 V,0.0,0.5
He  2p-4d 4471.50 0.773(6) 12.3 V,0.0 0.775(8) 8.1 0.739(10) 6.7
He  2p-5d 4026.21 0.697(4) 12.1 V,0.0 0.825(5) 8.7 0.653(8) 3.6
He  2p-6d 3819.62 0.509(4) 11.3 V,0.0 0.460(5) 8.9 0.313(10) 2.9
He  2p-7d 3705.02 0.476(9) 8.2 B,0.0 0.632(66) 4.4 B 0.556(152) 2.6 B
He  2p-8d 3634.25 0.244(5) 5.7 0.208(7) 6.4 − −

He  2p-9d 3587.27 0.169(5) 7.2 − − − −

He I 1P-1D series
He  2p-4d 4921.93 0.595(3) 16.2 V,0.0 0.530(5) 7.0 0.323(5) 5.2
He  2p-5d 4387.93 0.398(5) 6.5 0.302(6) 5.5 − −

He  2p-6d 4143.76 0.341(4) 6.1 0.301(6) 6.4 − −

He  2p-7d 4009.26 0.238(4) 4.8 − − − −

He I 3P-3S series
He  2p-4s 4713.17 0.311(4) 6.6 0.265(5) 4.6 0.228(6) 6.2

He I 1S-1P series
He  2s-3p 5015.68 0.353(3) 10.9 V,0.0 0.307(5) 7.4 0.310(5) 4.2

He I 1P-1S series
He  2p-4s 5047.74 0.201(4) 6.7 − − − −

Other lines
He  4-7 5411.53 0.292(4) 42.5 V,0.5 0.809(7) 14.0 V,0.5 0.827(5) 11.0 B,0.5
He  4-11 4199.83 0.145(5) 9.7 V,0.5 0.485(7) 5.6 0.494(9) 4.2
Si  4s-4p 4088.86 0.310(4) 10.3 V,0.0 0.300(11) 6.6 B 0.326(12) 6.7 B

accuracy of the fit parameters. Emission-line profiles, such as
Hα, are not included in the fitting procedure.

The orbital parameters are accurately known from X-ray
pulse time delay measurements (see Table 1). We assume the or-
bit to be circular, since in all cases the eccentricity e � 0.008.
The remaining free parameters describing the radial-velocity
curve are the radial-velocity amplitude, Kopt, and the restframe
velocity of the system, vγ. In principle, a small shift in orbital
phase could be present due to the inaccuracy of the orbital pe-
riod, the period derivative, and mid-eclipse time (Table 1). The
measured orbital phase shifts are not significantly different from
zero, but are slightly larger than the phase shifts one may expect
based on the accuracy of the ephemeres of these systems. The
phase shift should be the same for all lines and has to be fixed to
the average value during a second iteration.

A radial-velocity curve is obtained for each individual line;
Fig. 5 displays for each system a radial-velocity curve represen-
tative for the spectral lines used to measure the radial-velocity

amplitude. Note that the data points were obtained from several
orbits of the system; the dozen spectra per system are evenly
distributed with orbital phase, thanks to the service-mode obser-
vations allowing to obtain spectra spread over a period of more
than one month.

Figure 6 indicates that Kopt and vγ show quite some disper-
sion when comparing the radial-velocity curves of individual
lines. Kopt shows a dependence on line strength and line variabil-
ity, diagnostics that we will use to reject lines when determining
the mean radial-velocity amplitude used to calculate the mass of
the neutron star.

4.2. Line selection

As our observational strategy is aimed at the derivation of the
radial-velocity curve based on individual lines, we select only
lines that are well identified. Also, all lines that are (partially)
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Fig. 7. Equivalent width (EW) variations with orbital phase (φ) ob-
served in SMC X−1. The error bars indicate 1σ errors and the dotted
line the average value. Some datapoints are shown twice to better visu-
alise trends with orbital phase. The value of the defined line variability
parameter η is indicated for each line. The upper panel shows the large
variations in the He  line at 5411.53 Å, the second panel shows the in-
verse behaviour of the He  line at 4471.50 Å, the third panel shows the
variations of Hǫ at 3970.07 Å. A stable line is shown in the lower panel,
i.e. the H12 line at 3750.15 Å. The EW ratio of the He  and He  lines
is sensitive to Teff and can be used for spectral classification; apparently,
the spectral type of SMC X−1 varies with orbital phase. The variations
are consistent with being caused by X-ray heating of the stellar surface
facing the X-ray source.

blended, are rejected. In Table 3 this is indicated with a “B” as a
remark.

In these high-mass X-ray binaries it is expected that at least
some lines in the OB-star spectrum are affected by the presence
of the X-ray pulsar companion (see e.g. Van Paradijs et al. 1978;
Reynolds et al. 1993). In principle, one could model the pho-
tospheric line profiles of the OB supergiant companion by cal-
culating a grid of many (thousands) surface elements, adopting
for each surface element an intrinsic line profile, and obtain-
ing the integrated line profile by a weighted integration of the
(mainly by stellar rotation) Doppler-shifted intrinsic profiles of
all visible surface elements. Such computationally demanding
techniques have been successfully explored in stellar pulsation
studies (e.g. Schrijvers et al. 1997) and in modeling photometric
lightcurves of HMXBs (e.g. Heemskerk & Van Paradijs 1989).

Fig. 8. Full width at half maximum (FWHM) variations of the Hγ line
at 4340.46 Å (upper panel) and the He  line at 4387.93 AA (lower
panel) of SMC X−1 as a function of orbital phase (φ) in km s−1. The
error bars indicate 1σ errors and the dotted line the average value.
Some datapoints are repeated once to better visualise trends with or-
bital phase. A maximum in FWHM is clearly seen around φ ∼ 0.25; a
second, though much less pronounced maximum is visible at φ ∼ 0.75.
Such FWHM variations are also detected in other lines, as well as in the
systems LMC X−4 and Cen X−3.

Also, variations in the intrinsic line profiles due to variations of
surface temperature and gravity have been included (Schrijvers
& Telting 1999), so that one could apply such a method to the
case of an OB supergiant irradiated and deformed by a close and
compact X-ray source. Although we have now made an advance
in analysing spectra of the OB companions to X-ray pulsars by
studying individual lines rather than cross-correlating complete
spectra, we consider this modeling effort beyond the scope of
the present paper, even though it has the potential to deliver very
important information on the interpretation and analysis of the
obtained spectra.

A first step in this direction has been undertaken by
Abubekerov et al. (2004); they model the line formation pro-
cess taking X-ray heating and gravitational darkening into ac-
count. As the luminosity distribution and shape of the star are
altered, the measured radial velocity, as well as the line equiva-
lent width, depend on the depth of the line-forming region and
orbital phase. Abubekerov et al. (2004) show that these effects
will result in a reduction of the derived radial-velocity amplitude
by several km s−1.

That these effects manifest themselves in our observations
is nicely demonstrated by the large EW variations of the He 
line at 5411.53 Å of SMC X−1 (see Fig. 7). This line varies
with about a factor ∼ 5 in EW and reaches a maximum EW near
φ ∼ 0.5. The He  line at 4471.50 Å (and also He  5875.66 Å)
shows the opposite behaviour and has a minimum strength at this
orbital phase (see Fig. 7). Since a He  / He  line ratio is sensi-
tive to Teff it can be used for spectral classification; however,
traditionally the ratio of He  4471 over He  4541, accessible
in the blue spectrum, is used for spectral classification (Conti
& Alschuler 1971; Lennon et al. 1993; Mokiem et al. 2005).
Line ratios involving the He  5876 and He  5412 lines have not
(yet) been calibrated (Mokiem, priv. comm.). The observed vari-
ations in line ratio indicate a higher Teff at the side of the OB



A. van der Meer et al.: Determination of the mass of the neutron star in SMC X−1, LMC X−4 and Cen X−3 531

Table 4. Final selection of lines that is used for the determination of the radial-velocity amplitude (Kopt) for each system. The three fit parameters
are listed, i.e. the system velocity (vγ), Kopt, and a phase shift (∆φ). The goodness of the fit is expressed as χ2

r . All errors are 1σ.

SMC X−1 LMC X−4 Cen X−3
λrest (Å) vγ Kopt ∆φ χ2

r vγ Kopt ∆φ χ2
r vγ Kopt ∆φ χ2

r

3797.90 190.0± 0.9 20.2±1.2 0.01(1) 2.6 305.5± 1.1 27.6±1.6 0.01(1) 1.6 − − − −

3770.63 191.7± 1.3 18.1±1.8 0.01(2) 3.8 321.5± 2.1 32.6±2.9 −0.02(2) 3.2 − − − −

3750.15 184.5± 1.6 18.4±2.2 0.04(2) 4.3 − − − − − − − −

3734.37 186.5± 1.8 18.1±2.5 0.02(2) 4.9 306.2± 2.6 33.6±3.8 0.02(2) 1.7 39.5 ± 4.1 32.1±4.7 0.02(4) 0.9
3711.97 207.9± 1.8 20.4±2.4 0.07(2) 0.9 − − − − − − − −

4471.50 − − − − 298.9± 1.9 40.1±2.7 0.00(1) 2.7 20.5 ± 3.9 24.9±5.3 0.08(4) 5.8
4026.21 − − − − 290.2± 1.3 35.5±1.8 0.00(1) 2.9 9.9 ± 2.6 27.5±3.1 0.03(3) 3.3
3819.62 − − − − 301.9± 1.7 40.0±2.5 −0.01(1) 2.0 38.8 ± 2.8 35.7±3.8 0.07(2) 0.7
3634.25 187.7± 2.4 20.5±3.2 0.03(3) 2.0 312.1± 2.9 50.0±4.3 −0.03(2) 0.8 − − − −

3587.27 183.9± 2.1 19.0±2.8 0.01(3) 1.0 − − − − − − − −

4921.93 − − − − 311.7± 1.5 34.8±2.1 −0.02(1) 1.8 44.3 ± 3.3 29.5±4.7 0.10(3) 3.0
4387.93 193.9± 1.8 23.7±2.4 0.04(2) 3.1 328.6± 2.6 38.9±3.6 −0.01(2) 1.4 − − − −

4143.76 194.2± 2.1 25.6±2.7 0.02(2) 3.7 315.3± 3.1 50.9±4.4 −0.01(2) 1.6 − − − −

4009.26 190.1± 1.9 20.4±2.5 0.05(2) 1.8 − − − − − − − −

4713.17 190.9± 1.3 22.3±1.9 0.02(1) 2.3 315.7± 2.7 39.8±4.0 0.00(2) 1.7 24.6 ± 4.0 30.4±5.4 0.08(3) 1.6
5047.74 183.5± 2.8 21.7±3.9 0.03(3) 3.0 − − − − − − − −

5015.68 − − − − 312.7± 2.4 39.5±3.2 −0.03(2) 2.1 26.9 ± 2.5 30.3±3.5 0.09(2) 1.7
4199.83 − − − − 303.3± 1.3 26.6±2.0 0.05(1) 0.6 44.4 ± 2.0 22.4±2.3 0.03(2) 0.8

star facing the X-ray source, and is evidence for X-ray heating
in SMC X−1. As a consequence, the spectral type of the optical
companion to SMC X−1 changes as function of binary aspect
angle. A similar effect has been observed in the optical spectrum
of V779 Cen, the O6 companion of Cen X−3 (Hutchings et al.
1979).

The derived value of the radial-velocity amplitude shows a
dependence on line strength (Fig. 6). Furthermore, the observed
variations in EW also increase with line strength. As illustrated
above, these variations likely reflect distortions of the line form-
ing region due to e.g. X-ray heating and the (disturbed) stel-
lar wind. Since Kopt should be a unique value, we investigate
whether a selection criterion can be defined to reject lines that
are affected by these distortions and thus do not yield a sound
measurement of Kopt.

To measure these distortions we apply a velocity moment
analysis, with which one can determine the equivalent width
(EW), central velocity, standard deviation (σ) and skewness (τ)
of a given line. The nth moment (µn) of a distribution f (v) in
velocity v is given by:

µn =

∫

vn f (v) dv
∫

f (v) dv
, (1)

and

µ0 =

∫

f (v) dv. (2)

For such a distribution the EW is proportional to µ0 and the cen-
tral velocity to µ1. The standard deviation (σ) and skewness (τ)
are often defined as:

σ2 =

∫

(v − µ1)2 f (v) dv

µ0
, (3)

and

τ =

∫

(v − µ1)3 f (v) dv

µ0 σ3
, (4)

in which the skewness (τ) is a measure of the asymmetry of the
distribution. For a Gaussian profile the skewness τ is zero; if

τ � 0 the spectral line is not well represented by a Gaussian. If
so, one can not use a gaussian to fit the line in order to measure
its radial velocity, as we did in Sect. 4.1. It turns out that for the
lines that are not blended, τ is consistent with being equal to zero
within the error. Note, however, that the error on τ is too large to
measure any significant deviations from zero, because it depends
on the error on µ and σ to the third power (see Eq. (4)). The EW
and central velocity (first moment) are much more accurately
determined and are consistent with the respective values derived
from the gaussian profile fits.

For each line we determine whether the line EW varies sig-
nificantly by comparing the deviation in EW to the error on the
mean EW (Table 3). Note that these values are not equal; the
error on the mean depends on the error in EW of the individual
spectra, while the standard deviation is the spread in the distri-
bution of EWs. Since the strongest lines are formed in the outer
layers of the stellar photosphere and/or in the extended stellar
wind these lines are expected to be most affected by X-ray heat-
ing, gravity darkening, etc., and will thus show intrinsic varia-
tions when the system revolves. The observed trend in Kopt with
vγ (Fig. 6) also indicates that the stronger lines are formed further
out in the stellar atmosphere and wind (an effect called Balmer
progression, see e.g. Crampton et al. 1985; Abubekerov et al.
2004). We define a line variability parameter η to formulate a
selection criterion (Table 3). This parameter is defined as the ra-
tio of the standard deviation of the EW variations to the error on
the mean EW. The main motivation behind this definition is that
the EW is in principle not sensitive to radial-velocity variations,
i.e. the key parameter that we want to measure in the spectra.
However, η turns out to be an accurate probe of intrinsic line
profile variability. Other methods to measure line profile vari-
ability (e.g. the temporal variance spectrum analysis method in-
troduced by Fullerton et al. 1996) are sensitive to radial-velocity
variations.

We select η = 9 as the value above which lines are rejected.
These lines are indicated with a “V” in Table 3. The threshold
value for η is chosen arbitrarily, but is a reproducable and ob-
jective means to quantify line profile variations. As it is an av-
eraged quantity, the η threshold does not reject lines exhibiting
only modest EW variations and having relatively large errors on
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the measured EWs (e.g. the Hǫ at 3970.07 Å shown in Fig. 7).
On the other hand, it does reject some lines that have highly ac-
curately determined EWs and that exhibit hardly any EW varia-
tions with orbital phase. To test the impact of the chosen value
for the η threshold on the obtained value of the radial-velocity
amplitude, we have evaluated the results for different values of
η. Including all lines for which η < 8 then Kopt is 20.8 ± 1.5,
35.7± 1.8, and 27.5± 2.3 km s−1 for SMC X−1, LMC X−4, and
Cen X−3, respectively. Similarly, we obtain 20.0±1.2, 34.2±1.3,
and 26.2±2.7, respectively, if we select the lines with η < 13. As
expected, we obtain a lower value of Kopt for a higher value of η,
and vice versa, while the error on the result increases when in-
cluding lines that show more intrinsic variations. Still, the values
for Kopt agree within the error for the applied range in η.

We now fix the threshold to η = 9; to ensure that the lines
with η < 9 and small variations concentrated around φ ∼ 0.0 or
φ ∼ 0.5, are rejected, we mark these in Table 3 listing the orbital
phase at which these variations are concentrated. Note that most
of these lines are already marked with a “V”, i.e. rejected based
on the η threshold.

The full width at half maximum (FWHM) of the line also
varies as a function of orbital phase φ. This behaviour is espe-
cially visible in the Balmer series lines of hydrogen, most promi-
nent in the stronger lines. Figure 8 shows that the FWHM in-
creases when the system revolves from X-ray eclipse to φ ∼
0.25, where it reaches a maximum before declining again. At
φ ∼ 0.75 another, though smaller increase in FWHM is de-
tected. The helium (and some other metallic) lines also show
FWHM variations, but less pronounced and not as periodic as
observed in the hydrogen lines. Furthermore, these FWHM vari-
ations are best seen in SMC X−1 and LMC X−4, but are less
clear in Cen X−3.

Apparently, if one would use these lines to determine the
(projected) stellar rotation velocity, one would arrive at a larger
value of v sin i when the system is looked upon from a side view.
This may be due to the elongated shape of the star as it is filling
its Roche lobe, as evidenced by the observed ellipsoidal varia-
tions. The dependence on line strength would be explained by
the fact that the line forming region is further out in the atmo-
sphere when the line is stronger. This would, however, not ex-
plain the difference in amplitude of this effect observed between
φ ∼ 0.25 and φ ∼ 0.75.

Differences in spectral appearance when comparing spectra
obtained at φ ∼ 0.25 and φ ∼ 0.75 are well known to occur
in spectroscopic binaries. The “Struve-Sahade” effect (Struve
1937; Sahade 1962) is the apparent strengthening of the sec-
ondary spectrum of a hot binary when the secondary is approach-
ing and the corresponding weakening of the lines when it is
receding (see Gies et al. 1997, for an observational overview).
The cause of this effect may be the presence of a gas stream
(bow shock, wind collision) trailing the secondary in its orbit
(Sahade 1959; Gies et al. 1997). Hydrodynamical simulations of
SMC X−1 by Blondin (1994) indicate that a collision of wind
material from the shadow wind with material in the X-ray ion-
isation zone is present in the system. Perhaps that this shocked
material introduces the difference in amplitude observed in the
FWHM of the strong Balmer lines that are formed in the stellar
wind.

As we do not have a clear explanation for these variations
in FWHM, we investigate the possible influence of this effect on
the determination of Kopt. Note that the stronger Balmer lines are
already excluded from the radial-velocity analysis on the basis of
the EW variations. We fix the FWHM on its mean value, its max-
imum and its minimum and refit the lines. It turns out that the

measurement of the centre of the line profile is not affected much
by these FWHM variations. The derived radial-velocity ampli-
tude, Kopt, is the same within its errors in all cases. Therefore,
we decide not to exclude more lines based on a FWHM variation
criterion (most of the lines showing this effect were excluded on
other grounds anyway).

4.3. Radial-velocity amplitude

Table 4 shows the final selection of lines for which good fits to
the radial-velocity curve are obtained, resulting in a measure-
ment of Kopt and vγ. Since the phase shift should be equal for all
lines in one system, we refit all lines with the phase shift fixed
to the weighted average, i.e. △φ is 0.026, –0.003, and 0.065 for
SMC X−1, LMC X−4, and Cen X−3, respectively. Fixing these
values does not influence the other parameters much; they are
the same within their errors.

To avoid systematic errors while determining the final mean
value of Kopt we shift all determined line centres to equal vγ. The
weighted mean values of vγ are 191± 6 km s−1, 306± 10 km s−1

and 32 ± 13 km s−1 for SMC X−1, LMC X−4 and Cen X−3,
respectively. Then we calculate the weighted mean of the radial
velocity for each spectrum (see Table 5). The average dataset we
fit in the same way as the individual lines, which results in the
three radial-velocity curves shown in Fig. 9. The goodness of the
fits with respect to the number of degrees of freedom (d.o.f.) are
χ2

r /d.o.f = 9.8/12, χ2
r/d.o.f = 9.1/12 and χ2

r /d.o.f = 7.2/11
for SMC X−1, LMC X−4 and Cen X−3, respectively. The error
bars indicate 1σ errors multiplied by χr to obtain a χ2

r = 1. The
residuals to the fit do not show any further evidence for system-
atic effects with orbital phase, as is the case for e.g. Vela X−1
(Van Kerkwijk et al. 1995b; Barziv et al. 2001). The final val-
ues of Kopt are 20.2 ± 1.1 km s−1, 35.1 ± 1.5 km s−1 and
27.5 ± 2.3 km s−1 for SMC X−1, LMC X−4 and Cen X−3, re-
spectively. The accuracy of the determination of Kopt has been
significantly improved (by a factor 2–4) compared to previous
measurements (and comparable to and consistent with Val Baker
et al. (2005) in the case of SMC X−1). These values are subse-
quently used to calculate the mass of the optical companion and
the X-ray source.

5. The neutron star masses

In order to measure the mass of the neutron star and its optical
companion we apply the mass function. For an orbit with eccen-
tricity e it can be shown that this is defined as:

Mopt =
K3

XP
(

1 − e2
)

3
2

2πG sin3 i
(1 + q)2 (5)

and

MX =
K3

optP
(

1 − e2
)

3
2

2πG sin3 i

(

1 +
1
q

)2

, (6)

where Mopt and MX are the masses of the optical component
and the X-ray source, respectively, Kopt and KX are the semi-
amplitudes of the radial-velocity curve, P is the period of the
orbit and i is the inclination of the orbital plane to the line of
sight. The mass ratio q is defined as:

q =
MX

Mopt
=

Kopt

KX
· (7)
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Fig. 9. Radial-velocity curves obtained from weighing the radial veloc-
ities of all selected lines per observation. Some datapoints are shown
twice to better visualise trends with orbital phase. The error bars indi-
cate 1σ errors multiplied by χr to obtain a χ2

r = 1. Note that vγ has been
set to zero.

The values for KX and P can be obtained very accurately from
X-ray pulse timing delay measurements (Wojdowski et al. 1998;
Levine et al. 2000; Nagase et al. 1992). The VLT/UVES spectra
provide a value for Kopt. For the determination of the inclina-
tion of the system we follow the approach of Rappaport & Joss
(1983), who showed that:

sin i ≈

√

1 − β2
(

RL
a

)2

cos θe
(8)

where RL is the Roche-lobe radius of the optical component, β
is the ratio of the radius of the optical component to RL (i.e. a
Roche-lobe filling factor), a is the separation of the centres of
mass of the two components, and θe is the semi-eclipse angle
of the compact object (see also Joss & Rappaport 1984, for a
review on mass determinations in X-ray binaries).

The ratio of the Roche-lobe radius and the orbital separation
can be approximated by:

RL

a
≈ A + B log q +C log2 q. (9)

The values of the constants A, B and C were determined by
Rappaport & Joss (1983) to be:

A ≈ 0.398 − 0.026Ω2 + 0.004Ω3 (10)

B ≈ −0.264 + 0.052Ω2 − 0.015Ω3 (11)

C ≈ −0.023 − 0.005Ω2, (12)

where Ω is the ratio of the rotational frequency of the optical
companion to the orbital frequency of the system; in case of syn-
chronous rotation Ω = 1. However, the timescale at which these
systems are expected to synchronise is slightly longer than the
timescale at which the orbit will circularise (for a detailed de-
scription see e.g. Hut 1981). Therefore, these systems may still
be in the process of synchronising the optical companion to the
orbit, whereas their orbits have already become circular. The fact
that the orbital periods of all three systems are decreasing, sug-
gests that the donor stars are rotating slower than synchronous
and that tidal forces are transferring orbital angular momentum
to synchronise the system.

It is possible to determineΩ by measuring the projected rota-
tional velocity vrot sin i of the OB companion using the spectra at
φ = 0.0. We use the grid of unified stellar atmosphere/wind mod-
els of early-type supergiants computed by Lenorzer et al. (2004)
using  (Hillier & Miller 1998). First we select the lines
that correspond to lines included in the model. Subsequently, we
select the model atmosphere that reproduces the observed line
spectrum best. The normalised flux of the model is then scaled
to yield exactly the observed EW. The models that correspond
best to our selection of lines are named “AR1Ia”, “AR1III” and
“O9III-AR2III” for SMC X−1, LMC X−4 and Cen X−3, respec-
tively by Lenorzer et al. (2004). Note that the names of these
models correspond to a set of model parameters describing the
model and not to the observational spectral type naming conven-
tion. These models are subsequently convolved with a rotational
broadening profile with a limb-darkening coefficient 0.6, as de-
scribed by Gray (1992), to determine the value of vrot sin i. This
results in 170± 30 km s−1, 240± 25 km s−1 and 200± 40 km s−1

for SMC X−1, LMC X−4 and Cen X−3, respectively. The se-
lected lines and their corresponding best model are shown in
Fig. 10. The rotational velocities required for a synchronous or-
bit are 185 km s−1, 250 km s−1 and 255 km s−1 for SMC X−1,
LMC X−4 and Cen X−3, respectively. We will find below that
these correspond to rotation rates consistent with, though per-
haps slightly slower than, a synchronous orbit.

Since for Roche-lobe overflow systems β � 0.9 (Avni &
Bahcall 1975), we follow the approach of Rappaport & Joss
(1983) and adopt that β is in the range 0.9–1.0. Thus, given a set
of Kopt, P, aX sin i and θe, we can determine by means of Monte-
Carlo simulations a 1σ confidence range for the values of RL/a,
i, Mopt and MX (see Rappaport & Joss 1983; Van Kerkwijk et al.
1995a).

Since in these systems soft X-rays are absorbed by the
extended stellar wind of the optical companion, the eclipse
lasts longer at low energies (up to ∼5 keV), depending on the
density structure of the stellar wind of the optical companion
(e.g. for 4U 1700−37 the eclipse at energies up to ∼2 keV
lasts almost twice as long as at ∼6 keV; see Haberl et al. 1994;
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Fig. 10. Selection of lines for which we measured the rotational broadening. Each diagram includes a solid line representing the model that we
applied; the dotted line represents the continuum. To better visualise the model, the spectra are smoothed with 7 resolution elements. The top
panels show the modelled spectral lines of SMC X−1, the second and third row include lines of LMC X−4 and the two bottom rows show lines of
Cen X−3.

Van der Meer et al. 2005). Therefore, we prefer θe determi-
nations obtained from X-ray observations at high energies
(see Table 1). For Cen X−3 these measurements are available.
An accurate modelling of the X-ray light curve of multi-
ple observations obtained with SAS-3/XTCA in the energy
range 7.9–20 keV by Clark et al. (1988) results in a value of
θe = 32.9◦ ± 1.4◦. They do not list an error on their value, so we
use the standard deviation in their θe distribution. For SMC X−1
and LMC X−4 no detailed modelling has been performed and θe
measurements are mainly reported for older X-ray missions. We

use the range 26◦–30.5◦ for SMC X−1 based on observations of
Primini et al. (1976) (28.2◦ ± 0.9◦, 2–6 keV, SAS-3),
Bonnet-Bidaud & Van der Klis (1981) (29.9◦ ± 0.2◦, 2–12 keV,
COS-B) and Schreier et al. (1972a) (29.1◦ ± 2.8◦, 2–6 keV,
Uhuru). For LMC X−4 we adopt the range 25◦–29◦ based on
observations of Li et al. (1978) (29.0◦ ± 2.5◦, 6–12 keV, SAS-3),
White (1978) (26.2◦ ± 1.1◦, 2–16 keV, ARIEL V) and Pietsch
et al. (1985) (27.1◦ ± 1.0◦, 2–7 keV, EXOSAT).

Using the defined input distributions for the Monte-Carlo
simulations, we can determine the distributions for i, Ω, RL/a,
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Fig. 11. Resulting probability distributions from the Monte-Carlo simulations for SMC X−1 (left column), LMC X−4 (middle column) and
Cen X−3 (rigth column). Shown are the ratio of the rotational and orbital frequency (Ω), the inclination angle (i), the ratio of the Roche-lobe
radius and the orbital separation (RL/a) and the masses of both components (Mopt & MX) of the three systems. The mean value and 1σ limits are
shown with solid and dotted lines, respectively.

Ropt, a, Mopt and MX. All the results are listed in Table 6 and
some of the corresponding distributions are shown in Fig 11.
The masses of the neutron stars become: MX = 1.06+0.11

−0.10 M⊙

for SMC X−1, MX = 1.25+0.11
−0.10 M⊙ for LMC X−4 and MX =

1.34+0.16
−0.14 M⊙ for Cen X−3 at a 1σ confidence level. Compared to

the mass determinations listed in Sect. 2 the error on the neutron
star mass is reduced by at least a factor two.

The masses and radii of the OB companion stars all lie in the
range of 15–20 M⊙ and 8–16 R⊙, respectively, in line with previ-
ous values (Van Kerkwijk et al. 1995a). Conti (1978) and Kaper
(2001) show that for these stars a higher mass is expected based
on their spectral classification and conclude that these stars are
undermassive for their luminosity. This may be due to the phase
of mass transfer prior to the supernova forming the neutron star
in the system. A detailed modelling of the optical spectra of the
OB companions will be presented in a forthcoming paper.

6. The neutron star mass distribution

Abubekerov et al. (2004) present a new method to derive the
radial velocity curves for HMXB systems in which the optical
component is deformed due to the (partial) filling of its Roche-
lobe. They show that these systems are affected by gravitational
darkening and by X-ray heating of the surface of the optical com-
ponent. This can result in an underestimate of the radial velocity
amplitude of the optical component and therefore in an under-
estimate of the mass of the neutron star. Since this will mostly
affect systems hosting a bright X-ray source, Roche-lobe over-
flow systems will suffer most from this effect, i.e. the systems
discussed in this paper. With our VLT/UVES observations it is
possible for the first time to accurately determine the radial ve-
locity amplitude of each absorption line separately. We showed
that for lines that vary in EW the radial velocity is indeed un-
derestimated by several km s−1, consistent with the predictions
of Abubekerov et al. (2004). By applying our carefully chosen
selection criteria, we anticipate for these effects.
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Table 6. List of final values for the radial velocity amplitude (Kopt) and the results from the output of the Monte-Carlo simulations, i.e. the values
of the inclination angle (i), the ratio of the rotational and orbital frequency (Ω), the ratio of the Roche-lobe radius and the orbital separation (RL/a),
the radius of the optical companion (Ropt), the orbital separation (a), and the masses of both components (Mopt & MX) of the three systems. All
errors are 1σ.

SMC X−1 LMC X−4 Cen X−3
Kopt (km s−1) 20.2 ± 1.1 35.1 ± 1.5 27.5 ± 2.3

i (deg) 67+5
−4 68+4

−3 72+6
−5

Ω 0.91+0.21
−0.19 0.97+0.14

−0.12 0.75 ± 0.13

RL/a 0.61+0.02
−0.03 0.59+0.01

−0.02 0.63+0.01
−0.02

Ropt (R⊙) 16.4+1.0
−1.1 7.8+0.3

−0.4 12.1 ± 0.5

a (R⊙) 26.6 ± 0.8 13.3 ± 0.3 19.1+0.6
−0.5

Mopt (M⊙) 15.7+1.5
−1.4 14.5+1.1

−1.0 20.2+1.8
−1.5

MX (M⊙) 1.06+0.11
−0.10 1.25+0.11

−0.10 1.34+0.16
−0.14

We conclude that with our observations we have signif-
icantly improved the accuracy of the determination of the
radial-velocity amplitude, and subsequently the determination
of the neutron star mass in these three systems. Whereas some
HMXB systems have shown to host a neutron star with a mass
significantly higher than 1.4 M⊙, as is the case for Vela X−1
and possibly 4U 1700−37, the mass of SMC X−1 is low,
1.06+0.11

−0.10 M⊙. The masses of LMC X−4 and Cen X−3 are
1.25+0.11

−0.10 and 1.34+0.16
−0.14 M⊙, respectively. The mass of SMC X−1

is just above the minimum neutron star mass of ∼1 M⊙ and
significantly different from the mass of the neutron star in
Vela X−1. We conclude that the neutron stars in HMXBs have
different masses, i.e. they do not all have the same “canonical”
mass. We illustrate our new mass derivations in Fig. 12, as part
of the neutron star masses reported by Stairs (2004) and refer-
ences therein for neutron stars in different types of systems.

7. Discussion

It remains to be explained why the mass of SMC X−1 is well
below 1.28 M⊙. The low mass may be the result of a different
formation scenario, i.e. the electron-capture collapse of a degen-
erate O -Ne -Mg core. Van den Heuvel (2004) argues that the
generally low masses of neutron stars measured in binary radio
pulsar systems may be due to a selection effect, as follows. Pfahl
et al. (2002) noticed that there are two classes among the wide
Be/X-ray binaries: (1) a substantial group with low orbital eccen-
tricities, which indicates that their neutron stars received hardly
any velocity kick in their formation events, and (2) a group with
high orbital eccentricities, in which the neutron stars must have
received a kick velocity of several hundreds of km s−1 in their
birth events.

It was subsequently noticed (Van den Heuvel 2004) that the
low orbital eccentricities of 5 out of the 7 known double neutron
stars in the galactic disc indicate that the second-born neutron
stars in these systems received hardly any kick velocity during
their birth events and thus appear to belong to the same low-
kick class of neutron stars as the ones in the low-eccentricity
Be/X-ray binaries. These second-born neutron stars in the low-
eccentricity double neutron star systems all appear to have low
masses, in the range 1.18−1.36 M⊙. This fits excellently with
neutron-star formation by the electron-capture collapse of a de-
generate O -Ne -Mg core, which is expected to form at the end of
the evolution of stars that originated in the main-sequence mass-
range 8 to about 13 ± 1 M⊙ (Miyaji et al. 1980; Podsiadlowski

et al. 2005; Kitaura et al. 2005). Stars with larger masses de-
velop at the end of their lives a collapsing iron core, surrounded
by convective shells with O - and Si -burning. The violent con-
vection in these shells may create large density inhomogeneities
in the layers surrounding the proto-neutron-star formed by the
collapsing iron core. This may lead to large anisotropies in
the neutrino transport through these layers, which may cause
the neutron star to be imparted with a “kick” velocity of some
500 km s−1 (Burrows & Hayes 1996; Scheck et al. 2004). Indeed,
young single radio pulsars have large space velocities (Gunn &
Ostriker 1970) and their velocity distribution is very well repre-
sented by a Maxwellian with a characteristic mean velocity of
about 400 km s−1 (Hobbs et al. 2005).

In the light of these findings the low mass of the neutron star
in SMC X−1 would be consistent with its formation by electron-
capture collapse in a degenerate O -Ne -Mg core. This would
imply a main-sequence progenitor mass �14 M⊙. Presently the
companion of SMC X−1 has a mass of about 16 M⊙. Allowing
for some mass loss by stellar wind, its mass just after the mass
transfer and the formation of the neutron star would have been
about 18 M⊙.

With an explosive mass loss during the formation of the neu-
tron star of about 1 M⊙ and a few solar masses stellar wind
mass loss from the neutron-star progenitor, the initial system
must have had a mass �22 M⊙ (including the neutron-star mass).
Thus, a progenitor system of 13 M⊙+9 M⊙ (or 14 M⊙ + 8 M⊙)
would be consistent with the present system configuration. A po-
tential problem with such a configuration is that conservation of
mass and orbital angular momentum during mass transfer would
lead to a fairly wide presupernova system, such that the present
orbital period of ∼3.9 days would be hard to understand, unless
a large amount of orbital angular momentum has been lost with
relatively little mass (at most a few solar masses) from the sys-
tem. We thus conclude that the low mass of the neutron star in
SMC X−1 is consistent with formation by electron-capture col-
lapse, provided that a relatively large amount of orbital angular
momentum was lost from the system during the first phase of
mass transfer.
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Fig. 12. Neutron Star (NS) masses in X-ray binaries, NS−NS binaries and NS−White Dwarf (WD) binaries obtained from Stairs (2004) and
references therein. The indicated masses of SMC X−1, LMC X−4 and Cen X−3 are obtained from this study. The error bars correspond to 1σ
errors. This plot clearly suggests that neutron stars do not all have the same “canonical” mass. Note that although 4U 1700−37 most probably is a
neutron star, it could be a black hole.
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Table 2. Observing log of the three observed systems. For each observation the Modified Julian Date (MJD) corresponding to the mid-exposure
time is given, the orbital phase (φ) and the signal-to-noise ratio (S /N) per resolution element of the three different CCDs centered at 4270 Å for
the blue CCD, 5150 Å for the red1 CCD and 6100 Å for the red2 CCD.

SMC X−1 LMC X−4 Cen X−3
MJD orbital S /N MJD orbital S /N MJD orbital S /N
(days) phase(φ) blue red1 red2 (days) phase(φ) blue red1 red2 (days) phase(φ) blue red1 red2
52 187.154 0.537 58 75 69 52 214.187 0.388 54 69 58 52 271.300 0.462 33 67 77
52 214.090 0.458 60 80 71 52 224.249 0.533 43 58 50 52 287.229 0.095 22 50 64
52 224.224 0.062 49 69 62 52 225.255 0.247 49 66 57 52 292.273 0.512 27 57 68
52 225.211 0.315 58 78 68 52 226.212 0.927 48 67 56 52 298.169 0.337 32 63 75
52 242.059 0.644 41 61 54 52 237.314 0.809 54 72 63 52 309.323 0.681 35 76 81
52 243.087 0.908 66 77 70 52 242.282 0.337 55 71 61 52 313.150 0.515 37 74 78
52 244.168 0.186 67 81 74 52 243.113 0.927 54 62 55 52 321.163 0.354 29 64 72
52 247.185 0.961 43 58 51 52 244.193 0.694 59 67 55 52 322.158 0.831 31 65 73
52 256.112 0.255 53 66 59 52 245.213 0.418 67 73 65 52 326.186 0.761 38 77 82
52 258.094 0.764 58 69 62 52 246.085 0.037 44 53 45 52 327.277 0.284 37 77 85
52 270.052 0.837 61 74 68 52 256.086 0.138 32 40 35 52 328.241 0.746 41 82 88
52 271.059 0.095 52 65 60 52 259.094 0.274 49 59 50 52 329.260 0.234 38 76 86
52 285.112 0.706 47 61 56 52 261.163 0.743 58 71 61

Table 5. Weighted mean values of the radial velocity for each spectrum, indicated by its orbital phase (φ) for SMC X−1, LMC X−4, and Cen X−3.
All errors are 1σ.

SMC X−1 LMC X−4 Cen X−3
φ 〈vrad〉 φ 〈vrad〉 φ 〈vrad〉

(km s−1) (km s−1) (km s−1)
0.062 8.42 ± 1.06 0.037 6.45 ± 1.50 0.095 14.96 ± 2.97
0.096 19.04 ± 1.02 0.138 29.28 ± 2.23 0.234 22.87 ± 2.10
0.186 16.58 ± 0.77 0.247 40.06 ± 1.38 0.284 31.47 ± 1.98
0.255 24.42 ± 1.17 0.274 30.03 ± 1.60 0.337 14.12 ± 2.59
0.315 14.70 ± 0.95 0.337 24.84 ± 1.24 0.354 18.43 ± 2.75
0.458 4.98 ± 0.84 0.388 25.04 ± 1.33 0.462 −10.75 ± 2.86
0.537 −9.37 ± 1.01 0.418 23.23 ± 1.10 0.512 −21.61 ± 2.42
0.645 −18.46 ± 1.24 0.533 −14.69 ± 1.54 0.681 −26.12 ± 2.19
0.707 −19.07 ± 1.08 0.694 −30.90 ± 1.21 0.746 −18.81 ± 1.76
0.765 −16.47 ± 0.89 0.743 −34.06 ± 1.17 0.761 −23.29 ± 2.07
0.837 −19.83 ± 0.87 0.809 −30.86 ± 1.16 0.831 −24.32 ± 2.34
0.909 −8.22 ± 0.77 0.927 −17.96 ± 1.19 0.515 −14.55 ± 1.98
0.961 −1.85 ± 1.09 0.927 −17.95 ± 1.12



A. van der Meer et al.: Determination of the mass of the neutron star in SMC X−1, LMC X−4 and Cen X−3, Online Material p 3

Fig. 2. Normalised spectra in the wavelength range 4625–5585 Å of SMC X−1 at orbital phase φ = 0.06 (top spectrum), LMC X−4 at orbital
phase φ = 0.04 (middle spectrum) and Cen X−3 at orbital phase φ = 0.09 (bottom spectrum), respectively. The line identifications are shown
above the spectrum of SMC X−1.
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Fig. 3. Normalised spectra in the wavelength range 5680–6640 Å of SMC X−1 at orbital phase φ = 0.06 (top spectrum), LMC X−4 at orbital
phase φ = 0.04 (middle spectrum) and Cen X−3 at orbital phase φ = 0.09 (bottom spectrum), respectively. The line identifications are shown
above the spectrum of SMC X−1.


