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Abstract: Bathymetric surveys performed using small, unmanned vessels are increasingly used in
coastal areas and regions difficult to access by hydrographic motorboats. Their geometric dimensions,
manoeuvring parameters, low labour intensity, and costs of survey execution have allowed the
unmanned survey vessel (USV) to be a commonly recognised surveying platform. It is equipped
with a navigation system for positioning, maintaining a course or survey line, determining spatial
orientation, and measuring depths. The operation zone of the global navigation satellite system
(GNSS) in coastal water regions enables geodetic positioning in land-based surveys and of moving
objects, also including, for example, a sounding vessel. Under difficult observational conditions,
the positioning is limited by the obscuration of the upper hemisphere, i.e., the visibility of satellites
and the reflection from high field buildings. This poses a threat to a small vessel operating at a
very short distance from a hydro-engineering structure. Based on a study performed in a marina,
the article presents the determination of the minimum safe distance of the planned survey line to
the quay in terms of the USV’s dimensions under good sounding conditions. These include low
and constant velocity and good observational conditions for a GNSS receiver. The analysis was
conducted on survey lines perpendicular to the quay, which was approached twice at distances of
1–5 m, with a 0.5 m interval. A 1 m distance between the end of the survey line and the quay has been
determined for the safety of USV’s navigation and continuity of geospatial data collection during
bathymetric surveys.

Keywords: USV; positioning; survey line; line keeping; cross-track error

1. Introduction

Modern geospatial surveys, i.e., both photogrammetric surveys by unmanned aerial
vehicles (UAVs) [1–7] and bathymetric surveys by unmanned survey vessels (USVs) [8–13],
are increasingly performed using unmanned vessels. As dynamic units, they move along
a fixed trajectory, thus ensuring data coverage of an area in a manner appropriate to the
method, i.e., with photographs or geospatial data. The coverage can be 100%, 200% or
400% [14–20] when acquiring a wide swatch [21–24].

Bathymetric surveys intended to obtain information on the bottom shape use hydroa-
coustic devices: single-beam echosounders (SBES) and multibeam echosounders (MBES).
Unmanned surface vessels (USVs) are increasingly used, particularly in the littoral zone
and in harbour basins. They differ in hull design and propulsion system and include single-
and double-hull vessels fitted with a propeller, or are propeller-less.

One of the most important roles of USVs are hydrographic measurements: port
basins, lakes, rivers and small reservoirs, whose aim is to measure the seafloor relief
with the appropriate accuracy. In addition, USVs are increasingly used for tasks related
to supporting the navigation process [25], in underwater photogrammetry [26], or in
geological works [27].
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The widespread application of MBES has not pushed the hydrographic SBES from
the market [28–30]. When sounding using the SBES, the depth measurements are taken
vertically under the echo sounder, and it is required to keep an appropriate distance
between survey lines, usually no longer than the determined distance. This is why it is
crucial for the USV to maintain the survey line. This can be ensured by the operator’s
experience in manual mode or by the steering algorithm (autopilot) in automatic mode.

The navigation safety of an unmanned vessel is high under open = space conditions.
Both an aerial vehicle operating in an undeveloped and non-forested area and a vessel
operating in open water can safely carry out a surveying campaign. The safety of a vessel
decreases (or is even jeopardised) when a UAV is to perform a survey in an urbanised area,
between buildings, or under a bridge or viaduct. The observational conditions for deter-
mining the GNSS position coordinates are difficult [31–33], reducing positioning accuracy.

Bathymetric surveys are jeopardised by high harbour structures, which hinder the po-
sitioning using a single- (GPS—global positioning system) or dual-system (GPS/ GLONASS—
globalnaja nawigacionnaja sputnikowaja sistiema) GNSS receiver [34–44]. Other factors
that hinder bathymetric surveys in a restricted water region include quays, breakwaters,
moored vessels (in harbours and shipyards) and floating platforms in marinas. Both UAVs
and USVs are at risk of being destroyed in a collision with another object.

Bathymetric (sounding) surveys are the basic type of hydrographic work performed
for navigation safety purposes, primarily for marine cartography, i.e., map editing and
nautical publications. According to the level of detail, the following sounding work types
are distinguished: systematic sounding and check sounding. During systematic sounding,
the surveyed water region is covered with a system (network) of basic and control survey
lines, with a pre-set survey frequency and accuracy. This is the basic type of sounding
work for navigation safety purposes. The level of detail and the required accuracy are
determined according to the surveyed water region category [14–18]. Check sounding is
also performed along a specified network of survey lines with a level of detail different than
that for systematic sounding, with the intention to check the reliability of the previously
performed systematic sounding or to preliminarily determine the degree of changes that
have occurred in the bathymetry of the water region [19,20].

The main stage of the works involves measuring and recording the surveyed param-
eters (the depths of corresponding positions and all accompanying elements) in a fixed
format and with a specified frequency on planned survey lines (points) in accordance
with the adopted methodology. The arrangement of survey lines is planned according to
the water region and the type of hydroacoustic device for depth measurement or bottom
cleanliness investigation. For SBES, MBES, and SSS (side-scan sonar) surveys, the survey
lines are planned differently. This article focuses on the use of SBES (which the USV used
for bathymetric surveys of the marina in Puck is equipped with).

Bathymetric surveys using a USV equipped with SBES are performed in an arrange-
ment of parallel survey lines at specified distances between each other, parallel or perpen-
dicular to a hydro-engineering structure [45,46]. The first survey should be performed
at the shortest distance to the structure. With the GNSS receiver antenna installed at the
geometric centre of the USV (horizontally, halfway between the left and right side, and
between the bow and the stern), the first survey will be performed further than half of
its width in the arrangement of survey lines parallel to the structure. In an arrangement
perpendicular to the structure, the distance of the first survey will be longer than half of
the length (or the distance between the GNSS antenna and the bow). Additionally, both
the error of coordinate determination by GNSS receiver and manoeuvring parameters and
hydrometeorological conditions need to be taken into account. It is therefore important to
keep the USV precisely on the line at a very short distance from the quay.

One of the navigation parameters determined during route navigation (in hydrography
during navigation along a line) is the cross-track error XTE [47–50]. It is determined in a
hydrographic system based on the coordinates of the survey line’s start and end and the
current position of the GNSS antenna as the distance between the point and the straight
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line. It is also used in the automatic navigation process using an autopilot. Thanks to the
autopilot, its optimally selected parameters and the data acquired from external sensors,
the USV is expected to move along the survey lines optimally, i.e., with a pre-determined
velocity and the minimum XTE value.

The article stems from the experience gained in hydrographic surveys in hard-to-reach
(restricted) water regions under different GNSS observational conditions: good (open upper
hemisphere and good visibility of satellites) and hard (areas with high infrastructure and
close to vessels with restricted visibility of satellites and signals reflections).

The article is structured as follows. Section 2 presents the surveyed water region
and the surveying vessel used in the study. It also characterises the USV’s circulation
radius when changing survey lines and autopilot as the steering system in the automatic
navigation mode. Section 3 presents the USV’s trajectory on four survey lines perpendicular
to the quay, whose distance to the quay decreases from 5 to 1 m with intervals of 0.5 m. The
following navigation parameters were analysed: XTE, the course, and the velocity on turns
onto the next survey line from the quayside. Section 4 presents an analytical geometric
circulation radius and the angular velocity of the USV. The analysis was conducted in terms
of the approach to the quay and the circulation radius size.

2. Materials and Methods
2.1. Study Area

Puck Harbour is located on the western coast of Puck Bay in the Kaszuby Coastal
Region, Poland. It comprises two harbour basins: a fishing basin and a marina basin. The
marina in Puck accommodates vessels with a hull length of up to 20 m and a draught of
up to 2.8 m. The marina is flanked by a 190 m-long pier from the west and a 180 m-long
eastern breakwater. There is a 30 m-wide entrance to the marina. The depths are 1.5–3.5 m
on the approach and 0.7–3.5 m in the basin. Surveys of the USV’s safe manoeuvring limit
in a restricted water region were performed in the southern basin are indicated in Figure 1
and were prepared based on ENC PL5PPUCK.
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2.2. Methodology for Planning Surveys in a Restricted Water Region

In coastal water regions, the basic survey lines are designed perpendicular to the
bottom relief course, the general direction of the isobaths, or the coastline. Control lines
are designed perpendicular to the basic lines. In marine hydro-engineering structures, the
basic lines are designed parallel to the course of the hydro-engineering structure [19,20].

A reduction in the size of a sounding vessel (replacing hydrographic motorboats with
USVs) enables the performance of bathymetric surveys in very restricted water regions.
The performance of a sounding becomes easier thanks to greater manoeuvrability, which
enables starting a line and ending it near a hydro-engineering structure. The surveys are
performed more quickly, which enables the densification of survey profiles (reducing the
distance between the lines from 5–10 m for a sounding performed using a hydrographic
motorboat to 2 m, or even 1 m for a sounding performed using a USV) [51–53].

2.3. Survey Platform—USV Ocean Alfa SL20

An OceanAlpha SL20 USV (Figure 2) is a hydrographic vessel equipped with an SBES
Echologger and an internal GPS receiver, which is usually replaced with a geodetic GNSS
receiver. It is powered by two (water-jet propulsion) engines and has no rudder.
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Figure 2. OceanAlpha USV SL20 during bathymetric surveys in Puck marina.

During bathymetric surveys, it moves with a velocity of 2–5 kn, which enables both
line keeping and steering. The data are transmitted via a radio link at a frequency of
2.4 GHz. A manipulator that allows two engines to be controlled separately is used for
manual steering. The USV’s basic parameters are provided in Table 1.

Topcon HiPer II GPS/GLONASS receiver was used for positioning purposes. In order
to ensure precise horizontal positioning, the TPI NET pro network with a NET_RTCM3 cor-
rection stream dedicated to two satellite systems with the accuracy of horizontal coordinate
determination of 3 cm (p = 0.95) was used. The parameters of the Topcon HiPer II receiver
used for the study in a water region restricted by a quay are shown in Table 2. Due to the
small sounding area and short survey lines, Real-Time Network (RTN) mode has been
used during the surveys. In the case of the long survey lines and RTN mode, the virtual
reference station can be moved, causing a lack of determined coordinates for automatic
navigation and collecting spatial data.

HYPACK (HYPACK, Middletown, CT, USA) software is used for the recording of
geospatial data during a bathymetric sounding.
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Table 1. Technical specification of the OceanAlpha USV SL20.

Parameter OceanAlpha USV SL20

Hull material Carbon fiber
Dimension 105 cm × 55 cm × 35 cm

Weight 17 kg
Draft 15 cm

Propulsion water-jet propulsion
Communication range Autopilot: 2 km Remote Control: 1 km

Remote control frequency 900 MHz/2.4 GHz
Data telemetry frequency 2.4 GHz/5.8 GHz

Survey speed 2–5 kn (1–2.5 m/s)
Max speed 10 kn (5 m/s)

Positioning (standard—not used) u-blox LEA-6 series
Positioning (used in manoeuvring) Topcon HiPerII

Heading Honeywell HMC6343
Echosounder Echologger series SBES

Table 2. Basic parameters of Topcon HiPer II receiver.

GNSS Tracking

Number of Channels 72 Universal Channels.
GPS L1 C/A, L1/L2 P-code, L2C

GLONASS L1/L2 C/A, L1/L2 P-code
SBAS WAAS, EGNOS, MSAS

Positioning Accuracy

Static

L1 + L2 Signals: Horizontal = 3 mm + 0.5 ppm
Vertical = 5 mm + 0.5 ppm

L1 Signal Only: Horizontal = 3 mm + 0.8 ppm
Vertical = 4 mm + 1 ppm

Fast-Static L1 + L2 Signals: Horizontal = 3 mm + 0.5 ppm
Vertical = 5 mm + 0.5 ppm

RTK L1 + L2 Signals: Horizontal = 10 mm + 1 ppm
Vertical = 15 mm + 1 ppm

DGPS Less than 0.5 m

Data

Data Format RTCM SC104 2.1/2.2/2.3/3.0/3.1, CMR, CMR+, NMEA, TPS
Update/Output Rate 1 Hz, 5 Hz, 10 Hz, 20 Hz options

2.4. Planning of Survey Lines for Determining the Minimum Distance to the Quay

To determine the general course of the isobaths (shallow areas) within the hydro-
engineering structure area, the survey lines were designed in an arrangement parallel to
the southern quay and to each other at a distance of 2 m. The start of a survey line is located
at a distance of 60 m from the western quay so that the USV can stabilise its course after
entering a line. The end of the line was planned at a distance of 5 m and then reduced each
time by 0.5 m. After entering the first line, the USV approached the quay and then made a
turn onto another line. Then, after entering the third survey line, it again approached the
quay while making a turn at a pre-set distance from it. Thus, the USV made a turn twice at
a pre-set distance from the quay. The next test was conducted at a distance shorter by 0.5 m
from the previous one to the safe navigation limit.

The parameter determining the quality of the USV’s line-keeping is XTE. For hydro-
graphic surveys, the planned lines are separate sections, and the most important thing
is to obtain the minimum XTE value. In an open water region, when the sounding ves-
sel is controlled manually, there is enough room to make a turn to the next line. In a
restricted water region, each line is most often started on the open side and ended near a
hydro-engineering structure. Where the USV is controlled automatically, the survey lines
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are arranged into a broken line, and the USV moves on to the next line via the section
connecting the end of the previous line with the start of the next one. A 90◦ turn is made
twice, and the accuracy of entering the next line affects the quality of sounding within the
hydro-engineering structure area.

In order to assess the quality of guiding a sounding vessel along survey lines within
a hydro-engineering structure area [54–59], the following methodology was applied us-
ing XTE:

• At a distance to the end of the line longer than the distance between the lines, XTE is
determined to the current line;

• At a distance to the end of the line shorter than the distance between the lines, XTE is
determined to the current line and the connection between the lines;

• Where the distance to the connector is shorter than that to the line, XTE is determined
to the connector and the next line;

• Where the distance to the next line is shorter than that to the connector, XTE is
determined to the next line.

Phases for determining XTE to lines are presented in Figure 3.
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2.5. Determination of the USV’s Circulation Radius When Changing a Line

During the change of the line, the USV made a turn of 180◦, which can be considered
part of the circulation. When determining the vessel’s manoeuvring parameters, the
following circulation phases are distinguished:

• Phase 1: the beginning of the circulation—the moment of laying the rudder. When the
vessel has reached full velocity and the rudder is laying to the required position (35◦

or 15◦), the following phenomena can be observed: a hydrodynamic force is generated,
which disturbs the equilibrium condition existing before the start of the manoeuvre;
there is a counteraction of the course inertial force, which causes the vessel’s deflection
opposite to the laid rudder; or the vessel does not change the course, but its initial
velocity decreases (up to 10%). The duration of this phase is determined by the size of
the vessel (0.5–1 min).

• Phase 2: begins when the vessel starts to change course. The vessel’s line of symmetry
deviates from the direction determined by the tangent to the curvature of the centre
of gravity path, forming an increasing drift angle. The vessel’s velocity continues
to decrease, the turn’s angular velocity increases, and the initial spiral curvature
radius decreases.

• Phase 3: fixed circulation—the moment when hydrostatic forces reach equilibrium.
The drift angle, angular velocity, linear velocity and curvature angle are constant. The
end of the circulation is reached when the vessel enters the same course on which the
manoeuvre started—the change in the vessel’s course is within 360◦.

The circulation radius is directly proportional to the linear velocity; hence, the greater
the vessel’s velocity, the greater the circulation, and the circulation diameter are inversely
proportional to the angular velocity (Figure 5). The greater the angular velocity of the turn,
the smaller the circulation. The fixed circulation diameter DU is used to denote the diameter
of a circle determined by the vessel’s centre of gravity at the fixed circulation phase. The
vessel’s manoeuvrability rate (K) is the DU to L ratio.

K =
DU
L

(1)
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Figure 5. Circulation of the vessel.

As a result of the effect of hydrodynamic forces causing the turn, the vessel’s line of
symmetry deviates from the direction determined by the tangent to the path curvature. The
same direction of deviation results in the phenomenon of the bow moving on the internal
side of the circulation path and the stern moving on the external side. The angle between
the tangent to the path curvature and the vessel’s line of symmetry is referred to as drift
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angle βC. In practice, the vessel’s linear velocity Vs represents the ratio of the distance
covered by the vessel Ds to the time ∆T′:

ω =
dθ

dt
=

v
r

(2)

ROT =
3
π

Vs

Rc
≈ Vs

Rc
Rc ≈

Vs

ROT
(3)

where: ω—the vessel’s angular velocity [rad/s], dθ—the measure of the passed angle [rad],
dt—the time of manoeuvre [s], ds—the length of the arc of circle’s curvature [m], v—the
resultant longitudinal velocity [m/s], r—the circle’s curvature radius [m], Vs—the vessel’s
velocity [w], Rc—the radius of the curvature of the vessel’s movement trajectory along the
circle [Mm], ROT—rate of turn—the vessel’s angular velocity [◦/min], ∆KR—the course
change magnitude [◦], ∆T—the manoeuvre duration [min].

Figure 6 presents USV’s circulations during the survey line change manoeuvre.
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3. Results

The study results are presented in three groups: at a distance of 5 m, 4.5 m, and 4 m
(Section 3.1); 3.5 m, 3 m, and 2.5 m (Section 3.2), and 2 m, 1.5 m and 1 m (Section 3.3) from
the quay. The shortest distance from the quay results from the USV’s size and the position
of the GNSS antenna in relation to the sides, the bow and the stern. When attempting to
make a turn at a distance of 0.5 m from the quay, where the GNSS antenna’s distance to the
bow is 52 cm, the probability of the USV’s contact with the quay is very high. Therefore,
surveys were only performed at a distance of 1 m to the quay.

Based on the current USV’s position, XTE was determined for survey line 1 at Phase 1
of the circulation, to the line connecting lines 1 and 2 at Phase 2 and 3, and to line 3 at
Phase 4. The same methodology was applied on the next turn within the hydro-engineering
structure area, i.e., for lines 3 and 4 (Figure 3). No circulation was examined when switching
from line 2 to line 3, as it was performed in an open water region.
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3.1. Distance to the Quay of 5–4 m

Within this range of the distance from the quay, the USV maintained the minimum
(0.2 m) distance from the limit of the sounding area to ensure safe navigation. The sounding
area limit was not exceeded (Figure 7). It can be noted that while leaving a survey line
(both 1 and 3) is dynamic, entering the next survey line (2 and 4) is conservative, as the
USV enters the line smoothly, which makes the XTE value in the initial phase the highest.
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Based on [45] and the presented study, it can be observed that USV SL20 tends toward a
significant (1–1.5 m) deviation (XTE) from the survey lines on the E–W (east–west) direction
while keeping on the N–S (north–south) lines. The course fluctuations result from having
made a turn, while the velocity is adjusted to the conditions of its execution: it decreases
when the turn is being made and increases when it has been completed (Table 3). A negative
value of XTE means that the USV was on the left of the sounding line; positive means on
the right of the sounding line.

Table 3. Cross-track error XTE and speed over ground SOG in the distance of 5 m, 4.5 m and 4 m to
the quay.

Distance to Quay 5 m 4.5 m 4 m
Survey Line 1–2 3–4 1–2 3–4 1–2 3–4

XTEi −1.2 −1.5 −1.3 −2 −1.5 −1.6
XTEi,j 0 0.2 −0.3 0.4 0.1 0
XTEi,j 1.1 1.1 1.7 1.1 0.9 1.2
SOGi 2.5–2.8 2.5–2.8 2.4–2.7 2.3–2.6 2.4–2.6 2.5–2.7
SOGi,j 1.3–1.7 1.4–1.7 1.5–1.8 1.4–1.8 1.4–1.7 1.4–1.6
SOGj 2.5–2.8 2.5–2.8 1.7–2.6 2.6–2.8 2.6–2.8 2.4–2.7

The circulation diameter is smaller than the distance between the lines. It can be
noted that USV lays down on the next survey line while performing half a circulation and
changing the course in the range of up to 180◦. Figure 8 shows the course over ground SOG
and speed over ground SOG in the distance of 5 m, 4.5 m and 4 m to the quay.
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3.2. Distance to the Quay of 3.5–2.5 m

Within the distance range of 3.5–2.5 m to the quay, it can be observed that the circula-
tion radius increases when the USV enters the next survey line (Figure 9). On the one hand,
the USV proceeds to the sounding area limit, thus ensuring the survey of geospatial data to
the end of the line.
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On the other hand, moving outside the sounding area poses a threat to the USV’s
navigation safety. In addition to XTE on a line, the most important parameter during
a turn onto the next survey line is the distance to the quay as an XTE relative value on
sections 1–2 and 3–4.

Cross-track error XTE and speed over ground SOG of the USV are provided in Table 4,
and course over ground SOG and speed over ground SOG in the graphical form, in
Figure 10.

Table 4. Cross-track error XTE and speed over ground SOG in the distance of 3.5 m, 3 m and 2.5 m to
the quay.

Distance to Quay 3.5 m 3 m 2.5 m
Survey Line 1–2 3–4 1–2 3–4 1–2 3–4

XTEi −1.5 −1.6 −1.6 −2 −2.1 −1.9
XTEi,j −0.1 0 −0.1 0.1 −0.3 −0.1
XTEi,j 1.1 1.4 1.7 1.3 1 1.4
SOGi 2.3–2.6 2.2–2.5 2.5–2.7 2.5–2.9 2.6–2.6 2.4–2.6
SOGi,j 1.4–2.6 1.4–2.2 1.5–2.4 1.5–2.7 1.7–2.6 1.6–2.7
SOGj 2.6–2.8 2.2–2.7 2.4–2.8 2.7–2.9 2.6–2.7 2.7–2.9
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2.5 m to the quay.

3.3. Distance to the Quay of 2–1 m

The greatest navigation safety (avoidance of the danger of USV’s collision with the
quay) should be ensured at the shortest distance from the hydro-engineering structure.
It could be assumed that the USV moves along a survey line with a low XTE value, and
before its end or after crossing it, it makes the first 90◦ turn on the spot. After reaching
the next survey line, it then makes another 90◦ turn. In fact, the manoeuvring parameters,
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the steering system and the external factors do not guarantee the USV’s line-keeping
(Figure 11).
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Figure 11. Trajectory of USV in the distance of 2 m, 1.5 m and 1 m to the quay.

While the sounding area limit is not exceeded on longer distances (2 m and 1.5 m), for
the lines nearest to the quay (1 m), the USV came into contact with the quay. The increasing
circulation radius is another threat to the objects for which this line borders other objects.

Cross-track error XTE and speed over ground SOG of the USV are provided in Table 5,
and the course over ground SOG and speed over ground SOG in graphical form in Figure 12.

Table 5. Cross-track error XTE and speed over ground SOG in the distance of 2 m, 1.5 m and 1 m to
the quay.

Distance to Quay 2 m 1.5 m 1 m
Survey Line 1–2 3–4 1–2 3–4 1–2 3–4

XTEi −1.9 −1.7 −1.7 −1.9 −1.6 −1.8
XTEi,j −0.2 −0.3 −1.1 −0.8 −0.6 0.2
XTEi,j 0.9 1.5 1.4 2.8 1.8 1.5
SOGi 2.4–2.7 2.3–2.7 2.1–2.7 2.3–2.6 2.2–2.7 2.5–2.7
SOGi,j 1.7–2.5 1.3–2.6 1.6–2.6 1.3–2.4 1.4–2.6 1.6–2.7
SOGj 2.5–2.9 2.6–2.8 2.6–2.8 2.4–2.7 2.6–2.9 2.7–2.8
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4. Discussion

In order to meet the requirements imposed on bathymetric surveys and to obtain
the highest reliability of DBSM, it is necessary to keep the USV on the survey line. It
is not equivalent to keeping the course, as the vessel is subject to external and internal
disturbances. A small vessel is susceptible to the effects of current and wind, which result
in a deviation from the line, i.e., XTE. Deviation also occurs when the autopilot regulator
settings are incorrectly selected, in particular when too large an insensitivity zone, also
referred to as a yaw zone, has been set.

In order to gain control over the (USV) steering system, a control system is applied that
will determine the effect of the interference signal e(t) on the output signal u(t), and, based
on a comparison of the input signal e(t) and output signal u(t), will determine a decision. In
order to control a vessel, adaptation-type regulators are most commonly applied. Their
dynamic properties are optimised by the automatic adaptation of the object’s operating
conditions. The adaptation refers here to the tuning of parameters of the regulator that
contains the adaptation path to the variable parameters of the vessel as an object under
control. The movement of a vessel is determined by a number of quantities, including
the rudder laying angle, propeller rotational speed, wind, and waves. In vessels with no
rudder, the movement is determined by two engines. These requirements are met by a
PID-type regulating device [60–69], i.e., one with the following equation:

u(t) = P

e(t) +
1
TI

t∫
0

e(t)dt + TD
de(t)

dt

. (4)

In Equation (4), the input signal of the PID regulator influences the weighted sum,
where the weight of the proportional element is determined by P coefficient, integrating
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element by P
TI

coefficient, and differentiating element by P·TD, where P is the volume of
the regulator, TI is time of integration and TD is time of differentiation.

The tuning of P, I and D coefficients is effected automatically [70–72] or manually [73]
during sea trials. They pertain, respectively, to the amplification of proportional, integral
and derivative terms. An unmanned surface vehicle that conducts a mission autonomously
should be navigated in a way that makes it possible to reach the next waypoint in the
shortest time possible. However, this approach differs from the approach required in
hydrographic surveys, which consists of the fact that the USV should navigate as close as
possible to the planned sounding profile.

The study recorded the coordinates of the position of the GNSS antenna installed
on the USV and the course and velocity. XTE was determined based on the position
coordinates in relation to the survey profiles. Based on the USV’s trajectory, the circulation
radius was determined by the graphical method. On the basis of this relationship (3),
minimum and maximum values of rate of turn (ROT) were calculated (Table 6).

Table 6. Circulation radius and rate of turn—ROT.

Line
Distance to Quay [m]

1 1.5 2 2.5 3 3.5 4 4.5 5

Rc [m] 1.9 1.9 2.1 2.4 2.5 2.9 3.2 3.7 4.2
1–2 ROTmin [◦/s] 21.1 24.4 20.6 18.0 18.5 18.1 16.4 13.3 10.3

ROTmax [◦/s] 27.6 29.2 25.0 33.4 29.6 27.7 24.1 21.7 19.1
Rc [m] 1.6 1.7 1.8 2.1 2.5 3.1 3.6 4.5 4.4

3–4 ROTmin [◦/s] 33.2 25.4 24.0 20.6 18.5 15.9 11.1 8.9 11.2
ROTmax [◦/s] 40.4 32.7 27.4 32.3 33.3 26.9 22.3 16.5 18.9

During the survey, the USV was keeping constant velocity. It changed when the
USV was turning to another survey line and the circulation radius was different. In long
distances to the quay, the radius was small and it guaranteed safe turning. Approaching the
quay (sounding lines are longer and closer to the quay), the circulation radius increased and
USV exceeded the sounding area (negative value of XTE). A high rate of turn was reached
when the circulation radius was small and the average of linear velocity was constant. The
risk of realization of the sounding should be searched in the parameters of the autopilot.

5. Conclusions

Bathymetric surveys in restricted water regions, e.g., in harbours, shipyard basins,
marinas and coastal areas, are performed using USVs. Their advantages include small
size, high manoeuvrability and being unmanned. The least labour-intensive and time-
consuming mode of operation is automatic navigation, which is expected to ensure the
sounding vessel’s line-keeping. In the areas of a hydro-engineering structure belonging
to the International Hydrographic Organization (IHO) Special or Exclusive Order, the
requirements for the accuracy of positioning and sounding as a whole are the highest.
Performing a survey using a vehicle moving on water in the immediate vicinity of a
structure is not easy, and increasing the surveying distance from the structure results in
geospatial data loss.

The use of geodetic positioning methods with accuracy in the order of 1–2 cm (p = 0.95)
offers the possibility for the densification of survey lines (decreasing the distances between
them) and the manoeuvring near the quay, breakwater, or other harbour facilities. The
limitations include: the size of the USV and the position of the GNSS antenna; the accuracy
of positioning in a water region with difficult observational conditions; manoeuvring
parameters (circulation diameter, and the vessel’s line-keeping (XTE→ 0). Positioning the
GNSS antenna at a distance of approximately 0.5 m from the bow and the stern is expected
to ensure a slightly longer distance between the bathymetric surveys and the structure.
Under difficult observational conditions, the positioning accuracy is lower, affecting data
accuracy (reliability) and the USV’s navigation safety.
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When the circulation diameter is large, and the sounding area has been crossed, it is
reasonable to increase the distance from the quay and perform surveys on the survey line(s)
parallel to it. Their number is determined by the distance of the lines perpendicular to the
quay. The method performs well with long and unrestricted quays. However, this becomes
more complicated in corners and hydrographically complicated water regions, e.g., in
marinas. Maneuvering between floating platforms (Y-booms) is dangerous to the USV, and
performing a survey along the quay near the platforms is impossible. For each sounding
vessel, the navigational (positioning and manoeuvring) capabilities should be verified
under different observational and hydrometeorological conditions. For a 1 m-long USV
used for measurements (hydrographic surveys) with no wind and current as disruptive
external factors and positioning in RTN mode, a 1 m safe distance between a quay to the
end of the survey line can be established.
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73. Świder, Z. A Prototype of an Advanced Ship Autopilot Implemented in the CPDev Environment. Meas. Autom. Robot. 2021, R. 25,
13–18. [CrossRef]

http://doi.org/10.3390/en13215637
http://doi.org/10.3390/s19183939
http://www.ncbi.nlm.nih.gov/pubmed/31547372
http://doi.org/10.3390/s20030832
http://www.ncbi.nlm.nih.gov/pubmed/32033155
http://doi.org/10.1016/j.oceaneng.2018.09.016
http://doi.org/10.3390/s20020439
http://doi.org/10.12716/1001.12.03.06
http://doi.org/10.2478/pomr-2020-0055
http://doi.org/10.12716/1001.10.03.07
http://doi.org/10.12716/1001.15.01.03
http://doi.org/10.17265/2159-5879/2018.01.004
http://doi.org/10.3390/app9173530
http://doi.org/10.1155/2018/7371829
http://doi.org/10.3390/jmse7120438
http://doi.org/10.3390/s20092633
http://doi.org/10.3390/jmse8050354
http://doi.org/10.1109/TAC.2007.902731
http://doi.org/10.3390/s19092051
http://doi.org/10.3390/jmse8080566
http://doi.org/10.14313/PAR_239/13

	Introduction 
	Materials and Methods 
	Study Area 
	Methodology for Planning Surveys in a Restricted Water Region 
	Survey Platform—USV Ocean Alfa SL20 
	Planning of Survey Lines for Determining the Minimum Distance to the Quay 
	Determination of the USV’s Circulation Radius When Changing a Line 

	Results 
	Distance to the Quay of 5–4 m 
	Distance to the Quay of 3.5–2.5 m 
	Distance to the Quay of 2–1 m 

	Discussion 
	Conclusions 
	References

