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Abstract
Background Bending tests offer technical advantages when material testing is performed to determine the modulus of 
elasticity. In biomechanical studies, beam-like cortical bone specimens subjected to flexural loading are usually character-
ized by nonuniform cross-sectional properties along the beam axis and a comparatively large spatial variation of the local 
material properties.
Objective A suitable evaluation method for determining the average modulus of elasticity within the volume of beam-like 
specimens with nonuniform cross section was to be identified.
Methods A total of 138 samples of human pelvic cortical bone were extracted and tested under flexural loading. Different 
methods, all based on the linear-elastic flexural theory of beams, were applied to determine the average modulus of elastic-
ity on the basis of measured deformations, and the results were compared. Some of these methods utilized the measured 
midspan deflection, and others used the elastic curve obtained by digital image correlation.
Results The results showed that it was not appropriate to determine the average modulus of elasticity from only the measured 
midspan deflection. The consideration of deflections at multiple points along the beam axis is recommended.
Conclusions An evaluation method based on the fitting of the analytically determined elastic curve of the beam with its 
nonuniform cross-sectional properties to the measured deflections is considered the most appropriate method for determin-
ing the average modulus of elasticity of the specimen.

Keywords Modulus of elasticity · Bending test · Biomechanics · Cortical bone · Strain energy · Digital image correlation

Introduction

In medical practice and research, numerical simulations of 
the mechanical behavior of human organs are of increas-
ing interest; for example, finite element simulations of the 
buildup of stresses in the human pelvis [1–4]. Reliable 
experimental identification of relevant material proper-
ties is an important precondition to achieve appropriate 

simulation results. Of predominant importance in this con-
text are the stiffness properties of human tissue, including 
those of cortical and cancellous bone. Whereas systematic 
location-dependent stiffness differences should be consid-
ered in numerical models to obtain adequate simulation 
results, random variations may normally be neglected. In 
many numerical simulation models, human tissues are repro-
duced by homogeneous components, the effective properties 
of which need to be determined experimentally, especially 
those characterizing the material’s stiffness. The focus of 
this paper is on the experimental determination of the modu-
lus of elasticity of human cortical bone. Samples taken from 
the human lumbo-pelvic system were subjected to flexural 
loading. Assuming homogeneity of the material, an effec-
tive modulus of elasticity was determined on the basis of 
deformations measured in the bending tests. The obtained 
results may then be assigned to finite element models for 
simulating the stress-dependent deformation of the human 
pelvis. At present, the database of material properties of the 
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human lumbo-pelvic system appears to be insufficient. One 
of the goals of this research is to expand this database by 
applying a reliable testing procedure.

The bending test appears to be a suitable method for test-
ing cortical bone. Direct tension or compression tests are 
more problematic from the technical point of view because 
applying a load to the specimen leads to a multiaxial and 
hard-to-predict state of stress in the vicinity of the speci-
mens’ end faces. In the case of tensile tests, this multiaxial-
ity results from lateral clamping forces, and in the case of 
compression, it results from lateral frictional forces. These 
problems complicate the determination of the modulus of 
elasticity characterizing the material’s stiffness under a uni-
axial state of stress. Theoretically, the influence of the lateral 
forces at the specimens’ end faces vanishes with increasing 
specimen length, but the maximum size of the bone speci-
mens is commonly limited for anatomical and statistical 
reasons. The specimens should be small enough to justify 
the averaging of the local material stiffness. It is undisputed 
that random variations of the local material properties are 
larger in biological tissues than in many technical materi-
als. However, if systematic, i.e., anatomically explainable, 
variations in the stiffness within the specimen are negligible, 
then the determination of an average modulus of elasticity 
and the assignment of the value to the corresponding loca-
tion in a finite element model are justified. In bending tests, 
this condition can be met because only comparatively small 
specimen sizes are needed. Another reason for choosing 
the bending test as the experimental approach is that bone 
specimens do not necessarily have a straight axis. In direct 
tension or compression tests, a curved axis leads to signifi-
cant deviations from the assumed uniform strain distribution 
in the cross sections of the specimen. However, moderate 
curvature of beams subjected to bending does not cause 
significant deviations from basic flexural theory. When the 
radius of curvature of the beam axis is at least four times 
the height of the beam, as was the case in the experiments 
reported here, a straight beam axis may be assumed for the 
mechanical analysis.

It must be considered that the flexural loading imposed 
on cortical bone specimens leads to stress concentrations 
and indentations at the load application point as well as 
at the supports. However, it is possible to determine the 
elastic curve of the specimen by measuring the deflection 
at multiple positions along the beam axis; thus flexural 
theory can be applied. In this way, the influence of the 
indentations is eliminated.

A major difference between biological and engineered 
specimens is the irregularity of the specimen geometry. In the 
case of the human lumbo-pelvic system, the cross-sectional 
properties of the beam-like bone specimen may vary mark-
edly along the beam axis mainly due to the natural variation 
of the cortical layer thickness. When determining the modulus 

of elasticity on the basis of the measured deformations, it is 
necessary to consider this variation of the cross-sectional 
properties and, in this way, to separate its influence from the 
one of the unavoidable variation of the local material proper-
ties. An alternative would be a more invasive processing of 
the samples to produce strictly rectangular cuboid specimens. 
However, in this study, the intention was to limit cutting or 
grinding processes to mitigate their effects on the mechanical 
behavior of the specimens.

Several investigations involving flexural tests of beam-
like cortical bone specimens are reported in the literature. 
Normally, the determination of the modulus of elasticity is 
based on the measured midspan deflection of rectangular 
cuboid beams [5–7]. Lotz et al. [8] tested flat plate cortical 
bone specimens and determined the modulus of elasticity 
under consideration of the load point indentation. The con-
sideration of nonuniform cross-sectional properties in flex-
ural tests of beam-like cortical bone specimens has not been 
reported in the literature before. As far as shear deformation 
and support indentation in flexural tests are concerned, their 
effects on the determined moduli of elasticity were exten-
sively studied for other materials. Mujika [9] tested carbon/
epoxy composite and Brancheriau et al. [10] wooden sam-
ples. It was found in both cases that the before-mentioned 
influences are not always negligible.

In the “Bending Tests and Deflection Measurements” 
and “Elastic Curve Determination based on the Optical Dis-
placement Measurement” sections, the applied test setup as 
well as data acquisition and processing are described. Dif-
ferent evaluation methods for processing the experimental 
results are presented in the “Methods for Evaluating the Test 
Results” section, and their suitability is discussed in the 
“Comparison of the Evaluation Methods” section. It should 
be noted that the applicability of the evaluation methods 
proposed in this paper is not limited to the human pelvis or 
other cortical bone tissue. Possible applications also include 
naturally grown structural materials. However, the samples 
of cortical bone from the human lumbo-pelvic complex were 
a suitable example for the application and comparison of 
the evaluation methods described here. Due to the natural 
shape of the pelvis, the samples were characterized by com-
paratively large variability in thickness and curvature, which 
made them more realistic than artificially produced samples.

Bending Tests and Deflection Measurements

The specimens of cortical bone were taken from the pelvises 
of three female and two male human donors. The donors 
were 76.8 ± 13.4 (53–89) years old. Being part of the body 
donor program regulated by the Saxonian Death and Funeral 
Act of 1994 (3rd section, paragraph 18, item 8), the Insti-
tute of Anatomy of Leipzig University obtained institutional 
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approval for the use of postmortem tissues of human body 
donors. All experiments were performed according to the 
ethical principles of the Declaration of Helsinki.

Specimen acquisition as well as preparation and storage 
of the samples were performed according to a standardized 
procedure proposed by the first author. It was intended to 
acquire the specimens as less invasive as possible in order 
to investigate their mechanical properties largely close to 
nature. The targeted dimensions of the beam-like specimens 
with intended rectangular cross sections resulted from the 
geometry of the human pelvis and from the requirements 
for flexural testing. The selection of the sampling locations 
was made from an anatomical point of view and by means 
of computed tomography (CT) scans of the individual donor 
pelvises. The cortical bone was cut in the deep-frozen state 
using a diamond thin-cutting band saw, without water cool-
ing. Cancellous bone was removed by sawing and by means 
of a Stille-Ruskin bone rongeur. For the removal of soft tis-
sue, where possible, served a scalpel. The omission of fur-
ther post-processing, in particular sawing or grinding on the 
upper or lower face of the beam-like specimens, resulted in 
the before-mentioned variation of the cross-sectional proper-
ties along the beam axis.

The specimens had approximately rectangular cross 
sections. The average specimen dimensions were approxi-
mately 2.26 × 9.52 × 35.4  mm3 (height × width × length). 
The height was the dimension in the loading direction and 
corresponds to the natural thickness of the cortical bone. A 
total of 145 samples were successfully harvested, and 138 
qualified for inclusion in the examination described below. 
Reasons for exclusion were strong anatomical abnormality, 
either geometrical or due to impurity, and, in the case of 
four samples, failed tests due to accidental dislocation or 
unacceptable twisting. Table 1 contains information on the 
variation of the cross-sectional dimensions along the span 
of the individual specimens as well as within the whole 
population of all 138 samples. The variation of the height 
is noticeably greater than that of the width. Graphical rep-
resentations of the corresponding distributions are shown 
in the supplementary material.

Figure 1 shows the experimental setup with the loading 
device made of stainless steel. The circular-cylindrical roller 
bearings at midspan and at the supports had a diameter 2 mm. 
The upper roller bearing was rotatable about an axis parallel 
to the beam axis. Complete design drawings of the experi-
mental setup may be found in the supplementary material.

The simply supported beam-like specimens had a span of 
20 mm. During the tests, the periosteum of the cortical bone 
was directed upward, and its cancellous (inner) side was 
directed downward. This orientation was chosen to mini-
mize the stiffening effect of residual material adhering to 
the cortical bone specimen. The remains of the periosteum 
on the upper side and of the cancellous bone on the lower 
side have a comparatively small stiffness under compression 
and tension, respectively. These different behaviors result 
from the internal structure of the two types of tissue. The 
periosteum consists mainly of flexible collagen fibers that 
evade compressive stress. In contrast to that, the cancellous 
bone has a trabecular structure consisting of small beam-like 
members with the hollow spaces between them filled with 
rather liquid bone marrow. In comparison to the cortical 
bone tested here, the stiffness of cancellous bone is signifi-
cantly smaller [11]. In addition, the trabecular structure of 
the latter is damaged in the cutting process, further reducing 
its tensile stiffness.

At midspan, a transverse force was applied under dis-
placement control by using a 10 kN test frame of an elec-
tromechanical testing machine (walter + bai AG - LFEM 
600/100/10). A 200 N load cell (Bosche - S40S-G3-0020) 
served as the force measurement device. The loading veloc-
ity was chosen in accordance with a physiologically justi-
fiable strain rate of �̇� = 0.005 s−1 [12]. Based on flexural 
theory, the resulting midspan deflection rate is obtained by 
v =

(

�̇� ⋅ l
2
)/

(6 ⋅ h) for the span l of the beam and the height 
h at midspan.

The deflection was measured by digital image correla-
tion (DIC) with a Dantec Dynamics Q400 DCM 12.0 (2 × 
12 MP sensor, 65 mm focal length, ~100 px/mm resolution, 
and 4 Hz sampling rate). For evaluating the displacement 
components, the software Istra4D (version 4.4.7.527) was 

Table 1  Variation of the cross-sectional dimensions

Geometrical 
dimension

Based on the mean values determined for each individual specimen Difference between maximum and minimum value along 
the span divided by the corresponding midspan value, 
determined for each individual specimen

Average [mm] Standard 
deviation 
[mm]

Minimum [mm] Maximum [mm] Average [%] Standard 
deviation 
[%]

Minimum [%] Maximum [%]

Height 2.26 0.74 0.94 4.68 40.39 26.35 3.77 185.23
Width 9.52 1.08 6.83 12.29 8.83 6.99 0.49 45.13
Length 35.37 2.79 26.64 39.63 - - - -
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utilized with the grid spacing set to 35 px and the facet size 
to 39 px. Figure 1 shows in the bottom a full-field map of the 
vertical displacement component, i.e., of the displacement 
in the loading direction. The white circles are the evaluation 
points for the DIC measurement of the 3D coordinates. The 

intention was to acquire as much information as possible on 
the deformed state of each specimen.

In addition to the DIC, the load point displacement 
was measured by linear variable displacement transform-
ers (LVDTs, type W10K from Hottinger Brüel & Kjaer 

Fig. 1  Experimental setup for the bending tests (top) and full-field map (bottom) of the vertical displacement component obtained by digital 
image correlation (DIC)
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GmbH) as displacement sensors. The LVDTs were applied 
to two opposite sides of the loading device, not directly to 
the specimen. Due to the relatively small compliance of the 
loading device compared to the specimen deformability, the 
measured load point displacement may be regarded as the 
midspan deflection of the beam. However, a portion of the 
deflection measured in this way results from indentation at 
the load point and at the supports.

Elastic Curve Determination based 
on the Optical Displacement Measurement

The 3D displacement components of seven evaluation points 
on the specimen surface, see Fig. 1 (bottom), were measured 
by DIC and then projected onto the loading plane. The verti-
cal displacements of these points, i.e., those parallel to the 
loading direction, are the local deflection values, which were 
approximated by a continuous function for the elastic curve 
by conducting a weighted multi-constraint nonlinear least-
square fit. The applied constraints are physically justifiable 
by means of flexural theory and include zero curvature of 
the elastic curve at the supports and negative curvature along 
the beam’s span. Adequate fits were achieved with a Fourier 
series having four sine terms and additional linear and con-
stant elements. The applied approximation function and its 
derivatives are given in equations (1) through (3), which are 
based on the coordinate system shown in Fig. 2 and contain 
the Fourier coefficients b

i
 as well as c and d as additional 

parameters. The second derivative is zero at the supports, 
i.e., at x = x

min
= −l∕2 and x = x

max
= +l∕2 , thus satisfying 

the abovementioned zero-curvature constraint.

(1)

w(x) =

4
∑

i=1

(

b
i
⋅ sin

(

i ⋅ � ⋅

(

x − x
min

)

x
max

− x
min

))

+ c ⋅
(

x − x
min

)

+ d

The total lateral (i.e., vertical) displacement w(x) , approx-
imating the measured displacement, may be subdivided into 
different contributions that also influence the modulus of 
elasticity to be determined. These contributions are sche-
matically represented in Fig. 2 and may be summed accord-
ing to equation (4).

The contribution of the indentation at the supports w
L
(x) 

is considered by the linear and constant terms in equation (1) 
and can easily be quantified on the basis of the displace-
ments of the beam axis measured at the supports. By sub-
tracting w

L
(x) from the total displacement, the deflection 

due to the internal forces along the beam’s axis is obtained. 
The deflection w

V
(x) due to the shear force is in the case 

of slender beams significantly smaller than that due to the 
bending moment w

M
(x) . Due to the constant shear force in 

both half-spans, i.e., to the left and right of the load point, 
the resulting inclination of the beam’s axis will also be 
constant, leading to the bilinear function w

V
(x) . In flexural 

theory, the function of the deflection due to the bending 
moment w

M
(x) is commonly referred to as the elastic curve. 

The corresponding midspan values for the aforementioned 
three contributions to the total displacement are denoted as 
f
L
 , f

V
 , and f

M
 (see Fig. 2).

Since the contribution of the shear force is considerably 
smaller than that of the bending moment, the contribution 
of the shear force may be estimated under the assumption 
of uniform cross-sectional properties along the beam axis. 
Under this simplifying assumption, a theoretical ratio of the 
midspan displacements, f

V
 and f

M
 , i.e., of those due to the 

shear force and the bending moment, respectively, may be 
determined. Their theoretical values are

where E is the modulus of elasticity, � is Poisson’s ratio, 
G = E∕(2(1 + �)) is the shear modulus, I is the moment of 
inertia, and A

S
 is the shear area as a cross-sectional property. 

Hence,

(2)

w
�

(x) =

(

�

x
max

− x
min

)

⋅

4
∑

i=1

(

i ⋅ b
i
⋅ cos

(

i ⋅ � ⋅

(

x − x
min

)

x
max

− x
min

))

+ c

(3)

w
��

(x) = −

(

�

x
max

− x
min

)2

⋅

4
∑

i=1

(

i
2
⋅ b

i
⋅ sin

(

i ⋅ � ⋅

(

x − x
min

)

x
max

− x
min

))

(4)w(x) = w
L
(x) + w

V
(x) + w

M
(x)

(5)f
M
=

Fl
3

48EI
and f

V
=

Fl

4GA
S

=
Fl(1+�)

2EA
S

(6)
f
V

f
M

=
24 I (1 + �)

A
S
l2Fig. 2  Contributions to the vertical displacement
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where I and AS are the average cross-sectional properties 
along the beam axis. For the rectangular shape of the cross 
section assumed here (see the “Methods for Evaluating the  
Test Results” section), the shear area AS is equal to the total  
cross-sectional area divided by 1.2. Poisson’s ratio �  
may be estimated on the basis of uniaxial test results or an 
assumed value is adopted. This simplification is justifiable 
because of the non-proportional and, thereby, compara-
tively small influence of � , see equations (5) and (6), and 
also in view of the shear-induced midspan displacement f

V
 

being only a small portion of the total midspan displace-
ment f

V
+ f

M
 . For the dimensions of the individual speci-

mens tested here, this portion amounts to 4.16% ± 2.61%.  
Wirtz et al. [11] proposed assuming a value of � = 0.3 for 
cortical bone. A reduction of this value by 20% would lead 
to a reduction of the calculated total midspan displacement 
f
V
+ f

M
 by only about 0.2%.

Using equation (6), we estimated the contribution of the 
shear deformation to the midspan displacement resulting 
from the internal forces. The bilinear function of the dis-
placement due to the shear force was then

The contributions of the shear deformation and of the 
indentation at the supports may be deducted from the measured  
total displacements of the beam axis, yielding the displace-
ments resulting from the bending moment only. To obtain 
a continuous function w

M
(x) , these modified displacement 

values along the beam axis were again approximated by a 
Fourier series but now without additional linear and constant 
terms because the deflections at the supports are zero.

Methods for Evaluating the Test Results

There are several methods to retrieve an average modulus of 
elasticity of the material of a beam-shaped specimen. In the 
following, a total of seven methods, A through G, are pre-
sented (see Table 2). Each of these methods includes multi-
ple submethods, which will be explained later. All methods 
are based on the following assumptions:

– The tested beam is simply supported and subjected to a 
transverse load at midspan (shown in Fig. 2). Longitudinal 
frictional forces at the supports may be neglected due to 
roller bearings. The internal forces may be derived from 
the external forces by applying equilibrium conditions.

– The cross sections of the beam are rectangular. All exter-
nal forces act within the plane of symmetry, resulting in 
so-called symmetric bending.

(7)w
V
(x) = f

V
⋅

(

1 −
2|x|

l

)

– The cross-sectional area A and the moment of inertia I 
about the principal axis normal to the plane of symmetry 
can vary along the beam’s length.

– The span of the beam, i.e., the distance between the sup-
ports, is significantly larger than the beam’s height, in 
most cases by a factor of approximately 8, but at least by 
a factor of 4. Hence, plane sections may be assumed, and 
Bernoulli’s flexural theory may be applied.

– The minimum radius of curvature of the undeformed 
beam axis is much larger than the beam’s height, at least 
by factor 6. A straight beam axis is assumed and, conse-
quently, the plane section assumption (see above) leads 
to a linear distribution of the bending strains over the 
beam’s height.

– The deflections measured by DIC at the beam’s side 
face are regarded as those of the beam axis. Anticlastic 
curvature of the specimen’s middle surface due to the 
Poisson effect is not considered in the evaluation of the 
measured deflections.

– At least within a certain load range, the beam’s deflection 
is almost proportional to the external force. The mate-
rial’s average modulus of elasticity is determined for a 
limited load range satisfying this condition and equal 
under tension and compression.

In view of the particular set of specimens referred to in the 
present paper, two of the above assumptions require further 
explanation. First, the midspan curvature of the unloaded 
specimens was smaller than 0.05  mm−1 for more than 95% 
of all specimens, and the curvature of a circle put through 
center and supported points of the respective beam axis is 
even smaller, see distributions in the supplementary material. 
Consequently, the minimum ratio of the radius of curvature 
to the average specimen height is larger than about 8. This 
leads to a deviation of less than 1.5% in the total strain energy 
of the deflected beam as well as in the calculated midspan 
deflection. Therefore, the neglect of the curvature is justi-
fied for these particular specimens. The strain energy is only 
slightly underestimated and statistical analyses did not reveal 
a significant correlation between initial curvature and the 
determined modulus of elasticity, see Spearman coefficients 
in the supplementary material. Second, the neglect of the 
anticlastic curvature on the measured deflections is justified 
for the present experiments, but is not generalizable. For the 
present experiments and a Poisson’s ratio of 0.3, linear-elastic 
Finite Element simulations conducted by the authors have 
shown that the maximum deviation between the deflections 
in the beam’s centerline and at the side faces amounts to less 
than 3% of the midspan deflection, justifying the neglect of 
anticlastic curvature. For other specimen geometries and test 
setups, it might be appropriate to consider both the initial 
curvature of the beam axis and the anticlastic curvature of the 
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middle surface. It might also become necessary to consider 
cross sections the shape of which deviates from the rectan-
gular shape assumed here.

After the flexural load test, the following data were 
available for further processing:

– The area A(x) and the moment of inertia I(x) of the 
cross section as dependent on the position x along the 
beam axis. In the present case, the height and width of 
the beam were expressed by second-order polynomials 
that were fitted to values measured at three points along 
the axis of the respective beam.

– The external force F(t) applied in the experiment as 
dependent on the time t.

– The midspan deflection f(t) as dependent on the time t 
as well as the time-dependent elastic curve expressed 
by multiple deflections at different positions w(t,x). The 
elastic curve can also be expressed by a fitted continuous 
function (see the “Elastic Curve Determination based on 
the Optical Displacement Measurement” section).

Based on these data, the average modulus of elasticity 
in the axial direction was to be determined. In the begin-
ning, a conventional and simplifying method is presented 
which is referred to as Method A (see Table 2). In addi-
tion to the above assumptions, this method is based on 
a constant moment of inertia I along the beam axis. The 
external force is related to the midspan deflection. Based 
on flexural theory, the midspan deflection increment ΔfM 
is obtained by equation (8).

where ΔF is the force increment, I is the constant moment 
of inertia and E is the sought-for modulus of elasticity 
averaged over the entire specimen and the respective force 
increment. The major disadvantages of Method A are the 
required assumption of a constant moment of inertia and the 
falsifying influence of the support indentation. A possible 
improvement is the evaluation of the beam’s midspan curva-
ture increment instead of the midspan deflection increment. 

(8)Δf
M
=

ΔF l
3

48EI

Table 2  Evaluation methods for determining the modulus of elasticity
GFEDCBAdohteM

Short descrip�on Rela�ng midspan deflec�on 
to external force 

Rela�ng midspan 
curvature to external 
force 

Equivalence of 
external and 
internal work, 
based on 
internal forces 

Adjus�ng the calculated 
elas�c curve to 
measured deflec�ons 

Using the local curvature-strain 
rela�onship and rela�ng local stress 
to local strain 

Rela�ng 
local 
curvature 
to local 
bending 
moment 

Equivalence of 
external and 
internal work, 
based on 
curvature and 
slope 

Submethod A0 A2 A4 B1 B2 C2 D1 D2 E4A E4S E4M F4 G3 
A0Al 

A2Al 

A2Sl 

A2M
l 

A4Al 

A4Sl 

A4M
l 

B1Al 

B1Sl 

B1M
l 

B2Al 

B2Sl 

B2M
l 

C2Al 

C2Sl 

C2M
l 

C2Cl 

D1Ag 

D1Sg 

D1M
g 

D2Ag 

D2Sg 

D2M
g 

E4Al 

E4Ae 

E4Ag 

E4Sl 

E4Se 

E4Sg 

E4M
l 

E4M
e 

E4M
g 

F4Ag 

F4Sg 

F4M
g 

G3Ag 

G3Sg 

G3M
g 

G3Cg 

Data used for 
determining 
the modulus 
of elas�city 

Conven�onally (LVDT) measured 
midspan displacement 0 x                                       

Based on 
op�cally 
measured 
displacements 

Displacements at 
mul�ple measurement 
points 

1 

Fi�ed con�nuous 
displacement func�on 2 

Combina�on of displ. 
and curvature func�on 3                                    x x x x 

Curvature func�on 
(from differen�a�on) 4 

Elimina�on 
of support 
indenta�ons 
and shear 
deforma�ons 

None (all influences on the 
displacement are present) A 

Only indenta�on eliminated S 

Indenta�on and shear deforma�on 
eliminated M 

Indenta�on eliminated, shear 
deforma�on considered C 

Evalua�on 
length or 
posi�on 

Midspan posi�on (maximum moment) - 
local l 

Posi�on of maximum strain - local e 

Span of the beam or parts of it - global g 

Remarks o o o o o, 
q 

o, 
q o o, 

p
o, 
p o o, 

p
o, 
p

x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

x x

x x x x x x x x x x x x x x x x x x x x

x x x

x x x x x x x x x x x x x x x x
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o Alternatively to the averaging over multiple load increments, least-square fit of the stress-strain curve; p S ≙ A, as the measured sag is inde-
pendent of the support indentation; q S ≙ A, as the curvature is independent of the support indentation; r Evaluation is restricted to parts of the 
beam length where the flexural strain is higher than 50% of the maximum flexural strain
Additional labels for the designation of the submethod: s Different evaluation lengths (fu - total span, ha - half span symmetric to midspan, and 
th - inner third of the span), weighted with the displacement function; t Different types of weighting (wt - weighted with the displacement func-
tion, uw - unweighting)
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This leads to Method B. The deflection values at three 
points in the midspan region of the beam are retrieved from 
the elastic curve and used for calculating the curvature of 
the beam axis in this region (shown in Fig. 3). The center 
point is located at midspan, and the distance between the 
outer points is lb. By using this method, the influence of the 
indentation at the supports is automatically eliminated. It is 
also possible to eliminate the influence of the shear strain.

Assuming a constant moment of inertia I  along the 
beam axis, the elastic curve w̃(x) based on the coordinate 
system in Fig. 3 can be expressed by

This leads to

where s
b
 is the sag of the center point relative to the two 

outer measurement points (see Fig. 3). In case of an asym-
metric elastic curve, the average w̃ value for the two outer 
measurement points is used. The strain �

bottom
 at the bot-

tom face with the distance z̃
bottom

 from the cross section’s 
centroid is

Because of the rectangular cross section, z̃
bottom

 is half 
of the specimen height. Equations (10) and (11) yield
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For a certain load increment, the average modulus of 
elasticity can then be calculated by

Note that equations (9) through (11) are still based on a 
constant moment of inertia along the beam axis, although 
for the stress analysis in equation (13), the one at midspan 
is used. To consider nonuniform cross-sectional proper-
ties, the equivalence between the work Wext done by the 
external force F and the internal work U done by the inter-
nal forces may be used. This approach is here referred to as 
Method C. The external and internal work increments are

where M0 and F0 are the bending moment and the external 
force, respectively, at the beginning of the increment. The 
bending moment M and the resulting deflection w

M
 are func-

tions of x with values ranging from -l/2 to l/2. Note that for 
the internal work the absolute values of bending moment and 
resulting curvature are multiplied. Under the conditions that 
equilibrium and compatibility are satisfied at the beginning 
of the load increment and assuming linear-elastic deforma-
tion within the increment, it can be stated that

This leads to

The function of the moment increment ΔM(x), equa-
tion (18), is derived from the equilibrium conditions.

Hence,

It is possible to consider the contribution Δf
V

 of the 
shear deformation to the midspan displacement increment 
by adding an extra term to equation (17).
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Fig. 3  Curvature measurement over the base length lb for Method B
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where ΔV(x) is the shear force increment, A
S
(x) is the shear 

area as a cross-sectional property and G = E∕(2(1 + �)) is 
the shear modulus of the material. As stated before, Wirtz 
et al. [11] proposed adopting a Poisson’s ratio of � = 0.3. An 
assumption regarding Poisson’s ratio is justifiable since its 
influence is comparatively small. The midspan deflection, 
including the shear contribution, can be calculated by

where Δf  is the total midspan displacement increment, 
measured or obtained from the fitted displacement function 
(see the “Elastic Curve Determination based on the Optical 
Displacement Measurement” section), and Δf

L
 is the mid-

span displacement increment resulting from the indentation 
at the supports (see Fig. 2). The average modulus of elastic-
ity for the load increment is then

Method C has a fundamental shortcoming. The evalu-
ation of the experimental results is exclusively based on 
a single displacement value, the one at midspan. It is 
expected that the consideration of the entire elastic curve 
would yield a more reliable value of the average modu-
lus of elasticity. This leads to Method D, which is based 
on the calculation of the theoretical elastic curve and 
its adjustment to the measured curve. Based on the x, z 
coordinate system shown in Fig. 2 and on the linearized 
differential equation of the elastic curve, equation (23), 
the solution presented in equation (24) is derived for the 
present problem.
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The continuity conditions at midspan are automatically 
satisfied, and the boundary conditions

at the supports lead to

allowing the determination of the midspan deflection 
w
M
(0) = f

M
 and corresponding slope w�

M
(0) . Then, using 

equation (24), the deflection at an arbitrary point x can be 
calculated and adjusted to the measured values by varying 
the modulus of elasticity. For a single deflection increment 
Δw

M
 at position x resulting from the force increment ΔF , 

this adjustment leads to

The moduli of elasticity obtained for different positions x 
are averaged over the beam’s span. In some submethods, a 
weighted average is calculated. When determining w

M
(x) , the 

influences of the indentation at the supports and of the shear 
deformation may be eliminated, as stated above.

All evaluation methods described thus far are based on 
displacement values, either directly on the locally measured 
values or on those calculated from a fitted continuous dis-
placement function. An alternative approach is to differenti-
ate the fitted continuous displacement function twice and to 
use the obtained curvature w��

M
(x) for further data processing. 

In Method E, an axial strain increment at a certain position 
x and at a certain distance z from the cross section’s centroid 
is determined according to Bernoulli flexural theory by

The modulus of elasticity in the cross section at position x 
and within the considered load increment is then obtained by

The position x may be at midspan or at the strain maxi-
mum. It is also possible to average over an evaluation length 
le according to equation (30). The corresponding submeth-
ods (see Table 2) are explained below.
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Method F is also based on the evaluation of the cur-
vature, i.e., of the second derivative of the elastic curve. 
However, instead of relating a stress increment to a strain 
increment, the differential equation of the elastic curve, 
equation (23), is directly applied to relate a curvature incre-
ment Δw��

M
(x) to a bending moment increment ΔM(x) . Within 

the load increment concerned, the modulus of elasticity aver-
aged over an evaluation length le is obtained by

The evaluation length le may be the total span of the beam 
or only an inner part of it, symmetric with respect to mid-
span. In the latter case, perturbations from the low-curvature 
regions close to the supports may be eliminated.

Method G utilizes the equivalence between the external 
and internal work, as in Method C. However, the internal 
work U is calculated on the basis of the curvature and slope 
of the elastic curve rather than on the basis of the internal 
forces. Equivalent to equation (20), the following equation 
describes the equivalence between the external and internal 
work. The second term on the left-hand side contains the 
contribution of the shear deformation.

Replacing the internal forces by derivatives of the elastic 
curve using

yields the following expression of the average modulus of 
elasticity within the considered load increment.

In curvature-based methods, the indentation at the sup-
ports theoretically does not influence the determined modu-
lus of elasticity. It must be considered, however, that the 
continuous displacement function to be differentiated twice 
is just an approximation. It is therefore advisable to deduct 
the contribution of the indentation, in some sub-methods 
also the contribution of the shear force, from the displace-
ment function prior to differentiation and further processing, 
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as explained in the “Elastic Curve Determination based on 
the Optical Displacement Measurement” section.

Table  2 gives an overview of the seven evaluation 
methods (A through G) and their submethods. For sys-
tematization and comprehensibility, all submethods are 
labeled by a combination of four characters, such as 
“A0Al”. The first letter indicates one of the seven evalu-
ation methods, i.e., Method A through Method G. In the 
second position, the number (“0” through “4”) specifies 
the type of data used for retrieving the modulus of elastic-
ity (see Table 2 for definitions). The fitting of a continu-
ous function to the measured displacements (indicated 
by “2” in the second position) and the differentiation 
for obtaining a curvature function (indicated by “4” in 
the second position) are explained in the “Elastic Curve 
Determination based on the Optical Displacement Meas-
urement” section. The number “3” in the second position 
applies only to Method G. There, the fitted displacement 
function is used for retrieving its midspan value, whereas 
the internal work is determined on the basis of the cur-
vature and slope functions. In submethods A4**, the 
midspan strain is calculated from the midspan curvature 
(where “*” represents any character).

The character in the third position (“A”, “S”, “M”, or 
“C”) describes which influences on the displacements 
have been deducted from the measured values (see the 
“Elastic Curve Determination based on the Optical Dis-
placement Measurement” section). In the case of “A”, 
“S”, and “M” in the third position, the displacement func-
tion, obtained after the corresponding type of elimina-
tion, is regarded as resulting from the bending moment 
only. Although this is incorrect for “A” (no falsifying 
influences eliminated) and “S” (only support indenta-
tion eliminated), the evaluation results may serve for 
comparisons of the individual evaluation methods (see 
the “Elimination of Falsifying Influences” section). The 
character “C” in the third position is used when the shear 
deformation is directly considered in the expression for 
the internal mechanical work, rather than by deducting 
its contribution from the displacement function, as done 
in the case of “M”.

The character at the fourth position (“l”, “e”, or “g”) 
specifies which part of the beam’s span is considered for 
retrieving the modulus of elasticity. In the case of “l” at 
the fourth position, only values acquired at midspan are 
used, i.e., at the position of maximum moment, and in the 
case of “e” at the position of maximum strain. The charac-
ter “g” is used when input data along the total span of the 
beam or, in the case of Methods E and F, along a portion 
of the span are evaluated. The corresponding options for 
the evaluation length are expressed by the Suffixes “fu”, 
“ha”, or “th” (see footnotes in Table 2). In Methods D 
through G, the evaluation length was always equal to the 
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total span. In Method F, the displacement function served 
as a weighting function for averaging along the evalua-
tion length, whereas in Method D, two different types of 
weighting were applied (see Suffixes “wt” and “uw” speci-
fied in the footnotes of Table 2).

The range of the stress-strain curve used for the evalua-
tion of the modulus of elasticity has also been varied (see 
first footnote in Table 2). Within this evaluation range, 
averaging over multiple load increments or, alternatively, 
fitting a straight line to the load–displacement curve was 
conducted. More explanation may be found in the “Evalu-
ation Range of the Stress-Strain Curve” section.

Comparison of the Evaluation Methods

Suitability Criteria for the Evaluation Methods 
and Plausibility Checks

The chosen approach for assessing the suitability of the 
individual evaluation methods includes statistical analy-
ses and plausibility checks. For the present experimental 
investigations, there are no reference values to serve as the 
basis of comparison for the measured moduli of elasticity. 
This makes it difficult to identify the most suitable evalu-
ation method. It should also be noted that, in the present 
case, the 138 individual samples were extracted from dif-
ferent locations of the human pelvises of multiple donors. 
This means that the samples do not necessarily belong to 
a common base population. Nevertheless, coefficients of 
variation (CVs) as well as different types of relative devia-
tion (D) were calculated and are discussed below. These 
values are independent of the mean values and character-
ize the variation in the determined modulus of elasticity. 
In order to separate the effects of the evaluation method 
from those of material inhomogeneity and cross-sectional 
nonuniformity, the influences of analysis assumptions, see 
Table 2, were first quantified for each individual specimen, 
i.e., on the specimen level, and later statistically evaluated 
for the entire population of tested specimens. Regarding 
the coefficient of variation of the modulus of elasticity of 
all samples ( CV

pop,E
 ), it is assumed for simplicity that all 

samples belong to the same base population and consist 
of the same material. After the elimination of falsifying 
influences, the evaluation methods yielding smaller values 
of CV

pop,E
 are considered to provide more reliable results 

than those yielding larger CV
pop,E

 values.
In addition to statistical parameters, other indicators 

for the suitability of the different evaluation methods were 
also applied, and plausibility checks were conducted. 
The latter included rank correlation analyses according 
to Spearman. This nonparametric methodology was cho-
sen because the considered variables are not necessarily 

normally distributed. A correlation coefficient of 1 indi-
cates the strongest positive correlation and of -1 indi-
cates the strongest negative correlation. A first plausi-
bility check by means of Spearman correlation analyses 
revealed deviating evaluation results when method F with 
full determination length was applied, i.e., the submeth-
ods F4*gfu. For all other methods, there is a strong posi-
tive correlation between the modulus of elasticity and the 
material strength (with an average correlation coefficient 
of 0.9). Less pronounced is the correlation with the appar-
ent density (average of 0.4) and with the strain at ultimate 
stress (average of -0.6). The abovementioned submethods 
F4*gfu do not exhibit these correlations. Furthermore, 
they also show a significantly larger variation than the 
other methods. This may be attributed to the curvature-
based determination of the local modulus of elasticity and 
its averaging over the entire span of the beam. The cur-
vature function being the second derivative of the elastic 
curve, i.e., of the fitted displacement function, fluctuates 
more strongly than the displacement function itself. In 
extreme cases, even sign changes of the curvature may 
be observed near the supports, resulting in singulari-
ties of the locally determined modulus of elasticity. This 
adverse characteristic of the F4*gfu submethods could not 
be compensated for even by weighting the displacement 
function. Consequently, the F4*gfu submethods were 
excluded from the following comparisons.

Correlation plots and additional results of Spearman cor-
relation analyses may be found in the supplementary material.

Evaluation Range of the Stress‑Strain Curve

To determine the modulus of elasticity, it is essential to 
specify a certain part of the ascending stress-strain curve, 
the slope of which yields the sought-for elastic property. 
Normally, the slope within a fixed stress range, i.e., between 
fixed stress limits relative to the peak value, is evaluated. 
The intention is to limit the determination of the modulus 
of elasticity to a section of the stress-strain curve with a 
characteristic and fairly constant slope. Since the variance 
of the mechanical properties of the cortical bone samples 
tested here was comparatively high, the evaluation of the 
slope within a flexible range rather than within a fixed range 
of the stress-strain curve was deemed appropriate. For this 
purpose, a modification of Keuerleber's approach [13] was 
utilized. It is based on the assumption that the slope maxi-
mum represents the “true” modulus of elasticity, which is 
free of disturbing influences if the test is conducted prop-
erly. To obtain more representative results, a range of the 
stress-strain curve limited by 75% of the maximum slope 
was used for the determination of the modulus of elasticity 
rather than the maximum slope as a single value. The evalu-
ation range specified in this way was searched within the 
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ascending branch of the stress-strain curve between 15 and 
100% of the ultimate stress. This type of evaluation range 
(referred to hereafter as the refined evaluation range) proved 
to be the most favorable in this study. It must be noted that 
the abovementioned slope is represented by consecutive 
difference quotients of the stress-strain curve consisting of 
discrete measurement steps. The corresponding procedure 
is in the following referred to as incremental determination.

For comparison, a fixed evaluation range was also con-
sidered. It was comparatively short and limited by 25% 
and 50% of the ultimate stress. Within the refined range 
as well as within the fixed range, the modulus of elasticity 
was determined for discrete stress increments and subse-
quently averaged over the respective evaluation range. The 
scatter of the modulus of elasticity within the evaluation 
range may be characterized by the coefficient of variation 
CV

er,E
 , and the difference between the fixed and refined 

evaluation ranges can be quantified by the relative deviation 
D

CV
er,E

,fixed−refined
=

(

CV
er,E,fixed

− CV
er,E,refined

)

∕CV
er,E,refined

 . 
After excluding statistical outliers on the specimen level by 
applying the 1.5-interquartile-range rule, the average over all 
evaluation methods amounts to D

CV
er,E

, fixed−refined
= −7.57 % 

with a standard deviation of ±5.13 % . The corresponding 
values without exclusion of outliers are 8.80 % ± 19.67 % . 
This shows that a smaller variation within the evaluation 
range can be achieved mainly by excluding outliers. Con-
sidering that the refined range is significantly larger than 
the fixed range, a reduced variation may also result from 
the refinement. The necessity of excluding outliers is also 
seen when the obtained values of the moduli of elasticity are 
compared. On average, over all evaluation methods, there is 
a relative deviation D

E, fixed−refined
=

(

E
fixed

− E
refined

)

∕E
refined

 
of D

E, fixed−refined
= 2267 % ± 15446 % without the exclusion 

of outliers and of −2.49 % ± 1.58 % with the exclusion of the 
same, i.e., almost no deviation. Figure 4 shows the relative 
deviation between the moduli of elasticity obtained for the 
two different evaluation ranges. The confidence intervals 

(black lines with caps) presented in Figs. 4 through 8 were 
determined by bootstrapping for a confidence level of 95%.

For the less complex evaluation methods, in particular  
for Methods A and B, the slope of the stress-strain curve 
was alternatively determined by least-squares fitting of a  
straight line to the measured values (see also the first foot-
note in Table 2). The average coefficients of determination 
are R

er,E,fixed
= 99.41 % ± 2.33 % for the fixed evaluation 

range and R
er,E,refined

= 99.48 % ± 2.38 % for the refined 
evaluation range. The relative deviations of the moduli of 
elasticity obtained by least-square fitting from the incremen-
tally determined ones DE,lsq−inc =

(

Elsq − Einc

)

∕Einc are on  
average −1.80 % ± 0.83 % and −1.51 % ± 1.26 % for the fixed  
and refined evaluation ranges, respectively. The individual 
deviations for the different evaluation methods are presented 
in Fig. 5. Because of their small values, it is concluded that 
the incremental determination over the refined evaluation 
range with subsequent averaging and exclusion of statistical 
outliers provides sufficient accuracy. Therefore, only moduli 
of elasticity obtained by this procedure are discussed below.

Elimination of Falsifying Influences

A reliable determination of the modulus of elasticity requires 
the elimination of falsifying influences if they have a signifi-
cant impact on the results. It was found that the indentation 
at the supports has the greatest impact. As expected, there is 
no difference between the submethods with (**S*) and with-
out (**A*) elimination of the support indentation provided 
that the evaluation of the modulus of elasticity is based on 
the curvature of the displacement function, as is the case for 
the submethods *4**. Due to the differentiation, the linear 
and constant components of the displacement function and 
consequently the contribution of the support indentation dis-
appear. The same holds true for Method B. Although based 
on measured deflections, this method effectively evaluates 
the midspan curvature. These findings are demonstrated in 
the lower part of Fig. 6 by showing the relative deviation 

Fig. 4  Relative deviation between the moduli of elasticity determined 
for the refined and fixed evaluation range, incremental determination 
and averaging over the evaluation range with the exclusion of statis-
tical outliers, confidence intervals determined by bootstrapping for a 
confidence level of 95%

Fig. 5  Relative deviation between the moduli of elasticity determined 
incrementally and by means of least-squares fitting, confidence inter-
vals determined by bootstrapping for a confidence level of 95%



755Experimental Mechanics (2023) 63:743–758 

D
E,S−A

=

(

E
S
− E

A

)

∕E
A
 of the moduli of elasticity obtained 

by submethods eliminating support indentations only (**S*) 
from those obtained by submethods without any elimina-
tion of falsifying influences (**A*). Averaged over all sub-
methods except B*** and *4**, the relative deviation D

E,S−A
 

amounts to 83.8 % ± 18.5 % , meaning that a significantly 
higher modulus of elasticity is obtained when the support 
indentation is eliminated. For evaluation method G, how-
ever, the relative deviation is negative, which is in contrast to 
the other methods. This can be explained by the underlying 
calculation according to equation (34), which relates mid-
span deflection to curvature. This ratio is greater with than 
without support indentation.

The upper part of Fig. 6 shows the Spearman coef-
ficients for the correlation between D

E,S−A
 and different 

contributing factors. As expected for the submethods with 
large D

E,S−A
 (i.e., A2**, C***, and D***), the correlation 

to the measured support indentation is the strongest. The 
larger the support indentation, especially in the elastic 
range, the higher the relative deviation between the moduli 
of elasticity.

The effect of the elimination of shear deformation, in 
addition to the elimination of support indentation, is pre-
sented in Fig. 7. The lower part of the figure shows the 
relative deviation D

E,M−S
=

(

E
M
− E

S

)

∕E
S
 of the moduli of 

elasticity determined with elimination of the shear deforma-
tion (**M*) from those determined without it (**S*). The 
upper part of Fig. 7 shows the Spearman coefficients for 
the correlation between D

E,M−S
 and different contributing 

factors. As expected from the theory of elasticity, there is 
a significant correlation with the average beam height. The 

other correlations are not as strong. It can also be noted 
that submethods based on measured displacements or fitted 
displacement functions exhibit a considerably narrower con-
fidence interval for D

E,M−S
 than curvature-based methods, 

especially Method D. The same observation is made when 
comparing the submethods based on a global evaluation 
(***g) to those based on a local evaluation. One reason for 
this difference is that the local determination does not com-
pensate for fluctuations in the displacement values measured 
along the beam axis. Moreover, in the case of a nonuniform 
cross section, the evaluated location does not necessarily 
coincide with the location of the stress or strain maximum. 
It must also be considered that, in general, the differentiation 
of the displacement function leads to a “loosening” of the 
relationship to the measured displacements. This may reduce 
the evaluation reliability for the modulus of elasticity in the 
case of a curvature-based evaluation.

Based on the observed confidence intervals, also shown 
in Fig. 7, Methods B, C, D, and G appear to be suitable 
evaluation methods yielding plausible results. The rela-
tive deviation due to the elimination of the shear influence 
amounts to D

E,M−S
= 4.99 % ± 2.52 % averaged over the 

four abovementioned evaluation methods. Although this 
effect is much smaller than that of the support indentation, 
the relative deviation may reach up to 20% in the case of a 
specimen with a large height-to-span ratio. For the methods 
that allow a direct consideration of the shear deformation, 
namely, Methods C and G, there was no significant effect of 
the elimination of the shear deformation. For these methods, 
the relative deviation D

E,C−M
=

(

E
C
− E

M

)

∕E
M

 amounts to, 
on average, D

E,C−M
= −1.71 % ± 3.27 %.

Fig. 6  Bottom: Relative deviation between the moduli of elasticity 
determined without (**A*) and with (**S*) elimination of the sup-
port indentation, confidence intervals determined by bootstrapping 
for a confidence level of 95%; Top: Spearman correlation coefficients 
for chosen contributing factors ( h , average height of the beam; b , 
average width of the beam; �

app
 , apparent density; ind

el
 , average sup-

port indentation at elastic limit; and ind
u
 , average support indentation 

at peak load)

Fig. 7  Bottom: Relative deviation between the moduli of elasticity 
determined without (**S*) and with (**M*) elimination of the shear 
deformation, with support indentation eliminated in both cases. The 
bars with the red top line were trimmed for clarity. Confidence inter-
vals were determined by bootstrapping for a confidence level of 95%. 
Top: Spearman correlation coefficients for chosen contributing fac-
tors ( h , average height of the beam; b , average width of the beam; 
�
app

 , apparent density; ind
el

 , average support indentation at elastic 
limit; and ind

u
 , average support indentation at peak load)
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Forward Analysis of the Elastic Curve

For each of the evaluation methods, the obtained modulus of 
elasticity was used to calculate the theoretical elastic curve 
for the simply supported and centrically loaded beam with 
nonuniform cross-sectional properties. This analytically 
obtained elastic curve was then compared with the one fit-
ted to the measured displacements. Support indentation and 
shear deformation were eliminated from the fitting function, 
hereafter referred to as the measured elastic curve. Figure 8 
shows the relative deviations between the analytical and 
measured elastic curves for the evaluation methods elimi-
nating all falsifying influences (**M*) or correctly consider-
ing the shear deformation (**C*). The smallest deviations 
occur with evaluation methods C and D, which indicates the 
good suitability of these methods. As expected, there is no 
deviation for evaluation method C2Ml at midspan and for 
D2Mguw over the entire span (labeled “global” in Fig. 8). 
This is because the evaluation method D2Mguw utilizes the 
same theoretical elastic curve as the forward analysis, and 
the evaluation method D is a global extension of C.

It should be noted that the fitting function used for the 
elastic curve (see the “Elastic Curve Determination based 
on the Optical Displacement Measurement” section) differs 
from the physically correct function for the simply supported 
and centrically loaded beam with a uniform cross section. 

The theoretically correct function consists of two third-order 
polynomials that coincide at midspan. However, using such 
fitting functions would require more measurement points 
along the beam axis, and the fitting would be more diffi-
cult. But possibly, some of the problems that occur when 
curvature-based evaluation methods are applied could be 
solved in this way. This may be the subject of a future study 
based on the present experimental data.

Observations Regarding the Entire Population 
of the Tested Specimens

As discussed in the “Suitability Criteria for the Evaluation 
Methods and Plausibility Checks” section, the individual 
specimens do not necessarily belong to a common base pop-
ulation. They originate from different donors and different 
locations within the pelvis. Despite these differences, and 
because it was attempted to extract comparable specimens 
from the cortical bone, the coefficient of variation CV

pop,E
 of 

the modulus of elasticity over the entire population of tested 
specimens is regarded as an additional indicator for the evalu-
ation quality. Since the comparison of these coefficients is 
reasonable only in the case of complete elimination of falsify-
ing influences, it is limited to the submethods satisfying this 
condition. Table 3 contains the corresponding coefficients of 
variation listed in ascending order.

Method D exhibits the lowest coefficient of variation. This 
is another indication of the good suitability of this method. 
The average modulus of elasticity determined by Method 
D2Mgwt amounts to 1748 MPa with a confidence interval 
from 1511 to 1971 MPa determined by bootstrapping for a 
confidence level of 95%. For comparison, by the conven-
tional evaluation method (i.e., submethod A0Al), which is 
based on the midspan deflection measurement, a modulus of 
elasticity of 882 MPa was obtained with a confidence interval 
from 753 to 1006 MPa. The corresponding coefficient of 
variation CV

pop,E
 amounts to only approximately 0.885. How-

ever, the modulus of elasticity obtained in this way is unre-
alistic. Expectedly, the material stiffness is underestimated, 
mainly due to support indentations. For further evaluation 
methods, the determined moduli of elasticity and associated 
statistical results can be found in the supplementary material.

Fig. 8  Relative deviation of the analytical elastic curve from the 
measured curve, where the analytical elastic curve was calculated for 
the modulus of elasticity obtained by different evaluation methods; 
confidence intervals determined by bootstrapping for a confidence 
level of 95%

Table 3  Coefficients of variation for all specimens and the different submethods

Method D1Mguw D2Mguw D2Mgwt D1Mgwt C2Ml F4Mgth G3Mg E4Mg

CVpop,E 0.823 0.824 0.829 0.830 0.834 0.846 0.858 0.861

Method B2Ml B1Ml E4Ml E4Me F4Mgha F4Mgfu A4Ml A2Ml

CVpop,E 0.862 0.866 0.882 0.920 1.306 2.038 6.554 7.186
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Verification Tests on Synthetic Materials

In order to prove the reliability of the proposed evaluation 
methods, comparative tests of specimens made of homogene-
ous materials were conducted. Two beam-like specimens with 
the dimensions 2 × 8 × 36  mm3 (height × width × length) 
were made of polymethyl methacrylate (PMMA) by sawing 
and five specimens of different shape, see Fig. 9, were made 
of polylactic acid (PLA) by Fused Deposition Modeling.

All seven specimens were tested in its original orienta-
tion and, in addition, in an upside-down orientation. Infor-
mation on the specimen preparation and test procedure 
as well as the complete results may be found in the sup-
plementary material. The four tests of the PMMA beams 
yielded a modulus of elasticity of 3663 MPa ± 31 MPa 
(mean value ± standard deviation) by using the preferred 
evaluation method (Method D2Mgwt) and 3501 MPa ±  
27 MPa by conventual midspan deflection-based determi-
nation (Method A0Al). These measured moduli of elas-
ticity are slightly above the range of 3000 MPa to 3400 
MPa reported for PMMA in the literature [14]. This may 
be attributed to aging effects and varying test methods. 
Turning over the beams had almost no influence (mean 
absolute deviation less than 1%). The modulus of elastic-
ity of PLA varies normally in a wider range due to the 
strong dependence on the manufacturing process. For the 
PLA specimens, 3485 MPa ± 50 MPa were obtained by 
Method D2Mgwt and 3200 MPa ± 133 MPa convention-
ally by Method A0Al. As stated before, Method A0Al 
tends to underestimate the material stiffness. The moduli 
of elasticity determined for the PLA specimens with non-
uniform cross sections, see Fig. 9, has a mean absolute 
deviation from the one obtained for the specimen with 
uniform cross section by only 1.39% when the preferred 

Method D2Mgwt is applied. Apparently, the nonuniform-
ity is appropriately considered by the evaluation method 
and has almost no effect on the final result. The above 
mean absolute deviation amounts to 4.63% in case a con-
ventional evaluation by Method A0Al is conducted. As 
far as the differences between the evaluation methods are 
concerned, the observations made for the cortical bone 
specimens could be confirmed. If all falsifying influences 
are eliminated, i.e., the support indentation and the shear 
deformation, the recommended Methods C and D yield 
almost the same moduli of elasticity. The latter have a 
mean absolute deviation from the value obtained by the 
preferred Method D2Mgwt of less than 2.2%.

Conclusions

It is possible to determine the modulus of elasticity of beam-
like specimens with a nonuniform cross section by means of 
three-point bending tests and appropriate evaluation meth-
ods. It is strongly recommended to eliminate the falsifying 
influence of the support indentation from the results. This 
requires the measurement of the beam’s displacement at 
multiple points along its axis, not only at midspan.

In this study, several evaluation methods proved to be 
suitable for retrieving the average modulus of elasticity 
of the material from measured displacements. However, 
Method D is considered the most appropriate. It is based 
on the fitting of the elastic curve analytically determined 
by definite integrals to the measured deflections. In com-
parative evaluations of the experimental results, Method D 
proved to be less sensitive than the other methods to changes 
in the evaluation procedure. Neither the type of database, in 
particular the measurement point displacements (submeth-
ods D1**) or a fitted displacement function (submethods 
D2**), nor the weighting of the displacements had a sub-
stantial influence on the obtained modulus of elasticity. It is 
recommended, however, to use a fitted displacement func-
tion for the calculation since the influence of local fluctua-
tions of the measured values is reduced in this way. In addi-
tion, measurement points located outside the beam’s span 
may also be used for the curve fitting.

As stated previously, the elimination of falsifying influ-
ences is critical, especially the elimination of support inden-
tations. In this study, the proposed evaluation method yielded 
on average a 109.9% higher modulus of elasticity than the 
conventional determination, i.e., determination exclusively 
based on the midspan displacement (submethod A0Al).

Method C is also attractive for practical applications, in 
particular submethods C2Ml and C2Cl, which eliminate 
falsifying influences. It involves much less computational 
effort and leads to comparable results. This may be because 

Fig. 9  Shapes of the specimens made of Polylactic acid (PLA) for 
the verification tests (schematically shown); length of the specimens 
36 mm; from left to right: uniform rectangular cross section with the 
reference dimensions 2 × 8  mm2 (height × width); linearly varying 
height, at the supports 2.6 mm and 1.4 mm; linearly varying width, 
at the supports 9 mm and 7 mm; quadratic parabola for the height, 
1.8 mm at the supports and 2.2 mm at midspan; curved beam with 
uniform cross section (reference dimensions), constant radius of cur-
vature 50.5 mm
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the deflection maximum is, in most cases, not far off mid-
span, even for beams with a nonuniform cross section. Vari-
ation of the cross-sectional properties along the beam’s axis 
is also considered in Method C.

The evaluation method D2Mgwt was successfully used 
to determine the modulus of elasticity of human pelvic cor-
tical bone. The complete results and their correlation with 
harvesting locations as well as with donor-specific and other 
data will be presented in a forthcoming publication.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11340- 023- 00945-y.
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