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Abstract. We describe a fast, accurate method for determination of the optical coefficients of
‘semi-infinite’ and ‘infinite’ turbid media. For the particular case of time-resolved reflectance
from a biological medium, we show that a single Monte Carlo simulation can be used to fit the
data and to derive the absorption and reduced scattering coefficients. Tests with independent
Monte Carlo simulations showed that the errors in the deduced absorption and reduced scattering
coefficients are smaller than 1% and 2%, respectively.

Knowledge of the optical properties of biological tissue is important for many applications
of light in medicine. Derivation of the absorption and scattering coefficients from a set of
measurements requires a theoretical model. The transport equation (Ishimaru 1978) can be
used to describe light propagation in tissue, but because this equation can only be solved
numerically for most cases of interest, the diffusion approximation (Ishimaru 1978, Patterson
et al 1991) is often applied. Solutions of the diffusion equation for simple geometries can be
readily obtained (Pattersonet al 1989, Moulton 1990, Haskellet al 1994) but the diffusion
approximation breaks down near a radiation source (Kienleet al 1996, Hielscheret al
1995). This region is of special interest in applications such as endoscopy and coherent
light measurements.

The Monte Carlo method (Wanget al 1995) is often used to solve the transport equation
numerically, but it is too slow to use in an iterative algorithm where the optical properties
are estimated by comparison of simulation results with actual measurements. Here we
show that this limitation can be overcome by using a single Monte Carlo simulation if
the refractive index and the anisotropy factor of the medium are known. This is possible
because a Monte Carlo simulation for a certain anisotropy factor,g, refractive index,n,
and scattering coefficient,µs , can be used to calculate the desired quantities for all possible
absorption cofficients,µa, by applying Beer’s law. Also, the results for all scattering
coefficients (ifg and n are constant) can be obtained by suitably scaling the outcome of
a single Monte Carlo simulation, because differentµs values change only the distances
between the interaction points on the photon paths through the tissue. This ‘Mono Monte
Carlo’ approach can be used for steady state and for time-resolved problems if the geometry
is infinite or semi-infinite. In this study we illustrate the concept by estimating the reduced
scattering coefficient,µ′

s = µs(1−g), and the absorption coefficient from the time-resolved
diffuse reflectance from a semi-infinite turbid medium.

In the Monte Carlo simulations a point source with an infinitely small pulse was used
and the length of the photon path was computed to obtain the travel time through the turbid
medium. Convolution can be applied to calculate the reflectance for arbitrary sources. As
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phase-function the Henyey-Greenstein function (Henyey and Greenstein 1941) was used.
(We simulated a slab with a thickness of 30 m. Thus, the probability that a photon reached
the lower boundary equaled zero and the geometry could be considered as semi-infinite.)

First we demonstrate that different anisotropy factors do not significantly influence the
time-resolved reflectance ifg is close to 1, as is the case for tissue, so that the results of
a single simulation can be used. In general the solution to the transport equation depends
on four different optical parametersn, g, µs and µa. The refractive index,n, is about
1.4 for all soft tissue (Bolinet al 1989). The number of unknown optical coefficients
can be further reduced if the principle of similarity is valid. This principle states that
different combinations ofg and µs yield similar results for dependent quantities such as
diffuse reflectance. The simplest relationship is that conservation of(1 − g)µs will ensure
similarity. We performed Monte Carlo simulations of time-resolved reflectance,R(t), for
different optical parameters and radial distances,ρ, from the source to investigate the validity
of this relationship. Figure 1 showsR(t) for µ′

s = 1 mm−1 andµa = 0 mm−1 at ρ = 2.25,
3.25 and 4.75 mm forg = 0, 0.5, 0.8 and 0.9. This figure, and calculations with other
sets of optical coefficients, shows that the simple similarity relation is valid forg > 0.8.
Because the anisotropy factor of tissue is normally greater than 0.8 (Cheonget al 1990) and
Monte Carlo calculations are faster for smallerg, g = 0.8 was applied in the Monte Carlo
simulations in this study.

Figure 1. Time-resolved diffuse reflectance for different anisotropy factors,g = 0 (long dashed
curve),g = 0.5 (dashed),g = 0.8 (circles) andg = 0.9 (solid), at distancesρ = 2.25, 3.25 and
4.75 mm. The other optical properties areµ′

s = 1 mm−1, µa = 0 mm−1 andn = 1.4.

Determination of the optical properties of a semi-infinite or infinite turbid medium with
a single Monte Carlo simulation is based on the following principle: it is possible to extract
from the output of one simulation, performed with certain optical parameters, the desired
quantities for other optical coefficients if the anisotropy factor is the same (or the similarity
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relation is valid) and the refractive index does not change. From the results of a Monte Carlo
simulation performed with certain reference parameters,µsr andµar , the desired quantity,
such as the diffuse reflectance, can be obtained forµsr and any absorption coefficientµa

using Beer’s law. For example, ifµar = 0, the time-resolved diffuse reflectance,R(ρ, t),
can be calculated for anyµa from the reference time-resolved reflectanceRr(ρ, t) by

R(ρ, t) = Rr(ρ, t) exp(−µac t) (1)

wherec is the speed of light in the turbid medium. For the caseµar = 0, the results of
the single Monte Carlo simulation can also be scaled to yield the desired quantities for any
scattering coefficient. This is because altering the scattering coefficient in the simulation
results only in different lengths of the photon paths through the tissue (Graaffet al 1993).
In the case of time-resolved reflectance this means thatR(ρ, t), for arbitraryµs andµa = 0,
can be derived fromRr(ρ, t) calculated forµsr andµar = 0 using

R(ρ, t) =
(

µs

µsr

)3

Rr

(
ρ

µs

µsr

, t
µs

µsr

)
. (2)

The scaling factor for the distance variable is due to the different path lengths of the photons,
and consequently the time variable has to be scaled by the same value. A factor(µs/µsr)

2

(beforeRr ) stems from the scaling of the area and the remaining factor(µs/µsr) from the
scaling of the time.

In principle, using equation (1) and equation (2),R(ρ, t) can be easily and quickly
calculated for any absorption and scattering coefficients. However, it is not possible to
calculateRr(ρ, t) with Monte Carlo simulations for continuousρ and t values, but only
for certain distance and time intervals,Rr(ρi, ti), centered atρi and ti . As a consequence,
the results of the reference Monte Carlo simulation have to be interpolated to compute
R(ρ, t) with equation (2). In this study a Monte Carlo simulation forµ′

s = 1 mm−1,
g = 0.8 and µa = 0 mm−1 was performed, andRr(ρi, ti) was recorded for distances
betweenρ1 = 0.25 mm andρ40 = 19.75 mm at intervals of 0.5 mm, and for times between
t1 = 1.25 ps andt40 = 98.75 ps at intervals of 2.5 ps, and betweent41 = 105 ps and
t230 = 1995 ps at intervals of 10 ps. 33 million photon histories were used to achieve good
statistics. A non-linear regression method was applied to estimate the optical coefficients
from time-resolved reflectance data using the Mono Monte Carlo approach. Because it is
difficult in practice to make absolute measurements of the time-resolved reflectance, we
fitted relative data. Thus, not onlyµa andµ′

s but also a scaling parameter was fitted. For
the non-linear regression, reflectance data up tot = 1 ns were used, and the logarithm of
R(t) was fitted. This requires thatµ′

s < 2 mm−1, because of the scaling of equation (2)
and because the maximum time recorded in the Monte Carlo simulation was 2 ns. In theρ

direction the logarithm ofRr(ρi, ti) was linearly interpolated. For example, if theρ-scaling
of equation (2) results inρ ′ = ρµs/µsr with ρk < ρ ′ < ρk+1, then the time-resolved
reflectance,R(ρ ′, ti), is calculated from

R(ρ ′, ti) = exp
[
(1 − h) ln (Rr(ρk, ti)) + h ln (Rr(ρk+1, ti))

]
(3)

where

h = ρ ′ − ρk

ρk+1 − ρk

. (4)

Usually the time-resolved reflectance is measured at a certain distance,ρ, at different
time-valuesR(ti). Thus, for each iteration of the non-linear regression the reflectance
must be evaluated at these times requiring interpolation of the reflectance data produced
by the Mono Monte Carlo. Initially we used a linear interpolation of ln(R(ti)) between
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the adjacent time values, but this resulted in optical coefficients which were in many
cases incorrect and which depended on the initial estimates for the non-linear regression.
Linear interpolation failed because of statistical noise in the Monte Carlo data and rapid
changes in the reflectance at short times and small distances. Algorithms such as polynomial
interpolation or cubic spline interpolation provided only marginal improvement. In order to
improve the interpolation in time we sought an arbitrary function to approximate theR(t)

curves of the Monte Carlo simulation. Equation (5) provided a good fit to the logarithm of
the time-resolved reflectance for allρ values:

ln(R(t)) = c0 + c1 ln t + c2(ln t)2... + c10(ln t)10 . (5)

The time-resolved reflectance data for all 40 distances were fitted to equation (5) and the
fitting parameters,c0, ..., c10 at each distance were stored for later application.

Figure 2. Regression (solid curve) to a Monte Carlo simulation (circles) using equation (5).
The parameters of the simulation areµ′

s = 1 mm−1, µa = 0 mm−1, n = 1.4, g = 0.8 and
ρ = 9.75 mm.

Figure 2 shows one comparison of the Monte Carlo data and the fit generated from
equation (5). Using these fitting functions the interpolation errors in the time axis could
be minimized and the noisier data at large time values could be smoothed. Accordingly,
the non-linear regression performance was greatly improved and delivered the right optical
coefficients in most cases when tested with independent Monte Carlo simulations. However,
for small distances and small reduced scattering coefficients the derived optical coefficients
were still incorrect. This was caused by the larger interpolation errors in theρ variable
(equation (3)) at smallρµ′

s , where the second derivative at the maximum value ofR(t)

and the first derivative at early times are greater. We solved this problem by creatingR(t)

curves for intermediate distances by fitting ln(Rr(ρi, ti)) for constantti values between
t1 = 1.25 ps andt29 = 73.75 ps to an eighth order polynomial. Between each two adjacent
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R(ρi, t = constant) data points in the above mentioned time region, three new values were
deduced from the fitting curves, increasing the number ofR(ρ = constant, t) curves from
40 to 157. These 157 curves were then fitted to equation (5) and a subset is shown in
Figure 3. (In Figure 3 the reflectance for small distances exceeds 1 mm−2ns−1 in a certain
time region. To calculate the probability that an incident photon is re-emitted the reflectance
has to be integrated over a certain time interval and area. Thus, the probability does not
exceed unity.)

Figure 3. A sample of the 157 fitted time-resolved reflectance curves using equation (5). The
parameters of the Monte Carlo simulations areµ′

s = 1.0 mm−1, µa = 0 mm−1, g = 0.8,
n = 1.4 and 1< ρ < 12.5 mm; the top curve is forρ = 1 mm, the bottom curve is for
ρ = 12.5 mm, and the other curves have been calculated for intervals of 0.125 mm.

The performance of the non-linear regression using these fitted curves was excellent even
for smallerρ andµ′

s values. Independent Monte Carlo simulations withµ′
s = 0.5 mm−1,

0.72 mm−1, 1.0 mm−1 and 1.5 mm−1 were performed for the same time values as in the
reference simulation to test the non-linear regression. 120 reflectance curves for distances
2.5/µ′

s < ρ < 20 mm (ρµ′
s < 20) and an absorption coefficient ofµa = 0.02 mm−1 were

used. The mean error in the derived optical parameters was smaller than 2% for the reduced
scattering coefficient and smaller than 1% for the absorption coefficient. The reflectance
values at the earliest times (where the reflectance was less than 10% of the peak reflectance)
were not included, but enough data before the maximum of the curve were used so that no
essential information was lost. The absolute error in the absorption coefficient was found
to be independent of the value of the absorption coefficient, resulting in a greater relative
error for smallerµa values.

In conclusion, a new method was developed to derive the reduced scattering and
absorption coefficients of semi-infinite and infinite turbid media. Using the example of time-
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resolved reflectance from a semi-infinite medium, we showed that the reduced scattering
coefficient and the absorption coefficient could be determined with errors smaller than 2%
and 1%, respectively. The performance of the method was good even close to the source
(ρ = 2.5/µ′

s) and, in addition, it can be applied for very large absorption coefficients.
(Thus, the method works for the diffuse and the non-diffuse limit of photon propagation.)
Either of these conditions can invalidate algorithms based on approximate solutions to the
transport equation, such as diffusion theory. However, one has to pay particular attention
to potential interpolation errors in the scaling of the reference Monte Carlo data. Once the
reference simulation has been performed and the parameters of the regressions of the time-
resolved data to equation (5) have been stored, the optical coefficients can be determined
from time-resolved reflectance data in approximately one second with a state-of-the-art
personal computer. We note that if the Mono Monte Carlo method is used to determine
the optical coefficients from steady-state reflectance from a semi-infinite medium (Kienle
et al 1996), the interpolation problem is less important because the reflectance curves are
smoother and monotonically decreasing with distance.

For the simulations an anisotropy factor ofg = 0.8 and a refractive index ofn = 1.4
were used. We showed that the similarity relation is valid for the highg values found in
tissue enabling the use of one anisotropy factor. In order to investigate the influence of a
different value ofn on the performance of the Mono Monte Carlo method, we performed
simulations withn = 1.35 and determined the optical properties usingn = 1.4 in the
reference simulation. The absorption coefficient could be estimated within 3%, but the
error in the reduced scattering coefficient was usually much greater, exceeding 10% for
ρ < 10 mm. Therefore, knowledge of the tissue refractive index improves the accuracy of
the µa andµ′

s estimates.
The Mono Monte Carlo method can also be applied in the frequency domain by

numerical Fourier transformation of the time-resolved reflectance data at each evaluation of
R(t) in the non-linear regression.
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