DETERMINATION DF THE PITCH-ANGLE DISTRIBUTION AND TRANSVERSE ANISOTROPY OF INTERPLANETARY PARTICLES

C. K. Ng
Dept of Mathematics, University of Malaya Kuala Lumpur, Malaysıa

1. INTRODUCTIDN We present a method to determine the directional differential intensity (d.d.1.), expressed in terms of spherical harmonics, from sertored particle data, concurrent interplanetary magnetic field (IMF) and solar-wind velocity. In Section 2 , we show the relation between the d.d.1. and the mean sector count rates X_{1}. In Sectaon 3 , we show how to estimate the d.d.1. from the measured X_{1} and the associated errors due to Poisson statistics. In Section 4, using the above method, we determine the pitch-angle distribution and the transverse anisotropy of the d.d. 1 of low energy protons for the Day 118 , 1978 solar particle event. In Section 5 , we discuss an interesting correlation between the transverse anisotropy and the IMF direction.

2. RELATION BETWEEN DIRECTIONAL INTENSITY AND SECTOR RATES

We express the particle directional differential intensity as

$$
\begin{equation*}
J(p, \theta, \phi)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} F_{n}^{m}(\cos \theta)\left\{A_{n m}(p) \cos m \phi+B_{n m}(p) \sin m \phi\right\}, \tag{1}
\end{equation*}
$$

where $F_{n}^{m}=$ the associated Legendre functions, $p=$ particle momentum, $\theta=$ pitch-angle and $\varnothing=$ gyrophase 1 n the standard coordinate system (Ng , 1985). When the telescope points in the direction (γ, η), it measures the differential count rates

$$
\begin{equation*}
\sigma(p, \gamma, \eta)=\int_{\Omega} J(p, \theta, \theta) \operatorname{s}\left[\theta^{\prime}(\gamma, \eta, \theta, \theta)\right] \sin \theta d \theta d \theta \tag{2}
\end{equation*}
$$

where, following Sentman and Baker (unpublished manuscript), we express the angular response function of the particle telescope as

$$
\begin{align*}
S\left(\theta^{\prime}\right)= & \sum_{k=0}^{\infty} S_{k} P_{k}\left(\cos \theta^{\prime}\right)=\sum_{k=0}^{\infty} S_{k}\left\{P_{k}(\cos \gamma) F_{k}(\cos \theta)+\right. \\
& \left.+2 \sum_{m=1}^{k}\left[(k-m)^{\prime} /(k+m)^{\prime}\right] F_{k}^{m}(\cos \gamma) P_{k}(\cos \theta) \cos m(\eta-\phi)\right\} \tag{3}
\end{align*}
$$

It follows from the orthogonality of the spherical harmonics that
$E(p, \gamma, \eta)=4 \pi \sum_{n=0}^{\infty}\left[S_{n} /(2 n+1)\right] \sum_{m=0}^{n}\left\{A_{m m}(p) \cos m \eta+B_{n m}(p) \sin m \eta\right\} \operatorname{Pun}_{n}(\cos \gamma)$. (4) As the telescope sweeps over sector 1 , we average (4) to obtain $X_{1}(p)$ the mean differential Eount rate over sestor 1 ,

$$
\begin{align*}
X_{1}(p) & =4 \pi \sum_{n=0}^{\infty}\left[S_{n} /(2 n+1)\right] \sum_{m=0}^{n}\left\{A_{n m}(p)<\operatorname{Pm}_{m}(\cos \gamma) \cos m \eta\right\rangle_{1}+ \\
& \left.+B_{n m}(p)\left\langle F_{m}^{m}(\cos \gamma) \sin m \eta\right\rangle_{i}\right\}, \tag{5}
\end{align*}
$$

 measured from the ψ_{i} projection of the IMF onto the spin plane, and (ψ_{1}, ψ_{1+1}) defines sector 1 (see the $2 n d$ coordinate system in $F_{1} g_{\text {. }}$ 1). For multiple-telescope systems (Sanderson \& Hynds, 1977), eqn (5) should
be repeated for each telescope.
We now illustrate by specialising (1) and (5) to 8-sectored data for a telescope sweeping in the spacerraft's spin plane:

$$
\begin{align*}
& J(\rho, \theta, \theta)=\sum_{n=0}^{4} A_{n o} P_{n}(\cos \theta)+\sum_{n=1}^{3} A_{n 1} P_{n}^{1}(\cos \theta) \cos \theta, \tag{6}\\
& X_{1}=4 \pi \sum_{n=0}^{4} S_{n} A_{n o i} Q_{n o}^{1} /(2 n+1)+4 \pi \sum_{n=1}^{3} S_{n} A_{n 1} Q_{n 1}^{1} /(2 n+1), \tag{7}
\end{align*}
$$

$$
\begin{equation*}
\text { where } 0_{n o}^{1}=\left\langle\sum_{j=0}^{n} \text { an } \sin ^{3} \theta_{m} \cos ^{y} \psi\right\rangle_{1} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left.\hat{a}_{n 1}^{x}=\left\langle\hat{\hat{W}_{\perp 1}} \cos \psi+\hat{W}_{\perp 2} \sin \psi\right) \sum_{j=0}^{n} b 3 \sin ^{J_{\theta}} \operatorname{sos}^{y} \psi\right\rangle_{1} \tag{9}
\end{equation*}
$$

$a_{y}^{n}=$ coefficient of x^{j} in $F_{n}(x), b_{3}^{n}=$ coefficient of x^{y} in $F_{n}(x) /\left(1-x^{2}\right)^{\frac{1}{2}}$ $\theta_{\mathrm{B}}=$ angle between IMF and $5 / C \operatorname{spin}-a \times 15$, and ($\hat{W}_{11}, \hat{W}_{12}, \hat{W}_{13}$) denotes a unit vector in the direction of ExB in the 2nd coordinate system (Fig. 1). Note that the integrations in (8) and (9) may be performed readily in Glosed form.
3. DETERMINATION OF j FROM MEASURED X_{1} To simplify notation in the following, let

$$
\begin{array}{llll}
D_{n}=A_{n 0} & (n=0,4), & D_{n}=A_{n-4,1} & (n=5,7), \\
R_{n}^{1}=Q_{n 0}^{1} & (n=0,4), & R_{n}^{1}=Q_{n-4,1}^{1} & (n=5,7) . \tag{11}
\end{array}
$$

We least-square fit $\quad X_{1}=\sum_{n=0}^{7} C_{n} R_{n}^{1},(1=0,7)$,
to the 8 measured sector rates \bar{X}_{1}. This yields
where

$$
\begin{equation*}
\sum_{j=0}^{7} H_{n j} C_{s}=\sum_{i=0}^{7} F_{i}^{1} \bar{X}_{i}, \quad(n=0,7) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
H_{n\lrcorner}=\sum_{1} R_{n}^{1} R_{j}^{1}, \quad(n=0,7 ; j=0,7) . \tag{14}
\end{equation*}
$$

Inverting (13), we have
and thence $\quad D_{n}=\sum_{1} M_{n i} \bar{X}_{1}, \quad(n=0,7)$,
where Mni 15 ultimately expressed in terms of Qno, 3 $0_{n i}^{1}$, and $S_{n .}$ Using (16), we may determine the coefficients $A_{n m}$ in (G) by a matrix multiplication into the measured sector rates. When the IMF proJection lies on a sector boundary, the symmetric matrix Hmj becomes singular. So we drop the Aso termin (6) whenever the IMF projection somes within 2° of a sector boundary.

Suppose that K_{1} counts are registered over the time interval t_{e} in sector 1. Assuming Foisson

F39. 1

$$
\begin{align*}
& \text { statistics, we estimate } \\
& X_{1}=K_{i} / t_{c}, \operatorname{var}\left(X_{1}\right)=K_{1} / t z_{c}^{2}, \operatorname{var}\left(D_{n}\right)=\sum_{1} M_{n i}^{2} \operatorname{var}\left(X_{1}\right) . \tag{17}
\end{align*}
$$

If we define the anisotropy $\xi_{n}=D_{n} / D_{o}$, then, providing the counts are not too low,

$$
\begin{equation*}
\operatorname{var}\left(\xi_{n}\right) \simeq(1 / \bar{D} Z) \sum_{1}\left(M_{n 1}-\bar{\xi}_{n} M_{O 1}\right)^{2} \operatorname{var}\left(X_{1}\right) . \tag{18}
\end{equation*}
$$

Systematic errors are, of course, much harder to estimate.

Fig. 2: 15-minute antensity and anssotropies of $1.4-2.5$ MeV protons
4. APPLICATION As an example, we show in Fig. 2 the $15-m 1 n$ averages of $A_{00}, \xi_{10}, \xi_{20}, \xi_{30}$, and $-\xi_{11}$ for $1.4-2.5 \mathrm{MeV}$ protons, determined
with the above method using 8-sectored particle data (F.I.: R.E. Vogt, CalTech), concurrent IMF (F.I.: N.F. Ness, GSFC), and hourly solar wind speed (P.I.: H. Bridge, MIT), measured aboard IMF-8 and accessed through NSSDC. Some typical standard errars due to Foisson statistics only are indicated by vertical bars.

Estimating the spectral slopes by using the corresponding results for 4-13 MeV protons, "We have found the Dompton-lietting correitions iNg, 1985) for transformation to the ExE drift frame to be small, s.002 Acio, $<.01,<.01,<.02$ for Aoo, ξ_{10}, ξ_{20}, and ξ_{30} respectively. (For transformation to the solar wind frame, the Eorrections are of the order of 0.04 Aoo, $0.1,0.3$, and 0.5 respectively). Thus Aoo, $\xi_{10}, \xi_{z o} \xi_{30}$ essentially Eharacterise the pitch-angle distribution in the EvE drift frame.
5. DISCUSSION The Compton-Getting correation, $\varepsilon \hat{W}_{\perp}\left(3-p A b_{0} / A_{o u}+\right.$ $\left.p A B o / 5 A_{o o}\right)$ to the transverse anisotropy $-\xi_{11} 151$ ndicated by the dots in Fig. 2. The observed anisotropy varies in phase with this correction but 15 much larger $1 \Leftrightarrow$ magnitude. The same feature, even more marked, 15 seen for 4-13 MeV protons. What 15 the cause of this large discrepancy?

For Fig. 2, IMP-8's GSE coordinates an Fie varıes from (21.E, 21.5, 5.5) to (5.7, 29.5, 18.1). The $t 1 m e s$ when the IMF 15 commetted ta the nominal bow shook (BS) are indicated by horizontal bars in Fig. 2 (Ng \& Roelof, 1977). At ~ 1537 UT Day 119, some solar particles with guiding centres below the IMF through IMF-B are probably shadowed by the nose of the BS, resulting in the observed peak value of $-\xi_{12}=0.53$. However $B S$ Eonnetion does not account for the general variation of $-\xi_{11} 1 n$ Fig. 2.

Close inspertion reveals that the sector plot of X_{1} lags behind the IMF in directional rhanges. Hence a tentative explanation $i s$ that some observed $15-m i n$ averages contan a substantial fraction of nom-gyrotropic distributions which reside a short distanse (~1 gyroradius) beyond a 'fink' in the IMF. An alternative explanation 15 as follows. When ϕ_{s} swings rapidly in an averaging interval such that its average value 15 close to one end of the range of values, then a field-aligned anisoptropy ξ_{10} would "induce" a momzero value of $-\xi_{11}$, $1 . E .$, the apparent value of $-\xi_{11} 15$ not real. Further studies with smaller averaging intervals would clarify this matter.
6. CONCLUSION We have shown how to obtan the directional differential intensity referred to the standard coordinate system ($\mathrm{Ng}, 1985$) from sectored particle data and concurrent IMF and solar wind data. The corrections for transformation to the ExE drift frame are explicitly calculated and found to be small for these ~1.5 MeV protons. However, the new correction formulae would be 1 mportant for $\leq 500 \mathrm{KeV}$ protons. It 15 tentatively suggested that the 'observed' transverse anisotropy may in large part be induced by a rapidly shanging IMF in the presence of a field-aligned anısotropy.

Acknowledgement Prof E.C. Stone's hospitality and the advice of Drs. R.A. Mewaldt and T.G. Garrad on CalTech EIS experiment are gratefully acknowledged. I thank B.L. Ng for helping to prepare the manusiript.

References

Ng, C.K. (1985) Paper SH 3.1-10, this conference.
Sanderson, T.R. \& Hynds, R.J. (1977) Planet. Space Sci.. $75,799$. Ng, C.K. \& Roelof, E.C. (1977) EOS Trans. A.G.U., 58, 1205.

