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ABSTRACT

Slope Detection and Ranging (SLODAR) is a technique for the measurement of the vertical
profile of atmospheric optical turbulence strength. Its main applications are astronomical site
characterization and real-time optimization of imaging with adaptive optical correction. The
turbulence profile is recovered from the cross-covariance of the slope of the optical phase
aberration for a double star source, measured at the telescope with a wavefront sensor (WFS).
Here, we determine the theoretical response of a SLODAR system based on a Shack–Hartmann
WFS to a thin turbulent layer at a given altitude, and also as a function of the spatial power
spectral index of the optical phase aberrations. Recovery of the turbulence profile via fitting
of these theoretical response functions is explored. The limiting resolution in altitude of the
instrument and the statistical uncertainty of the measured profiles are discussed. We examine
the measurement of the total integrated turbulence strength (the seeing) from the WFS data and,
by subtraction, the fractional contribution from all turbulence above the maximum altitude for
direct sensing of the instrument. We take into account the effects of noise in the measurement of
wavefront slopes from centroids and the form of the spatial structure function of the atmospheric
optical aberrations.

Key words: atmospheric effects – instrumentation: adaptive optics – site testing.

1 I N T RO D U C T I O N

An accurate knowledge of the vertical profile of the strength of
atmospheric optical turbulence is critical for the optimization of
adaptive optics (AO) for astronomy. Statistical profile data are re-
quired for the planning and design of next-generation AO sys-
tems for existing telescopes and for extremely large telescopes
(Ellerbroek & Rigaut 2000; Le Louarn & Hubin 2004; Tokovinin
2004). Profile data available in real time can be used to optimize sys-
tem parameters including servo-loop bandwidths and wavefront re-
construction algorithms (Tokovinin et al. 2001). Furthermore, con-
temporaneous measurements of the turbulence profile can be used to
characterize anisoplanatic variations of the point spread function for
de-convolution of AO-corrected images (Wilson & Jenkins 1996;
Fusco et al. 2000).

Slope Detection and Ranging (SLODAR) (Wilson 2002) is an op-
tical triangulation method for the measurement of the atmospheric
optical turbulence profile C2

n(h). The method can also be used to de-
termine the temporal characteristics and translational (wind-blown)
velocity of the turbulence as a function of altitude, but in this paper

�E-mail: r.w.wilson@durham.ac.uk

we concentrate on the method for estimation of the profile of turbu-
lence strength. The profile is determined from the spatial covariance
of the slope of the wavefront phase aberration at the ground for the
two distinct paths through the atmosphere defined by a double star
target. The aberrations are measured using one or more wavefront
sensors (WFSs).

SLODAR was first used to measure turbulence profiles using
large astronomical telescopes at the Observatorio del Roque de los
Muchachos, La Palma. More recently, the technique was used to
implement a portable, stand-alone, turbulence profiler for European
Southern Observatory (ESO), based on a 40-cm telescope (Wilson
et al. 2004). In these implementations, a single Shack–Hartmann
(SH) WFS is used, with a field of view large enough to permit
simultaneous observations of the resulting spot patterns for both
components of the double star on the same detector.

In the original analysis, the normalized turbulence profile was
recovered from the measured centroid cross-covariance functions
via a simple de-convolution, with the auto-covariance (measured
for the brighter of the two stars) used as the impulse response of the
system to a thin turbulent layer. This simple de-convolution method
is inaccurate. The average centroid motion (over all subapertures in
the SH array) must be subtracted from the data in order to avoid bias
by the effects of telescope guiding errors and wind-shake. However,
this process also removes the common tilt motion induced by the
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836 T. Butterley, R. W. Wilson and M. Sarazin

atmosphere itself. In the cross-covariance, this introduces a small
anisoplanatic component, so that the impulse response varies slowly
with altitude. Here, we determine the impulse response for SLODAR
as a function of the turbulence altitude, and also as a function of
the spatial power spectral density of the phase fluctuations. The
fractional error in determination of the turbulence strength, if the
anisoplanatic effect is ignored, ranges from zero at the ground to
approximately 20 per cent at the maximum profiling altitude of the
system, for the case of Kolmogorov turbulence.

In Section 2, we review the SLODAR analysis and detail the
method used for the calculation of the theoretical system response
as a function of the altitude of a thin turbulent layer, for a given spa-
tial spectrum of aberrations. Section 3 explores the determination
of the turbulence profile via a fit to the measured cross-covariance
function, including assessments of the statistical uncertainty of the
measured profile and the effective resolution in altitude. In Sec-
tion 4, we examine the determination of the total integrated turbu-
lence strength from the WFS data and, by subtraction, the fractional
contribution from any turbulence at altitudes greater than the maxi-
mum altitude for direct sensing from the cross-covariance. We take
into account measurement noise of the centroid values and the spe-
cific form of the spatial structure function of the atmospheric optical
aberrations.

2 T H E T H E O R E T I C A L I M P U L S E R E S P O N S E

F O R S L O P E D E T E C T I O N A N D R A N G I N G

For SLODAR, we measure the spatial covariance of the gradient of
the optical phase aberration observed at ground level. The turbulence
altitude profile is found via triangulation, as shown in Fig. 1. A layer
at altitude H produces a peak in the cross-covariance function at a
spatial offset equal to Hθ . If the ‘impulse response’ of the system
– the shape of the covariance for a thin layer at a given altitude – is
known, then the turbulence profile can be recovered via a fit to the
measured cross-covariance function.

Figure 1. Overview of the SLODAR method geometry. θ is the angular
separation of the double star target. D is the diameter of the telescope pupil
and w the width of a single subaperture in the SH array. The centres of the
sampling bins in altitude are given by �δh.

The fit yields an estimate of the integrated turbulence strength in
the altitude bins corresponding to each of the spatial offsets in the
measured slope covariance function. The width of the bins is given
by

δh = w

θ
(1)

where w is the width of a WFS subaperture and θ is the angular
separation of the target double star. If the WFS optics are collimated
so that the lenslet array is at the optical conjugate of the telescope
entrance aperture, then the point in the covariance function for zero
spatial offset will correspond to a range of altitudes of width δh
centred at the telescope. The remaining bins, of equal size, will be
centred at altitudes iδh, i = 1, . . . , (N − 1) where N is the number
of WFS subapertures across the telescope pupil.

Hence, the resolution in altitude of a SLODAR system is deter-
mined by the diameter of the WFS subapertures and the angular
separation of the target. For a given resolution δh, the maximum
altitude for direct sensing of the turbulence profile is simply δh
multiplied by the number of subapertures across the WFS. Hence,
for a system based on a small telescope, the lowest altitude layers
may be examined in detail by choosing targets with large separa-
tions. The main application of the ESO portable SLODAR system
is characterization of the ground layer turbulence, typically with
a resolution of 150 m to a maximum altitude of approximately
1 km. Low-resolution (δh ∼ 2 km) profiles up to high altitudes
can also be measured. For a WFS with, for example, 80 × 80 sub-
apertures deployed on a 8-m telescope, profiles with a resolution of
200 m could be determined to a maximum altitude of 16 km. For
any SLODAR system, the total optical turbulence strength for the
whole atmosphere is also measured (see Section 4). Hence, the
integrated turbulence at all altitudes greater than the maximum
altitude for direct sensing is determined as the difference of the
total turbulence strength and the sum of the directly measured
profile.

We now determine theoretical expressions for the SLODAR
cross-covariance as a function of the turbulence altitude. The cen-
troid data for the SH WFS are a measure of the slope of the wavefront
over each subaperture. sx[1]

i, j (t) is the slope in the x-direction for the
subaperture [i , j] for the first star, where i and j index the position
of a subaperture in the SH array horizontal (x) and vertical (y) di-
rections at time t, for the first star. Similarly sx[2]

i, j (t) for the second
star.

sx[1]
i, j =

∫
φ
(
wr [1]

i, j

)
Fx

(
r [1]

i, j

)
W

(
r [1]

i, j

)
dr [1]

i, j (2)

where r [1]
i, j is a spatial coordinate, defined in units of the subaperture

width w, with its origin at the centre of subaperture [i, j] for star 1
(similarly r [2]

i ′, j ′ for subaperture [i′, j′], star 2). φ(wr [1]
i, j ) is the optical

phase in the plane of the aperture. W(r) is the subaperture pupil
function:

W (r ) = 1 for |x |, |y| < 1/2

= 0 otherwise, (3)

and Fx is the linear slope function in the relevant direction, normal-
ized such that∫

F2
x (r )W (r ) dr = 1. (4)

The cross-covariance of the slopes for two subapertures is

C x
i, j,i ′, j ′ = 〈

sx[1]
i, j sx[2]

i ′, j ′
〉

(5)
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SLODAR turbulence profiling 837

for the slope in the x-direction between subapertures [i, j] for star 1
and [i′, j′] for star 2. Similarly for the y direction. The spatial offset
between the subapertures in units of w is (δi , δ j) = (i ′ − i , j ′ − j).
The angular brackets denote averaging over a large number of inde-
pendent realizations of the turbulent distortions over the telescope.
If the orientation of the double star target is assumed to be aligned
along the axis of the WFS in the x-direction, then we can consider
covariance functions for the tilts in the directions longitudinal (L)
and transverse (T) to the spatial offset. The L covariance for a pair
of subapertures is given by

C x
i, j,i ′, j ′ =

∫ ∫ 〈
φ

[1]
i, j

(
wr [1]

i, j

)
φ

[2]
i ′, j ′

(
wr [2]

i ′, j ′
)〉

Fx

(
r [1]

i, j

)
Fx

(
r [2]

i ′, j ′
)

× W
(
r [1]

i, j

)
W

(
r [2]

i ′, j ′
)

dr [1]
i, j dr [2]

i ′, j ′ . (6)

The mean phase over the whole of the telescope aperture (the
‘piston’ term) does not affect the measurement of wavefront slopes.
We therefore express the integral in terms of the covariance of the
phases relative to the aperture means. Divergence of the calculation
resulting from the pole at the origin of the spatial power spectra of
the phase aberrations is then avoided. The covariance of the slopes
across two subapertures can be found via a numerical integral involv-
ing the spatial structure function, Dφ(wx), of the phase aberrations
(Wilson & Jenkins 1996):〈
�

[1]
i, j

(
wr [1]

i, j

)
�

[2]
i ′, j ′

(
wr [2]

i ′, j ′
)〉 = −1

2
Dφ(wx)

+ 1

2

∫
W

(
r [1]

i, j

)
Dφ(wx) dr [1]

i, j

+ 1

2

∫
W

(
r [2]

i ′, j ′
)

Dφ(wx) dr [2]
i ′, j ′

− 1

2

∫ ∫
W

(
r [1]

i, j

)
W

(
r [2]

i ′, j ′
)

Dφ(wx) dr [1]
i, j dr [2]

i ′, j ′ , (7)

where �
[1]
i, j (wr [1]

i, j ) is the phase relative to the aperture mean,

x = u + r [2]
i ′, j ′ − r [1]

i, j (8)

and u is the vector separation of the subapertures in units of the
subaperture width w (see Fig. 2), and is given by

u = (i ′ − i + �, j ′ − j). (9)

To remove the effect of common motions induced by telescope
guiding errors and wind-shake, we subtract the mean slope for all
subapertures from the instantaneous slopes at each subaperture. The
global tilt subtraction is carried out separately for stars 1 and 2.
This introduces a dependence of the subaperture covariances on
the altitude of the turbulence. For a turbulent layer at an altitude
H, corresponding to an offset of � = Hθ/w in the x-direction (in
units of w) between the projections of the telescope pupil on to the
turbulent layer for the two stars, the covariance of the slopes for two
subapertures after global tilt subtraction, is

C ′x
i, j,i ′, j ′ (�) = 〈(

s[1]
i, j − s[1]

)(
s[2]

i ′+�, j ′ − s[2]
)〉

= 〈
s[1]

i, j s
[2]
i ′+�, j ′

〉 − 〈
s[1]

i, j s[2]
〉

− 〈
s[1]s[2]

i ′+�, j ′
〉 + 〈

s[1] s[2]
〉

(10)

where s[1] is the slope for star 1 averaged over all subapertures, for
example,

s[1] = 1

Nsub

∑
valid i, j

s[1]
i, j (11)

Figure 2. Geometry for the calculation of the covariance of wavefront slopes
across WFS subapertures.

Figure 3. Pupil geometry for the 8 × 8 subaperture ESO portable SLODAR
system, showing the mapping of the square WFS subapertures on to the
annular aperture function of the Meade LX200 telescope.

〈
s[1]s[2]

i ′+�, j ′
〉 = 1

Nsub

∑
valid i, j

〈
s[1]

i, j s
[2]
i ′+�, j ′

〉
(12)

where N sub is the total number of subapertures and ‘valid i, j’ indi-
cates all values of i and j for which the corresponding subaperture
is not vignetted (dependent on WFS/pupil geometry, for example,
see Fig. 3).

For SLODAR, we average over all overlapping subaperture pairs
for a given spatial separation (δi , δ j), taking into account the projec-
tion of the telescope pupil function on to the subaperture array. The
response of SLODAR to a turbulent layer at altitude H is therefore
described by

XL(�, δi, δ j) = 1

Ncross

∑
valid i, j,i ′, j ′

C ′x
i, j,i ′, j ′ (�) (13)

where valid i , j , i ′, j ′ refers to all values of i, j, i′ and j′ such that
subapertures [i, j] and [i′, j′] both exist, remembering that (i ′, j ′) =
(i + δi , j + δ j). N cross is the number of such existing subaperture
pairs for a given (δi, δj).

The impulse response functions are two dimensional. However,
two-dimensional information is only required if the velocities of
the turbulent layers are to be measured. Velocity information can
be obtained by introducing a temporal offset between the centroid
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data being correlated for the two stars and observing the resulting
spatial offset of the peaks in the two-dimensional cross-covariance
function. If only the turbulence strength as a function of altitude
is required, all of the necessary information is contained in a cut
through the two-dimensional covariance function in the x-direction,
at y = 0. Hence, we can set j = j ′ in equation (13) to obtain a set
of one-dimensional response functions:

XL(�, δi) = 1

Ncross

∑
valid i, j,i ′

C ′x
i, j,i ′, j (�). (14)

The shape of the slope covariance function depends on the un-
derlying power law describing the spatial fluctuations of the phase.
For the standard Kolmogorov model of atmospheric turbulence, the
spatial spectrum of aberrations at the ground follows a power law
with exponent −11/3. Here, we also explore two alternative models
for the spatial power spectrum – the von Karman spectrum and the
generalized spectrum.

The von Karman spectrum again assumes an underlying spectrum
with slope −11/3, but the spectrum is modified to take into account
the finite spatial outer scale of aberrations:

Iφ(κ) = 0.022 883r−5/3
0

L11/3
0(

1 + L2
0κ

2
)11/6 , (15)

where κ is the spatial frequency modulus, r0 is the Fried parameter
and L0 is the outer scale. The corresponding form for the spatial
structure function of the phase is (Jenkins 1998)

Dφ(r ) = 0.172 53

(
L0

r0

)5/3

×
[

1 − 2π5/6

	(5/6)

(
r
L0

)5/6

K5/6

(
2π

r
L0

)]
, (16)

where K is a modified Bessel function of the second kind.
A generalized expression for the phase spectrum was described

by Nicholls, Boreman & Dainty (1995):

Iφ(κ) = Aβκ−β

ρ
β−2
0

(2 < β < 4), (17)

where ρ 0 is analogous to r0 in Kolmogorov turbulence and the con-
stant Aβ is chosen such that the piston-subtracted wavefront variance
over a pupil diameter D = ρ 0 is equal to 1 rad2. Note that this dif-
fers slightly from the Kolmogorov definition so that a generalized
power spectrum with β = 11/3 matches the Kolmogorov form when
ρ 0 = 0.982 r 0. The value of Aβ is given by (Boreman & Dainty
1996):

Aβ = 2β−2
[
	
(

β+2
2

)]2
	
(

β+4
2

)
	
(

β

2

)
sin

(
π β−2

2

)
πβ	(β + 1)

. (18)

The corresponding form for the phase structure function is

Dφ(r ) = γβ

(
r
ρ0

)β−2

(19)

where γ β is a constant that keeps consistency between the power
spectrum and the structure function, given by Rao, Jiang & Ling
(2000):

γβ = 2β−1
[
	
(

β+2
2

)]2
	
(

β+4
2

)
	
(

β

2

)
	(β + 1)

. (20)

For a given WFS and telescope pupil geometry, the individual
subaperture tilt covariances (with global tilt correction) can now be

calculated from equations (6) and (7) via numerical integration. The
SLODAR impulse response functions are then found from equa-
tion (14) by averaging over all overlapping subaperture pairs for
each offset δi.

Figs 4 and 5 plot the resulting normalized impulse response func-
tions for the case of the 8 × 8 subaperture system with the geometry
shown in Fig. 3. The ratio of the telescope aperture size to the diam-
eter of central obscuration in this case is identical to that for the 40-
cm Meade LX200 telescope employed for the ESO portable SLO-
DAR system. The shape of the response functions for this case will
be correct for any system with same WFS/pupil geometry, regard-
less of the telescope aperture size. Subapertures that are less than
70 per cent illuminated are excluded from the analysis. In Fig. 4,
we plot the longitudinal and transverse response functions for the
von Karman power spectrum with L 0 = 1, 2 and 10 times the tele-
scope aperture diameter. In Fig. 5, we plot the response functions
for the generalized power spectrum with β = 9/3, 10/3 and 11/3.
In each plot, the response functions are normalized to the value of
the covariance for δi = 0 and � = 0.

For the von Karman spectrum and a given value of L0, the impulse
response functions scale as r−5/3

0 . For the generalized spectrum, they
scale as ρ

2−β

0 .
We note that equation (2) strictly refers to the Zernike tilt (‘Z-tilt’)

of the wavefront across the subaperture. This differs slightly from the
mean or gradient tilt (‘G-tilt’) of the wavefront (see e.g. Tokovinin
2002). The actual gradient measured will be closer to the Z-tilt
or G-tilt depending on the details of the image-centring algorithm
used. The classical centroid, or centre of mass, yields the G-tilt.
However, if the images are strongly thresholded or are fitted to a
Gaussian, then the measured tilt will be closer to the Z-tilt. A Monte
Carlo simulation of the SLODAR WFS, based on translating ran-
dom phase screens with the required spatial structure function of
aberrations, was used to provide an independent check on the form
of the impulse response functions and to investigate any possible
effect resulting from the details of the centroiding algorithm. The
centroiding algorithm employed in the simulation was identical to
that used for analysis of real SLODAR data. A threshold was ap-
plied to the image data before calculation of the centre of mass to
remove the influence of detector read-out noise on the centroids.
The results for the simulation matched the numerical results shown
in Figs 4 and 5 to within the statistical uncertainty of the simulation
approach.

From Figs 4 and 5, we note that the width of the covariance func-
tion in the longitudinal direction drops more rapidly with increasing
spatial offset than for the transverse direction. Furthermore, the dif-
ference between the L and T functions increases as the outer scale
decreases or as the power-law coefficient β decreases – as we deviate
from the Kolmogorov case, the width of the longitudinal functions
decreases more rapidly than for the transverse functions. Similar
sets of covariance functions can be produced for the von Karman
and generalized spectra by adjusting the values of β and L0. Hence,
in practice, it may be difficult to distinguish which of the two models
is more applicable.

The calculated impulse response functions are for the high light
level case (zero centroid measurement noise). Centroiding noise
resulting from shot noise and detector read-out noise in the WFS
images will produce a small, but not always negligible, bias of the
measured cross-covariance. Before subtraction of the mean slope,
the cross-covariance functions are not biased by shot noise, since
the noise is statistically independent for different subapertures and
reference stars. Subtracting the mean tilt adds a constant bias to
the cross-covariance, equal to the centroid noise variance for a
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SLODAR turbulence profiling 839

Figure 4. Normalized SLODAR theoretical impulse response functions for the von Karman spectrum of turbulence and the 8 × 8 WFS geometry shown in
Fig. 3. The left-hand panel: longitudinal (L), the right-hand panel: transverse (T) covariance. From the top to bottom panel, L 0 = 10, 2 and 1 times the telescope
aperture diameter. Each plot shows response functions for � = 0 (peak at δi = 0), 2, 4 and 6, corresponding to increasing layer altitudes above the telescope.
In each panel, the covariance values are normalized relative to the value for δi = 0 and � = 0.

single subaperture divided by the number of valid subapertures
in the WFS array. In typical conditions, the noise variance is of
the order 10 per cent of the total centroid variance, so that the
bias on the cross-covariance is ∼0.2 per cent of the total cen-

troid variance for the Meade-based SLODAR system. The cen-
troid noise variance and, hence, the cross-covariance bias level can
be estimated from the shape of the auto-covariance function (see
Section 4).
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840 T. Butterley, R. W. Wilson and M. Sarazin

Figure 5. Normalized SLODAR theoretical impulse response functions for generalized spectrum, for the WFS geometry shown in Fig. 3. The left-hand panel:
longitudinal (L), the right-hand panel: transverse (T) covariance. From the top to bottom panel, β = 11/3, 10/3 and 9/3. Each plot shows response functions
for � = 0 (peak at δi = 0), 2, 4 and 6, corresponding to increasing layer altitudes above the telescope. In each panel, the covariance values are normalized
relative to the value for δi = 0 and � = 0.

3 E S T I M AT I O N O F T H E T U R BU L E N C E

P RO F I L E

3.1 Profile fitting

A measure of the vertical profile of atmospheric turbulence can now
be found by fitting the altitude-dependent impulse response func-

tions to the measured tilt covariance values. The impulse response
functions are close to orthogonal so that the generalized inverse of
the response function matrix can be used to obtain the profile by
multiplication with the cross-covariance.

In practice, the fit may be more complicated if the spatial spectrum
of the phase aberrations varies significantly with altitude. Here, we
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SLODAR turbulence profiling 841

consider the generalized spectrum where the value of β may vary
with altitude. A similar argument applies to the von Karman spec-
trum if L0 is not constant with altitude.

For example, in an individual case, a global best fit over all al-
titudes might be found using the impulse response functions for
β = 11/3. However, if an individual turbulent layer (e.g. the surface
layer) is in reality characterized by a smaller value of β, then spu-
rious and unphysical negative values (‘side-lobes’) may appear in
the profile estimate adjacent to the layer, since the model response
functions will be too broad. Conversely, if we assume a global value
for β that is smaller than the actual value for an individual layer,
then we will effectively lose resolution in the restored profile for that
layer – the impulse response functions are too narrow, so that the
some of the signal due to a layer centred at one resolution element
will be ‘smeared’ into neighbouring elements.

For a SLODAR WFS system with high spatial sampling (e.g.
30 × 30 subapertures across a large telescope), it would be theoret-
ically possible to measure both the turbulence strength and β as a
function of altitude. Where individual layers were clearly separated
in altitude, a value of β could be found for each by fitting to the
shape of individual peaks in the two-dimensional covariance func-
tion. For the low-resolution (8 × 8) portable SLODAR system, there
is insufficient spatial resolution to apply this method. We therefore
assume that the value of β is the same for all altitudes and seek the
best fit to the data (in the least-squares sense) as a function of β.
However, we bear in mind that the appearance of persistent negative
values adjacent to peaks in the fitted profiles may indicate a failure
of this approach.

Examples of data recorded with the ESO portable SLODAR
system (8 × 8 subapertures on a 40-cm telescope) and with a
SLODAR system at the 4.2-m William Herschel telescope (12 × 12
subapertures) are shown in Fig. 6. Best-fitting curves for the auto-
covariance and cross-covariance, assuming the generalized turbu-
lence spectrum are shown. For the ESO system example, the best fit
was obtained for β = 3.33. For the WHT example, the broken line
shows the best fit obtained when the value of β was assumed to be
the same for all altitudes, yielding a best-fitting value of β = 3.45.
In this case, an improved fit could be obtained, for the same result-
ing turbulence profile, by reducing the value of β for the profile bin
centred at zero altitude only to 3.25. Hence, in this case, there is ev-
idence that the lowest-altitude turbulence (including surface-layer
turbulence and any dome and mirror turbulence) is characterized by
a spatial spectrum with a shallower slope than for the higher-altitude
turbulence.

Error bars show the statistical uncertainties estimated by divid-
ing each data set into 10 subsamples and measuring the resulting
standard error of the scatter of the covariance and fitted turbulence
profile values.

3.2 Statistical uncertainty of the measured profile

The uncertainty on the estimate of the integrated turbulence strength
in each altitude bin depends on the number of independent samples
contributing to the centroid covariance measurements. The distribu-
tion of covariance values for a given spatial offset is approximately
normal. Hence, if we assume that the statistics of the turbulence
are stationary – i.e. the underlying value of r0 associated with each
turbulent layer does not change with time – then we expect the statis-
tical uncertainty of the covariance, and hence the turbulence profile
estimate, to decrease as the square root of the number of independent
samples. The observing time required to observe a given number of
independent atmospheric ‘realizations’ of the wavefront aberration

is dependent on the translational wind-speed associated with the tur-
bulent layers. For higher wind-speeds, a shorter observing time will
be required to achieve a required uncertainty in the profile measure-
ment. Given that the wind-speed is not constant with altitude, we
may also expect the statistical uncertainty of the profile to vary with
altitude. For example, high-altitude wind speeds are typically much
higher than those at the ground, so that characterization of the low-
altitude (‘ground layer’) turbulence may require longer observing
times than for the high-altitude (‘free atmosphere’) profile.

The number of independent samples contributing to each mea-
surement of variance also depends to some degree on the number
of valid overlapping subapertures N cross for each spatial offset, and
will be proportional to

√
Ncross for normally distributed data. N cross

decreases with increasing offset �, so that the statistical uncertainty
of the profile will be somewhat greater for samples corresponding
to higher altitudes.

Fig. 7 shows examples of temporal variations of the estimated
profile for simulated and real data for the ESO portable SLODAR
system. In the simulated example (top panel), the input atmospheric
turbulence profile consisted of a single phase screen located at the
telescope altitude, so that only the first, zero-altitude, sampling bin
should be non-zero. The simulation assumed a translation of the
turbulent layer at 10 m s−1 and a total sampling time of 15 s per
measurement. 20 independent profile estimates are plotted to show
the scatter. The broken line is the mean of the 20 resulting profile
estimates.

The input phase screen was characterized by an integrated turbu-
lence strength of C2

n dh = 3.50 × 10−13 m1/3. The mean measured
value of C2

n d h in the zero-altitude bin was 3.45 × 10−13 m1/3 with a
standard error of 4 × 10−15 m1/3. The standard error for the distribu-
tions of measured values in the remaining bins (except for the largest
offset, � = 7) was approximately 1 × 10−15 m1/3. For these bins
the mean measured values were each consistent with zero within
twice the standard error. As expected, the scatter for the final bin
corresponding to � = 7 was significantly greater than for smaller
offsets, with a standard error of 3 × 10−15 m1/3.

The middle and bottom panels of Fig. 7 show the scatter for
20 successive profile measurements recorded over two example
20-min periods at Cerro Paranal on 2005 March 26 and 2005 Au-
gust 4, respectively. Each individual profile was determined from a
sequence of WFS data of duration 15 s. The first example of real
data (middle panel) was chosen to have no significant turbulence
above the first bin. As for the simulated example, the mean mea-
sured values for � > 0 are consistent with zero, with standard er-
rors of approximately (2 × 10−15 m1/3). The scatter of the values for
�=0 is large in this case, probably due to fluctuations of the strength
of the surface layer turbulence on time-scales of a few minutes.

The example from 2005 August 4 (bottom panel) shows detection
of a weak layer at the altitude corresponding to the 4th bin (centred
at an altitude of 650 m) in addition to the stronger surface layer.
This example gives a good indication of the sensitivity of the ESO
SLODAR system as a function of the observing time in typical
conditions – the layer at 650 m with strength 5 × 10−14 m1/3 is
detected at the 2σ level in an individual 15-s observation and at the
7σ level in a total observing sample of 300 s comprising the 20
individual 15-s samples.

3.3 Altitude resolution

As discussed in Section 2, the resolution in altitude of the SLODAR
method for a given angular separation of the target double star is lim-
ited by the finite diameter of the WFS subapertures. In the absence
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842 T. Butterley, R. W. Wilson and M. Sarazin

Figure 6. Example measured auto-covariance (top panels) and cross-covariance functions (middle panels) with the ESO portable SLODAR system at Cerro
Paranal (left-hand panel) and a SLODAR system at the William Herschel telescope (right-hand panel). Solid and broken lines are fits of the theoretical covariance
functions (see Section 3.1). The bottom panels show the optical turbulence profile estimate in each case. The data correspond to a single WFS sample sequence
in each case, of duration 15 s for the ESO system and 30 s for the WHT example.

of noise on the measurements of covariance of the wavefront slopes,
the measured profile will be the actual turbulence profile convolved
with a rectangular function with unit area and with width δh given
by equation (1). This is then sampled by the SLODAR resolution

elements of width δh centred at iδh, i = 1, . . . , (N − 1), where
N is the number of WFS subapertures across the telescope pupil.

Fig. 8 gives a schematic demonstration of the theoretical limit for
the altitude resolution. The input turbulence profile consists of two
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SLODAR turbulence profiling 843

Figure 7. Examples of the statistical fluctuation of the measured turbulence
profile for the ESO portable turbulence profiler (see Section 3.2). The top
panel: simulated data. The middle and bottom panels: data recorded at Cerro
Paranal on 2005 March 26 and 2005 August 4.

thin layers. We assume that there is no noise or statistical uncer-
tainty on the measured cross-covariance function, so that recovery
of the layer strengths and altitudes by fitting of the impulse response
functions is limited only by the finite resolution in altitude of the
system. Then when the altitude of a thin turbulent layer corresponds
exactly to the centre of one of the SLODAR resolution bins, the re-
covered profile will be zero everywhere except for that bin. In all
other cases, when the value of the spatial offset � corresponding to
the altitude of the layer is not integer, we will observe non-zero tur-
bulence strength in two adjacent resolution elements. For example,
when the layer altitude corresponds to the boundary of two reso-
lution elements, we will observe equal turbulence strength in these
neighbouring bins. We note that the measured profile in this case is
essentially indistinguishable from that for two half-strength layers
lying at altitudes corresponding to the centres of the two adjacent
bins.

In the first panel of Fig. 8, we show the recovered profile for an
input turbulence profile comprising layers at altitudes corresponding
to � = 3 and 4.5 at the WFS. For this case, we observe non-zero
turbulence strength in three adjacent resolution elements. From the
restored profile, we could conclude that the input profile consisted
of at least two thin layers, or of a single layer that was extended
in altitude. In the second panel, the input profile consists of layers
at altitudes corresponding to � = 3 and 5. The measured profile is
zero except for bins 3 and 5, and the two layers are fully resolved.

4 E S T I M AT I O N O F T H E TOTA L I N T E G R AT E D

T U R BU L E N C E S T R E N G T H

Unless the maximum sensing altitude for direct SLODAR profiling
is sufficiently high to encompass all turbulent layers, the integral of
the measured turbulence profile will be less than the total turbulence
strength for the whole atmosphere.

However, in all cases, the WFS data can be used to estimate the
total integrated turbulence strength from all altitudes and hence –
by subtraction – the summed contribution from all altitudes above
the maximum sensing altitude.

In the absence of noise in the WFS images, the total turbulence
strength could be determined simply from the centroid variance.
When there is significant noise in the centroid measurements, the
true (atmospherically induced) centroid variance can be deduced
if a theoretical estimate of the noise contribution to the centroid
variance is made, as a function of the target flux and detector noise
characteristics. This approach is used in calibrating measurements
of the integrated turbulence strength with DIMM (differential image
motion) seeing monitors (Sarazin & Roddier 1990).

For SLODAR, measurement of the full slope auto-covariance
function provides an alternative approach to estimation of the to-
tal turbulence strength, via a method similar to that suggested by
Nicholls et al. (1995) and Rao, Jiang & Ling (2002) for the case of
the generalized model. This circumvents the requirement to estimate
the centroid noise variance. The same approach can be used for any
other model of the spatial spectrum of the aberrations, including the
von Karman model.

The shape of the tilt auto-covariance function is strongly depen-
dent on β, particularly for longitudinal tilts. Hence, accurate esti-
mates of both ρ 0 and β can be found via a fit to the auto-covariance
function. The effects of centroid measurement noise can be avoided
almost entirely by excluding the central point (zero spatial offset,
the centroid variance) from the fit. Subtraction of the average slope
results in a small bias of the remaining points of the auto-covariance,
and the entire cross-covariance function, due to detector and shot
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844 T. Butterley, R. W. Wilson and M. Sarazin

Figure 8. Schematic demonstration of the limiting resolution of the SLODAR method (see Section 3.3). Star symbols mark the spatial offsets corresponding
to the altitudes of the input turbulent layers.

noise (see Section 2). However, this is negligible under normal con-
ditions. Hence, an accurate estimate of the centroid variance due to
the atmospheric aberrations in the absence of noise is given by the
central value of the fitted auto-covariance function. The difference
of the measured centroid variance and the atmospheric centroid
variance estimated by this method yields a value for the centroid
noise variance. This can be used to correct for the small noise bias
level in the measured cross-covariance functions and the resulting
turbulence profiles.

The noise estimation procedure is demonstrated in Fig. 9, which
shows the measured and fitted transverse auto-covariance functions
for simulated data as the level of noise in the centroid estimation
is increased. The simulation included a single translating random-
phase screen with aberrations characterized by ρ 0 = 15 cm and
β = 11/3, and an accurate realization of the WFS in the low light
level case. The theoretical intensities for each detector pixel in the
WFS subaperture images were calculated for each instantaneous re-
alization of the simulated atmosphere, for a total observation period
equivalent to 15 s. The pixel values were then replaced with random
deviates drawn from a Poisson distribution with mean equal to the

Figure 9. Demonstration of the method for estimation of the atmospheric
and measurement noise contributions to the centroid variance, for simulated
data (see Section 4).

theoretical instantaneous pixel intensity, before the image centroids
were measured.

The spatial auto-covariances of the measured centroids are plot-
ted for three examples of simulated data with the same spectrum
of atmospheric aberrations, but with increasing centroid noise (de-
creasing light level in the WFS). The theoretical auto-covariance
function for the best-fitting values of ρ 0 and β is shown (broken line)
for the lowest-noise case. The central value of the auto-covariance
(the centroid variance itself) is excluded from the fit. The remaining
points of the auto-covariance are only very weakly biased by the
measurement noise (see Section 2), so that the fit is independent
of the noise level in normal conditions. Hence, the turbulence and
noise contributions to the centroid variance can be distinguished
accurately.

5 C O N C L U S I O N S

The response of a SLODAR (SH) optical turbulence profiling system
to a thin turbulent layer, in terms of the cross-covariance function
of the wavefront slopes for a double star target, can be calculated
as a function of the layer altitude and the spatial structure function
of the phase aberrations. The theoretical response functions can be
used to provide a robust determination of the optical turbulence
profile via a fit to the covariance of the measured centroid data. The
integrated turbulence strength can be calculated via a method that
avoids modelling of the WFS measurement noise.
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