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Determination of the Reynolds-Stress 

Tensor with a Single Slanted Hot-wire in 

Periodically Unsteady Turbomachinery 

Flow 

P. KOOL 

NOME NCL ATURE 

parameter in the wire cooling law 
sensitivity coefficient of the 
anemometer fluctuations to the 
turbulent velocity fluctuations 
u, v, w 

B parameter in the wire cooling law 
d differentiator symbol 
E anemometer voltage 
e = fluctuations of the anemometer 

signal 
f 
H 

j 

frequency 
transfer function of zero-order 
hold circuit 
imaginary number 

n = exponent in the wire cooling law, 
swrunation index 

R correlation function 
S blade pitch, power spectral function 
s = coordinate in the blade-to-blade 

t 
T 

To 

direction 
time variable 
period, energy 
integration time 

u = streamwise velocity fluctuation 
v = normal velocity fluctuation, 

velocity component 

V average of steady velocity 
w = binormal velocity fluctuation com

ponent 

X. Y, Z 

2 

system of mutually perpendicular 
axis 
angle of flow vector 
Dirac delta function 
mean-square or variance of signal 
yaw angle of hot wire probe 
angular frequency 
time delay 

correlation 
effective. relative to anemometer 

g 
0 = 
p 
r 
s 
t 
u = 

x. y 

I NTRODU CT IO N  

fluctuations 
global 
constant 
probe 
radial 
sampled 
turbulence 
unsteadiness 
along x, y coordinate axis 
overbar denotes average 
blade-to-blade average of time 
averaged signals 
absolute value 
turbulent component 

Recent turbomachinery research has been di
rected toward the effects of secondary flow, 
blade wake transport, end-wall and blade-boundary 
layers. T.1e knowledge of the six components of 
the Reynolds shear stresses is essential for fu
ture detailed calculations of these viscous flow 
effects. As the end-wall and blade-boundary 
layers play an important role in the detailed 
flow calculations, the knowledge of the shear 
stresses in these layers and in the blade wakes 
is a key to the development of calculation 
methods. Especially since these layers are three
dimensional and since no general correlations are 
available for modeling these stresses, direct 
measurements are useful. 

TUrbulence measurements are even not re
stricted to the so-called viscous flow regions 
because, as was shown by Gorton and Lakshminaray
ana {_!..),1 the classical assumption that the vis
cous and turbulence effects are confined to very 
thin regions near the blade surfaces is evidently 
inapplicable to inducers. The same is true for 
other types of machines when the end wall boundary 

1 Underlined numbers in parentheses desig-
nate References at end of paper. 
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layers are thick, when blade stalling occurs, or 
when large mixing regions are present due to 
secondary flow and/or tip-leakage flow. 

An early contribution to the study of tur
bulence effects in turbomachinery was made by 
Kiock (�), which led to the definition of a dis
turbance and a turbulence level. His paper and 
the paper ·by Evans (l) only dealt with the stream
wise velocity fluctuations, though the results 
can be easily extended to include the effects of 
the large changes in flow angles. Tne results 
of Raj and Lakshminarayana (�) confirm that none 
of the six stresses are usually neglectable, and 
the results of Eckardt (2) for a radial impeller 
show that turbulence measurements are a good in
dication of the onset and the presence of flow 
separations. Turbulence measurements do�mstream 
of the rotor of an axial compressor stage sub
jected to non-uniform inlet flow (�) stress the 
importance and the advantage of measuring the 
Reynolds stresses in interpreting and in follow

ing small details in the average flow data in the 
blade to blade flow. The close link between the 
turbulence signals and deviations from uniformity 
in the average flow make turbulence measurements 
an interesting tool in investigating the wake 
transport through succ·essive blade rows (1). 

Though the X-wire has been a favorite tool 
for turbulence measurements, a single hot-wire 
can be used to measure the six Reynolds stresses. 
The method was first introduced by Fujita and 
Kovasznay (�) for a straight wire, and it allowed 
to measure three stress components with a con
tinuously rotating wire in a steady flow. Simi
lar measurements of the six components with a 
slanted hot-wire were performed by Bissonnette 
and Mellor (2.l in a steady flow. The method has 
been adapted by De Grande (l..Q.) to measurements 
in successive discrete positions. A similar 
method was used by Kool (ll.) for periodically un
steady flow in turbomachinery. Tne method is 
most easily explained in the case of a steady 
mean-flow vector, and it can easily be extended 
to oscillating flows by reducing the data with 
the technique of synchronous sampling (�). This 
sampling does not change the mean-square value 
of the signal if the correlation time of the 
sampled signal is smaller than half the sampling 
period (..!2.). Therefore, no special devices are 
required to measure the mean-square and, hence, 
the turbul ent stresses. The power spectrum of 
the input signal , on the other hand, is modified 
by the sampling process. 

THE BAS I C  METHOD II I llll llll llll l�l llf iiliill lllllllf 'llll llllll II I II 
10001675830 

It is well kno\m that, except for particu
lar orientations, a hot-wire is sensitive to the 
three components of the turbulent and/or unsteady 
velocity fluctuations of a flow. If these fluctu
ations are small, the equations describing the 
cooling of the hot-wire can be linearized to ob
tain a relation between the anemometer voltage 
fluctuation, e, and the three velocity fluctua
tions, u,v,w: 

"' "' "' c =A u + A v +A w u v w ( 1) 

The sensitivity coefficients Au, Av, Aw depend on 
the wire orientation with respect to the mean 
flow vector and the wire cooling laws. We will 
derive these coefficients for a slanted hot-wire 
making use of the least sophisticated cooling 
laws to demonstrate the principle. Upon squaring 
and averaging equation (1), we obta in the mean
square value of the anemometer fluctuations. 

2 2"'2 2"'2 2"'2 "' � � c = A u + A v + A w + 2A I\ u'v + 2A A uw + 2A A vw U V W U V  U W  V W  
(2) 

The mean-square contains information on all 
stresses. If the orientation of the wire is modi
fied, an equation similar to equation (2) is ob
tained with different values for the sensitivity 
coefficients. If six different orientations are 
realized, the turbulent stresses can be calcu
lated from the six linear equations with the six 
mean-square values as data. It is better to use 
more than six data and to solve the system of 
equations by least squares fitting. Linear algo
rithms can be used, but general optimization pro
cedures are useful if the system of equations is 
nonlinear. It is evident that the use of a 
single hot-wire puts a constraint on the possible 
combination of values for the sensitivity coeffi
cients in equation (2). The sensitivity to the 
mixed stresses can be increased if two wires are 
used. The first one can be oriented to obtain a 
maximum value for, say, Au, the other one for Av. 
If the anemometer fluctuations are multiplied and 
averaged a high sensitivity to the uv stress is 
obtained. 

The method proposed to Fujita {�) makes use 
of a continuous record of the mean-square signal. 
The present method uses discrete positions and 
discrete values of the mean-square. It is an im
provement of the previous method because the wire 
is stationary with respect to the flow while the 

meter is averaging. Moreover, the rotation of 
the wire itself can induce a mean-square signal, 
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I 
I 
I· 
I 

v 

a 0 

Fig. 1 Hot-wire configuration with average ve
locity V and turbulent components u, v,w in the 
streamwise, normal, and binormal direction. The 
angle, p' between the plane, of the wire and 
the prongs, and the projection of the velocity 
vector is shown negative 

and the rotating wire system cannot be used to
gether with the technique of periodic sampling 
and averaging in periodically unsteady flows. 

SLANTED W IRE SE NSIT IV ITY 

In the following, we derive the sensitivity 
coefficients of a slanted hot-wire in a steady 
flow with mean velocity V and turbulent fluctua
tions u, v, w as depicted in Fig. 1 asswning simple 
cooling laws for the demonstration. 

In a limited velocity range, the cooling of 
a hot-wire by an effective velocity is satis
factorily described with King's law 

(3) 

The effective velocity is related to the velocity 
modulus and the yaw-angle, , by the cosine law 

Ve = lvlcos( 11)) (4) 

The yaw angle , , is written as function 
of the probe turning angle, 

p
' the radial 

angle, r• and the slant angle, 0 

4 

can 

sin 11) • cos a cos a cos n o r P + sin n0 sin cir 

If the u, v,w -·fluctuations are small, 

write 

"' 
v 

do. 
p lvl 

"' 
w 

do. r lvl 

alvl� � 

lvl= v 

According to equation ( 1) ' we have 

3E 3E oE 
c = -do + -dn + -dlvl 

an p au r 
�vi 

p r 

(5) 

we 

(6) 

(7) 

(8) 

(9) 

(10) 

Through equations (4), (5) and (9), it is easy 
to obtain the sensitivity coefficients 

A 
u 

n(E2 - A) 
2Ev 

tgfticosa coso sino 
A = A o r 

I/ u cos ¢1 
cos 1 sina cosa o r 

- sina cosn A = A 
w u cos ¢1 

o r tg!ll 

(11) 

(12) 

(13) 

The most obvious way to modify the orienta
tion of the wire with respect to the velocity 
vector is by rotating the hot-wire probe around 
its axis into different positions which corre
sponds to a variation of the angle, p' The 
other parameters are not modified by this change. 
This rotation is most easily performed by using a 
stepping motor which allows discrete positions 
with respect to a fixed reference frame. 

Typical sensitivity coefficients and their 
products are shown in Fig. 2 as function of the 
probe angle. The sensitivity, Au and Av, behave 
similarly, but the wire is more sensitive to 
streami·1ise fluctuations. The parameter, \,• 
reaches a maximum value when the probe angle is 
zero. In this position, the velocity vector lies 

As in the plane of the hot-wire and the prongs. 
can be seen in Fig. 3, the hot-wire calibration 
curve is strongly nonlinear in this region when 
the angle, 0, is small and the region should be 
avoided. The sensitivity to the stresses, uv and 
vw, is very similar and the sensitivity to the uw 

component is larger. The similarity of the uv 
and vw coefficients in equation (2) makes both 
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1. 

o. 
-90. 

1. 

. 5 

o. 

-.5 

. --- -------�- . 

a = 45° 
0 

(). 

a = 10. r 

qo. 

a 
p 

a 
p 

Fig. 2 Sensitivity coefficients of a 45-deg slanted hot-wire to the six Reynolds stresses for a 
velocity inclined at an angle of 10 deg for various values of the probe turning angle 
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E 

7. 

6. 

II I I II 
-100. 

I II II 
o. 100.a 

p 
Fig. 3 Angular calibration curve of a hot-wire 
with small slart angle to show the nonlinearity 
close to zero probe angle 

stresses more difficult to discern if insuffi
cient data are taken in the region 1-lhere both 
curves differ. The Av and A11 coefficients are 
zero at an angle, p' which differs from 90 deg 
because the radi<:sl angle, r' is not zero. The 
slanted wire is most sensitive to the v2 compo
nent of the Reynolds stress at an angle, 

p' ap
proximately equal to the slant angle, 0, of the 
wire. The sensitivity to the v2-component can 
be increased by using a lower slant angle. 

APPLICATI' N T PERI •DIC FLJI'! 

-�x_p_�!_m_en.�.?.!. __ Set�P. 
Fig. 4 shows the basic setup of the in

struments. 'The hot-wire anemometer signal down
stream of a rotating blade row varies periodi
cally in time due to the nonuniform blade-to
blade flo\/ at rotor exit but also contains ran
dom turbulent fluctuations. By sampling this 
signal 1-rith a sample-and-hold circuit at the 
blade passing frequency, we can extract the 
periodic blade-to-blade information, E (s), where 
s represents the blade-to-blade coordinate (12). 
The three-dimensional mean-flow data are computed 

from this average anemometer signal. To calcu
late the blade-to-blade evolution of the Reynolds 

6 

hot-wire 
I. mean-square 

sample-and-
blade passinq frequency � hold 

TT T TT �------! J 1 l ! -�) 1 ;l(jp i ts> 

averaqe 
E(•lv 

h)ilr1P-t -hl1th 
'--------1 s mcrtn-sC")uare 

Fig. 4 Setup of the instruments to measure the 
blade-to-blade evolution of the periodic mean 
voltage and the periodic mean-square of the ane
mometer signal of a fixed pr-obe do 1mstream of a 
rotor 

stresses, we must know the blade-to-blade evolu
tion of the mean-square value of the anemometer 
fluctuations. In Fig. 4, the periodic signal is 
sampled at time t0, t1. The sample-and-hold cir
cuit fixes his output level at the input level 
which is present at the sampling times t0, t1, 
and holds this level at the same value each time 
during T seconds following the sampling instant. 
The resulting stepwise changing signal is shown 
in Fig. 4. The time-average of this signal 
represents the average voltage level of the in
put signal, E, at the sampling moments t0 , t1 

. • . . •  and it is denoted as R(o). To obtain the 
periodic component which is present in the ane
mometer signal, we must scan the whole period, 
T, by changing the time instant, t0, where sam
pling is started. This is done by changing the 
phase of the sampling pulses with respect to the 
signal. In our system, the period, T, is subdi
vided into N regularly spaced points and the 
average voltage is determined in each of these 
points. The circuit switches from one point to 
the next one as soon as the average is determined 
and registrated. As such the periodic voltage, 
E (s), is obtained. During the integration process 
whereby the average is determin�d, we also mea
sure the mean-square value of the fluctuations, 
e, around this average level. This mean-square 
signal also varies periodically in the blade-to
blade coordinate. A single blade-to-blade evolu
tion of the mean-square and the average voltage 
is not sufficient to calculate the blade-to-blade 
velocity and Reynolds stress distribution. 

Therefore, we must repeat the foregoing process 
for a different orientation of the wire with re-
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E 
-

(t) = E 

I mathematical 

I sampler 

zero-order 

hold 

mean-square 

meter 

2 0 0 

I 

( t) 
£ 

t 

' 4 
I 

0 t 

Fig. 5 Mathematical model used to describe the 
sampling action on a random input signal 

spect to the flow at least six times. To show 
when the mean-square of the stepwise changing 
signal which is obtained at the output of the 
sample-and-hold circuit faith fully reproduces 
the mean-square value of the fluctuations of the 
input signal, we calculate the modifications of 
the power spectrum and the correlation function 
of a stationary random signal with non-zero mean 
applied to a sample-and-hold circuit. 

THE SAMPL I NG PRO CESS 

Fig. 5 shows the mathematical model which 
is used to describe the action of the electronic 
circuit of Fig. 4, i.fnile it is averaging the 
signal in a given point in the blade-to-blade 
space. An aperiodic stationary random signal, 
E{t), of time is applied to a mathematical 
sampler w'.1ich 
functions and 
hold circuit. 

delivers a series of Dirac delta 
the output is fed to a zero order

As in Fig. 4, the output levels 
are the fixed levels corresponding to the input 
signal level at the sampling instances. w�ich 
are T seconds apart. The time-average of the 
input signal is E, and it is also the time
average of the stepwise changing output signal. 
Therefore, the average signal level changes from 
zero to E Hhen the sampling is started. The 
mean-square meter responds to this transient. 

Depending upon the time constant of the meter 
which is fixed by setting the integration time, 

this transient indication will die out. It is 
an unavoidable and unwanted phenomena while we 
are interested in the mean-square intensity of 
the fluctuations, e, around this average level, 
E. The mean-square value is defined as 

T" 
2 1 r 2 o = lim - J e (tJdt 

To-+m To 0 
2 
• (14) 

With the definition of the correlation function, 
R, as 

R(T) 
+T" 

r 
lim - J e(t)e(t-T)dt 
To-+a> 2To 

-To 

we immediately have 

:1
2 

"'" Rfo) 

( 15) 

(16) 

The Wiener-Khintchine Fourier transform relation 
bet1reen the correlation function and the power 
spectrum yields 

with 

and 

r+� S (u1) I R(T)exp(-

2n 
� OT  , .. .,f = -

R(T) 

T 

r = S(f>exp( 

( 17) 

T)dT 

(18) 

)'°T) df (19) 

which yields an equivalent formula for the mean-
square value 

o2 = R(o) = r�s ( f)df 
(20) 

The sampling theorem (.!.1±_) tells us thaL the out
put of the mathematical sampler is a signal with 
a series of Diract delta functions as correlation 
function 

R (T) = - � s T n=-a;i 
R(nT)6!1 - nTl 

(21) 

when the input signal is a stationary random 
function with correlation function, R, and with 

a sampling period, T. 
The correlation time of the input signal is 
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a measure of the mean time during which the input 

signal fluctuations are correlated. Two fluctua

tions which are separated by a larger time dif

ference can be considered as uncorrelated and 

the correlation function is practically zero for 

this time lag. The correlation time is usually 

defined as 

R(t) 
R(O) dt (22) 

If the correlation time is smaller than about 

half the sampling period 

T 
T <c 2 

then equation (21) reduces to 

R(ol 
R (Tl = -- 6(TI s T 

or with equation (16) 

0 (Tl T 

(23) 

(24) 

(25) 

The power spectrum corresponding to this corre

lation function is flat and given by equation 

(17) 

2 
= ....2_ 

T 
(26) 

The zero-order-hold circuit has a step response 

given by 

1 - expC-jwTI 

H(wl f -----
jw 

(27) 

The power spectrum at the output of the sample

and-hold is then given by 

The zero-order-hold circuit acts as a low

pass filter and the sampling process indeed 

stretches the signal in time and the longer the 

sampling period, T, the more the signal behaves 

like a low frequency signal. Therefore, the 

mean-square meter must have a flat frequency re

sponse up to very low frequencies because the 

signal energy is concentrated at and around zero 

frequency by the sampling action. The mean squar 

of the output signal according to equation (20) 
is then 

m 2 wT 
2 2 I sin I 21 o •o T T 2 df 0 c!!!.....1 -m 2 (31) 

The integral is given in mathematical tables and 

the expression reduces to 

2 2 0 D 0 0 
(32) 

which shows that the mean-square value is not 

modified if the criterium (23) is fulfilled. A 

short correlation time is equivalent to the re

quirement of a high bandwidth. In turbomachinery, 

the turbulence spectrum can be expected (.�) to 

reach far beyond twice the blade passing frequency, 

2/T, which corresponds to the right-hand side of 

equation (23). Equation (29) shows that the 

power spectrum is always modified by the sampler 

but the total energy is the same. 

BLADE-TO-BLADE SIGNAL RECOVERY 

Another requirement which must be satisfied 

is the Shannon criterium which tells us that if 

we want to obtain the evolution of the blade-to

blade signal, then we must have at least two 

points within a period of the highest frequency 

signal which is present in the signal waveform. 

If the blade-to-blade velocity signal were a 

sinusoidal function of the blade-to-blade coordi-

or 

(28) nate, two data points would suffice to describe 

this sine function. In practice, one will, of 

course, take a lot more points because one does 

not know the velocity to be sinusoidal in advance. 

One should realize that the blade-to-blade evolu-

(29) 

Most of the energy is now concentrated in the 

frequency band 

0 < f -:  -- - 2T (30) 

8 

tion of the turbulent stresses usually represents 

a signal with a higher frequency limit than the 

velocity signal. The profiles of Reference (�) 
and our results are a typical example. Therefore, 

the stress evolution must be reconstructed in up 

to two or four times as much points within a 

blade pitch as the velocity signal is. 
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Fig. 6 Distribution in the blade-to-blade and time coordinate of the instantaneous velocity fluctu

ating around its time averaged mean value and the blade-to-blade distribution of the intensity of 

these fluctuations and the average flow 

VERIFICATION OF RESULTS 

Two tests can be performed to verify the 

measured blade-to-blade mean-square distribution 

of the anemo�eter signal and to check the valid

ity of the obtained Reynolds stresses. 'lhe 

latter must indeed satisfy the inequality 

""' UV - I• -----
- lfiffi 

< I 
(33) 

Two other relations are derived by permutation 

of the variables, u,v,w. 

Another useful relation is derived from 

Kiock's relation (£) 

(34) 

This equation states that the sum of the energies 
of the turbulent velocity fluctuations and the 

variations in mean velocity is equal to the energy 

of the overall velocity fluctuations. The veloc

ity is, therefore, split up in a periodic blade

to-blade component and a turbulent component 

which varies in time in each point of the blade

to-blade space ( s-coordinate) 

U(O,t) D U(S) + '\l(s,tJ (35) 

To have a better picture of the different flow 

variables, Fig. 6 shows a stationary blade row 

and the nonuniform exit flow. 

In each point fixed by the blade-to-blade 

coordinate, s, the instantaneous velocity oscil

lates in time around its average level, u, and 

this is sho'm for two different points, one 

within the blade wake and one out of the wake 

region. Within the wake the turbulent fluctua

tions are higher; therefore, the signal fluctu

ates violently around the average level, u( o) . 

We can measure the mean-square according to equa
tion (14) with a mean-square meter with integra-
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�-------------------------

tion time To 

T" 
o�Csl = -:l:.J u2(s,t)dt 

0 

(36) 

and obtain the periodic blade to blade evolution 
of the mean-square signal as sho1m in Fig. 6. 

If the cascade were rotating, then we would 
have to use a rotating wire to measure the sig
nal, u (s, t ) , as a

· 
function of time. A hot-wire 

fixed in a stationary frame of reference cannot 
give us this signal completely. The hot-wire 
signal is indeed obtained by cutting the u (s,t ) 
space along the line, AA. The period, T, corre
sponds to the time necessary for one blade pas
sage to come across the wire. 'Ihe signal, u (o,t ) , 
is seen by the hot wire at time zero for the 
first time and it will be seen by the wire after 
a complete revolution of the rotor. If it is 
N-bladed, the time elapse is given by 

T =NT 
0 (37) 

If we want the particular channel depicted in 
Fig. 6 to be investigated by periodic sampling 
and averaging, we will sample the hot-wire signal 
at time zero and every T0 seconds afterward. 'Ihe 
mean-square of the fluctuations will be measured 
correctly according to equation (23) if the cor
relation time of the signal, u {o,t ) , satisfies 
the inequality 

T 
T < __£ 

c 2 (38) 

In practice, we must, therefore, take the maxi
mum possible correlation time of all signals 
u (s, t ) within the blade pitch as the sampling 
is scanned through the blade-to-blade space, and 
test the inequality (38). If all blade passages 
are averaged, the sampling rate increases and 
the condition ·is more severe but should not give 
problems in turbomachinery. 

We can now write the contribution of the 
turbulent energy to relation (34) as 

2 ! r5 2 Tt = 5 Jou(slds 
(39) 

0 

whereas the contribution of the fluctuations in 
mean velocity around the average mean is given 
by 

10 

with 

2 ! ,s _2 _2 
Tu= SJ (u (s) - u )ds 

s 
- I r_ u = s ju(s)ds 

0 

(40) 

(41) 

We can write doi-m equations (34) through 
(41) for the anemometer voltage, E, which is 

written as the sum of a periodic mean voltage 
and a turbulent component 

E(s,t} c E<sl + e(s,t) (42) 

The energy of the overall fluctuations is mea
sured as in Fig. 4 with a mean-square meter con
nected to the anemometer. The contribution of 
the periodic component is integrated according 
to equations (40) and (41), whereas the contribu
tion of the random fluctuations is obtained by 
pitch averaging the measured mean-square value 
over the blade-pitch 

our results 
to within 3 

validity of 

s 2 lJ 2 T = - e (s)ds e S 
0 

(43) 

confirm the relation (34) of Kiock 
percent and it was used to check the 
the data before reducing them to the 

final results. 

EXTENS ION OF THE K IOCK RELAT ION TO M IXED STRESSES 

The original equation of Kiock (£) and the 
equation of Evans (2) do not include the effects 
of changes in the absolute flow angle as was 
pointed out by Evans, but neither contains the 
influence of the radial flow angle variation. 
'Ihese variations are taken into account in the 
extension of the Kiock relation when applied to 
the mixed stresses. One, therefore, decomposes 
the velocity vector into three components along 
three mutually perpendicular axis. If one of 
these components is written as 

u(s,t) = u(s) x x 
"' + U(s,t} x 

where ux represents the turbulent component 
which satisfies 

(44) 
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y 

x 

Fig. 7 Transformation of the turbulent velocity 
fluctuations to a new coordinate system X, Y,Z 

(45) 

and with ux the periodic mean flow component. 

Similarly 

" 
y(s,t) • y<s,t) + (46) 

Defining a global mean shear stress as 

S T' 
uv = JJu(s,t)v(s,t) 

dsdt 

OOX y S Ta 
SJ rT: 

" dsdt 
= J ux(s,t)v

y
(s,t)S'TD 

00 
S To dt ds +f -V J'l!(s,t)- -

0 y 0 x T" S 

5 ds 
+f u(s)v(s)-x y s 

0 J
S JT" dt ds + Ucsl �(s,t) o -x y T S 0 0 

(47) 

(48) 

with equivalence (45), this expression reduces 
to 

(49) 

The global stress can thus be considered as made 

up of a stress due to the unsteady velocity com
ponent and a stress due to the turbulent velocity 

components. 

COORDI NATE TRANSFORMATIO N 

The (u, v, w) vector can be transformed to 
the X, Y, Z coordinate system depicted in Fig. 7 

by the following matrix 

cosa cos a r y 

-sina 

-sina y 

o. 

-sinu cosa r y 

r -COSClr 
(50) 

cosa sina cos a -sina sina r y y r ·y 

Squaring and averaging leads to a linear relation 
between the new stress and the six previous 
stresses, such as 

"I 2 + w cos (a ) r 
""" + uw 2S ina cosa r r (51) 

As the scatter on the original stress terms is 
usually high, the newly calculated values present 
still higher scatter and systematic trends can 
be obscured quickly. 

EXPERIME NTA L RESULTS 

The results have been obtained in the Rl 
low-speed compressor of the Von Karman Institute 
as described in Reference (.!_g_). Present results 
correspond to a flow coefficient based on rotor 
tip speed of 0.45 and a pressure coefficient 
based on mean rotot speed of o.68 and were ob
tained in an axial plane 0.47 chords dovmstream 
of the rotor outlet plane. The pitchwise evolu
tion of the mean three-dimensional flow is deter
mined with the method described in Reference (.!_g_) 
and the Reynolds stresses are obtained from six 
to eight different angular positions of the wire 
at each radial location. 

The blade-to-blade evolution of the Reynolds 
stresses at three radii (20.8, 64.7, 74,9 percent 
blade height) are plotted in Figs. 8 to 13 and 
they have been scaled with the square of the ab
solute velocity. The radial. flow angle is mea
sured positive toward rotor-hub and is defined 
in Fig. 1 and plotted in Fig. 14. This is not 
the flow angle in a meridional plane. The blade
to-blade flow is further characterized by the 
absolute flow angle, Fig. 15, and the absolute 
velocity, Fig. 16. The profiles at 20.8 percent 
blade height are normal, but the velocity profile 
at 64,7 percent height is deformed at the suction 

11 
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1. 

Fig. 8 Dlade-to-blade evolution of the nondi
mensional streamwise turbulent intensity u2 at 
three blade heights (20. 8, 64.7, and 74.9 per
cent} 

side, and there is a disturbance at the pressure 
side of the wake at 74. 9 percent height. 'Ille 
wake centerline shifts within a blade pitch due 
to the variation of mean flow angle in the radial 
direction. 'Ille v2-stress is the largest one, 
and the w2 component is normal to the end-walls 
and is the smallest one. The streamwise fluctu
ation intensity is high within the blade wake 
and the intensity increases with blade height. 
The disturbance at 64.7 percent height does not 
yield very high streamwise fluctuations. At 
74.9 percent height, on the contrary, there is 

a marked increase near the pressure side. The 
,.(--component follows the same increasing trend 
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''.12 w 
2100. 
v 

• 2 

• 1 

0. s 
s 

1. 

Fig. 9 Blade-to-blade distribution of the nondi
mensional turbulent intensity, .,(2-

with blade height, but this component is small at 
the center of the blade wake. In both disturbance 
regions, there is an increase in w2 intensity 
which shows the presence of important radial fluc
tuations. The v2 component is large and this 
shows that the fluctuations of the absolute flow 
angle are the most intense. As can be inferred 
from Fig. 15, the pitchwise fluctuations in flow 
angle are large, too. TI1e scatter on the data is 
large for the v2 component and might be due to 
the low sensitivity of the wire for this turbu
lence component. The v2 intensity is also high 
in the disturbance regions. 

The blade-to-blade averages of the mixed 
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1. 

Fig. 10 Blade-to-blade distribution of the non
dimensional turbulent intensity, v2 

stresses are, in most cases, different from 
zero, and, therefore, there is a net contribu
tjon to the right-hand side of equation (49). 

The v\.i stress is positive most of the time and 
the uv stress profile has a nearly zero average 
except at 74.9 percent height 1-ttere it becomes 
strongl; negative. The increase of the vw stress 
at the pressure side at 74.9 percent height and 
at the suction side at 64. 7 percent height is in 
agreement with the increased v2 and w2 values. 
At the blade centerline strong negative values 
of the uw stress are obtained. At 74.9 percent 

height, the uw stress is also negative in the 
disturbance region, whereas it is positive at 
64.7 percent height. T.�e Vii stress is also high 
in the blade wake and in the disturbance region 
at the pressure side. 

The blade wake is thus characterized by 
large streamwise fluctuations, and if we inter
Pret the stresses as vorticity components, one 
can say that the vortices parallel to the end-

0. 

- l 

0. 

,'\l'J u�lOO . 

v 

s 
s 

1. 

Fig. 11  Blade-to-blade distribution of the non
dimensional mixed stress, uv 

wall are stronger than those normal to the wall. 
'Ihe velocity-defect regions, which are probably 
due to the presence of centrifugated blade 
boundary layer material accumulated by secondary 
flow effects, are characterized by increased 
fluctuations normal to the stre.amwise velocity 
and larger streamwise vorticity. 

C ONCLUSI ONS 

The Reynolds turbulent stresses and the 
apparent stresses due to the fluctuations in mean 
velocity can be measured with a single slanted 
hot-wire. The sensitivity coefficients of the 
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Fig. 12 Blade-to-blade distribution of the non
dimensional mixed stress, vu 

anemometer fluctuations to the three turbulent 
velocity componen ts are of interesting magni
tude, and they can be varied by choosing differ
ent slant angles for the wire. T.1.e accuracy 
with which the six stresses are derived can be 
increased by providing more data than necessary 
and by solving the overdetermined system of 
equations with a least squares method. 

For applications of the method to periodi
cally unsteady flow, it is sho1m that the mean
square value of a turbulent signal can be ob

tained at the output of a sample-and-hold cir
cuit if the turbulent signal has a power-band

width higher than twice the sampling frequency. 
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Fig. 13 Blade-to-blade distribution of the non
dimensional mixed stress, uw 

Moreover, a high-performance mean-square meter is 
required as most of the signal power is concen
trated near zero frequency, and a multichannel 
analyzer is required with more channels than are 
necessary for the averaging of the velocity 
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Fig, 14- Blade-to-blade distribution of the 

radial flow angle, 
r 

signal. 

'Ihe stresses clearly reveal the presence 

of the blade-wake and other regions with non

uniform blade-to-blade velocity or angle pro

files. Their relation with the average profiles 

is not straightforward, and detailed measurements 

close together in the axial and the radial direc

tion are necessary to be able to calculate ac

curately the derivatives of these mean flow 

variables to compare these with the stresses. 
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