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Summary. The computational effectiveness of travel-time inversion methods 
depends on the parameterization of a 3-D velocity structure. We divide a 
region of interest into a few layers and represent the perturbation of  wave 
slowness in each layer by  a series of Chebyshev polynomials. Then a relatively 
complex velocity structure can be dcscribed by a small set of parameters 
that can be accurately evaluated by a linearized inversion of travel-time 
residuals. This method has been applied to artificial and real data a t  small 
epicentral distances and in the tcleseismic distance range. The corresponding 
matrix equations were solved using singular value decomposition. The results 
suggest that the method combines resolution with computational convenience. 

1 Introduction 

The problem of the determination of  the laterally variable earth's medium structure from 
seismic observations has attracted much attention in recent years. Lateral velocity 
inhomogeneities manifest themselves in travel-time residuals determined with respect to 
travel times corresponding to a laterally homogeneous reference velocity model. I f  the 
residuals are small enough the inverse problem is a linear one and for its solution several 
approaches are known. 

The idea of  the approach suggested by Aki &L Lee ( I  976) and by Aki, Christoffersson & 
Husebye (1976) is t o  divide the region of  interest into many blocks and to perturb velocities 
in the  blocks in accordance with the travel-time residuals. Unfortunately, the corresponding 
system of  linear equations sometimes becomes too large to be handled by  a computer with 
a moderate memory capacity. On the other hand, however large the number of blocks the 
resulting structure frequently consists of  only a few high- and low-velocity regions. 

An alternative approach would be to represent the 3-D velocity perturbation by a 
suitable function of a relatively small number of  parameters and to evaluate them from 
the travel-time residuals. This approach was pioneered by Alekseyev ct a/.  ( 1  970)  and was 
further developed by Firbas (1981). Our inversion procedure of travel-time data which is 
described in Section 2 is based on the sanic idea. We found, however. that sometimes the 
procedure was lacking in spatial resolution. In such cases, a hybrid method o f  dividing the 
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region into a few large blocks and representing the velocity perturbation within each block 
by its own function provides a desirable compromise between the resolution and computa- 
tional convenience. The procedure was applied with some success to  artificial and real data 
in the range of small epicentral distances (Section 3) and in the teleseismic distance range 
(Section 4). 

Ju. A. Burnzakov, A .  V. Trcussov atid L,. P. Viimik 

2 Method of travel-time inversion 

We consider a region G in the half-space containing the family of rays Ri. i = 1 ,  2 ,  . . . . I ,  
of' refracted body waves. The coordinates origin is on the free surface while axisZis  directed 
downward. The travel-time ti of wave propagation along the raypath Ri from the source 
t o  the receiver is given by 

ti = s,; S(X, I.'. z )  J r  

where S(x, y ,  z )  is the wave slowness. On the assumption of weak lateral heterogeneity, 
we may write 

S(X, y ,  z )  =So@> + Sl(4 Y >  2 )  

where So is the unperturbed wave slowness and S1 is the perturbation which depends on 
the  perturbation o f  the velocity F V and the unperturbed velocity Vo as 

s, = - FVJV;. 

Then, the travel-time residual 6 t ;  can be expressed as 

where Roi and roi are the raypath and the travel-time respectively corresponding to the 
reference velocity V,(z). 

In order to reduce the number of  parameters needed t o  describe S,(x, y ,  z )  we can 
represent it locally by means of polynomials. A representation in terms of cubic splines has 
been used previously by Hovland, Gubbins & Husebye (1981) and Thomson & Gubbins 
(1082), but here we make use of an expansion in t e r m  of  orthogonal polynomials. We 
expand Sl(x, y ,  z )  into a three-fold series of orthogonal Chebyshev polynomials T(u , ) ,  
T(u2).  T(u3)  having mapped the original region G into a rectangular region in the u 
coordinates, such that the values of  u I ,  u 2 ,  u3 are normalized to lie in the range - 1 s u < 1.  
The number o f  terms in the Chebyshev series K ,  L ,  M for the three coordinates can be taken 
to  be different and so the polynomial representation of S1 takes the form 

where P k l m  is the  required unknown parameter t o  be found from the observations. In order 
to improve resolution we may further divide the region G into a few separate layers or 
blocks and represent S ,  within each block by its own series of polynomials. Then equation 
( 2 )  should be rewritten as 
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Putting equations (2) or ( 3 )  in (1) we get a set of equations which can be written in 
the form 

A X = C  (4 
where A is a rectangular matrix with I rows and N =  J * K - I ,  - M columns, C is the 
vector of travel-time residuals and X is the vector of unknown elements. The solution 
of equation (4) can be found by  the method of singular value decomposition (Forsythe, 
Malcolm & Moler 1977). Such solution provides a minimum length of norm of (AX-C)  in 
the least squares sense while a t  the same time it is relatively insensitive to  the errors in the 
input data. 

A = U - D *  W T  
where U is an I x I orthogonal matrix, W is an N x N orthogonal matrix and D is an I x N 
diagonal matrix. The diagonal elements of  the matrix L)  are called the singular values of A .  
The condition number of the matrix A is 

A singular value decomposition of the matrix A is given by 

cond(A)  = omax/omin 

where umax and u,,,~” are the largest and smallest singular values respectively. The matrices 
U a n d  Ware used t o  transform (4) into a n  equivalent diagonal set of equations 

D T Z C  
The unknown elements Xi of the vector LF can be expressed as 

xi = C i / U i  

We assume Xi = 0 if ui G 7. The threshold T is defined as 

i = l , .  . . , N .  

7 = Eumax 

where e is the relative error in t h e  input data. Introducing the threshoid results in a more 
reliable determination of  X which can be found from X = W x .  

3 Application t o  the data a t  small epicentral distances 

To test the procedure of Section 2 we generated an artificial set of travel times for a 
rectangular profile grid in an area of  0 c x G 400 kni, 0 G y i 400 km. The assumed spacing 
between the receivers in the same profile and the distance between the neighbouring profiles 
were 25 and 75 km respectively. In each profile, there were two transmitters separated by 
200 km. The assumed 3-D velocity distribution V(x, y ,  z) was given by 

v ( x , Y , z ) = ~ . o -  1 0 - ~ ( ~ - 2 0 0 ) ~ - 4 ~  1 0 - 5 ( y - 2 0 0 ) 2 + 2 ~ 1 0 - 3 z 2 .  (5 1 
A random noise with the rms value of 0.1 s was added to the precise travel-time values. 
Vi(z) was taken as 
V&) = 5.9 i- 0.022. 

The region of interest was treated as a single block, the number of rays was 80 while the 
?umber of unknown elements was 27 ( K  = L = M = 3 ) .  The velocity cross-sections at 5 km 
depth given by  (5) and that found by the  travel-time inversion are reasonably close (Fig. 1 ). 
Similar agreement was found in the whole depth range of this experiment. 

The procedure was applied t o  real travel-time data as well. Figs 2 and 3 show travel-time 
data obtained on  a profile in Bulgaria and the results of their inversion. The numbers of  
rays and of unknown parameters were 274 and 36 respectively. Some details o f  the 2-D 
Velocity structure thus obtained depend strongly on  the assumed value of  E .  If this value 
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5 0 n m  

a b 
Figure 1 .  Comparison between the cross-section at 5 kin depth of the model velocity structure given by 
equation (5) (a) and that found by inversion of travel times (b). 

DISTANCE (KM) 

Figure 2. lieduced (f-distance/6) travel-time curves on  a profile in Bulgaria (adopted from Dachev et a!. 
1977). Locations of shot points are shown by arrows. 

DISTANCE (KM) 
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Figure 3. Velocity structures found f r o m  thc travel-time data o f  1,ig. 2 on the assumptions that c = 
(a) and E = 2 X lo-* (b). 

is less than the structure looks extremely complex especially in its lower part (Fig. 3a). 
Such accuracy, however, is not warranted by the data. First, there are errors in the measured 
travel times. Second, in the Earth's medium, there are small-scale inhoiiiogeneities which 
were neglected in the model. And third, the basic equation of the method is approximate. 
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3-0 velocity structure from body waves 289 
Under the reasonable assumption of e = 2 x lo-’, the structure becomes relatively simple 
(Fig. 3b) and probably more reliable. 

According to geological observations, the uppermost layer of the crust in the northern 
part of the profile (right side of Fig. 3) is composed of unconsolidated sediments, while in 
the southern part relatively high-velocity limestones come close to the surface. Thus, the 
structure shown in Fig. 3(b) is in qualitative agreement with the independent data. 

A similar geological trend is known to prevail in the area shown in Fig. 4 (the profile 
whose data are shown in Fig. 2 is approximately parallel to profile IV in Fig. 4 and is located 
to the east from profile IV). The travel-time data from the network of profiles shown 
in Fig. 4 were used to infer 3-D velocity structure (the numbers of rays and unknown 
parameters were 600 and 64 respectively). The principal features of this velocity structure 
(Fig. 4) are again in agreement with the geological data. 

4 Application to teleseismic data 

; The idea of inversion of teleseismic data is similar to that used by Aki et aI. We assume that 
the travel-time residuals observed on a seismograph array are generated in a relatively thin 
layer below the array. The inversion procedure was tested by applying it to artificial data. 
The numerical modelling was performed by inserting three spheres of 20 km diameter 
with a velocity of 8.8 km s-l into a homogeneous medium with a velocity of 8.0 km s-’. 
The centres of the spheres were at depths 30, 50 and 70 km, the system of observations 
consisted of 15 receivers distributed in the area 80 x 80 km with 20 km spacing, the 
number of rays considered was 180. A random noise with an rms value of 0.05 s was 
added to the precisely determined travel times. The inversion was carried out by dividing 
the region between the upper boundary and the 80 km depth into four layers of equal 
thickness and using equation (3). The number of unknown parameters was 48. 

In Fig. 5 ,  the positions of the spheres in the model as well as the results of the inversion 
are presented. A comparison shows that the inhomogeneities of the model are well displayed 
in the computed velocity structure although the actual anomalies are somewhat smoothed. 
Inaccuracies of this kind were observed in the experiments with Aki el aZ.’s inversion 
procedure (Neuman 1981), as well. The anomalies on the edge of the region (Fig. 5b) have 
no counterparts in the model (Fig. 5a) but they could be eliminated by increasing the 
number of terms in the polynomial expansion of S1. It should be noted that the results 
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Figure 4. Scheme of seismic refraction profiling (adopted from Dachev et al. 1977) and the cross-section 
at 1 km depth of the 3-D velocity structure. 
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Figure 5. Comparison bclween model structures a t  depths 30, SO and 70 km (a) and those obtained from 
the tcleseisniic travel-time inversion (b). Velocities in (b) arc pivcn in km s-I. 

shown in Fig. 5 are much more satisfactory than those obtained with a representation of 
the anomalous structure b y  a single polynomial series. 

The method was also applied to  the  travel-time residuals of  NORSAR. The location 
and configuration of  this array were described elsewhere. From a large set of seismic events 
whose P-wave residuals were reported by  Berteussen ( I  974), we selected 30 with strongly 
different azimuths and/or t h e  angles of incidence of the P-wave rays. The region under the 
array between the free surface and 120 k m  depth was divided into three layers of equal 
thickness. The number of  unknown parameters in each layer was nine. In the initial model, 
the velocity was 6.5 km s-l in the upper layer and 8.2 km s- '  in the lower layers. We will 
discuss the computed velocity structure of the upper layer since it can be compared with 
the results of some other crustal studies (Fig. 6). 

According t o  seismic refraction measurements (Kanestr$m 1973), the crust's thickness 
is relatively small in the centre of  the region but it increases by  severai kilometres near the 
outer ring of  the array (Fig. 6a). A similar tendency is evident in the data obtained by 
fitting synthetic long-period body waveforms t o  those recorded at NORSAR (Vinnik & 
Kosarev 1981, fig. 6b). Our data (Fig. 6c)  indicating relatively high velocities under the 
central part of the  array are compatible with the results of both of these studies. 
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Figure 6.  Comparison between the Moho depths (in kilometrcs) under NORSAR according to Kanestrdm 
(1973) (a), Vinnik L Kosarev (1981) (b) and the velocity structure of the upper 40 kin layer resulting 
from the travel-time inversion (c). Receivers of thc array are shown by filled circles, velocity anomalies 
in (c) are given as a percentage of' the initial velocity. 

5 Conclusion 

We have described the inversion procedure of travel-time data whose essence is a speciaI 
kind of parameterization of  the medium under study. We divide the region of  interest into a 
few layers (blocks) and represent the wave slowness perturbation in each block by a three- 
fold series of Chebyshev polynomials. Then, as is demonstrated by  numerical experiments, 
many geological structures o f  interest can be well described by a relatively m a l l  number of 
parameters which can be accurately determined by a linearized inversion of travel-time 
residuals. Although this method is still in an early stage of development the results of 
application suggest that it combines reasonable resolution with computational efficiency. 
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