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ABSTRACT 9 

As a part of the Next Generation Safeguards Initiative Spent Fuel project, we simulate the 10 

response of the Differential Die-away Self-Interrogation (DDSI) instrument to determine total 11 

elemental plutonium content in an assayed spent nuclear fuel assembly (SFA). We apply recently 12 

developed concepts that relate total plutonium mass with SFA multiplication and passive neutron 13 

count rate. In this work, the multiplication of the SFA is determined from the die-away time in the 14 

early time domain of the Rossi-Alpha distributions measured directly by the DDSI instrument. We 15 

utilize MCNP to test the method against 44 pressurized water reactor SFAs from a simulated spent 16 

fuel library with a wide dynamic range of characteristic parameters such as initial enrichment, 17 

burnup, and cooling time. Under ideal conditions, discounting possible errors of a real world 18 

measurement, a root mean square agreement between true and determined total Pu mass of 2.1% is 19 

achieved. 20 

 21 

1. INTRODUCTION 22 

The Differential Die-Away Self-Interrogation (DDSI) technique for nondestructive spent fuel assay is 23 

investigated as a part of the Next Generation Safeguards Initiative Spent Fuel project (NGSI-SF) [1]. 24 

DDSI is a passive neutron coincidence counting technique that utilizes neutrons primarily from 25 

spontaneous fission (SF) in the assayed spent fuel assembly (SFA) to preferentially interrogate its fissile 26 

material content [2]. Data are collected in list-mode in order to construct and utilize a Rossi-alpha 27 

distribution (RAD) for SFA characterization. In our previous work, we have demonstrated by means of 28 

high fidelity simulations the ability of the DDSI instrument to evaluate SFA multiplication with high 29 

accuracy; i.e., within ~0.8% [3].  30 

Applying a recently developed concept that correlates SFA multiplication (M) and passive neutron 31 

count rate (PN) with total elemental plutonium content (mPu) in the SFA [4], we demonstrate that mPu can 32 

be determined in simulation space using the DDSI instrument with a similarly high accuracy. The method 33 

has been tested against 44 simulated SFAs from Spent Fuel Library 2a (SFL2a), which is an assortment of 34 

simulated SFAs with varying burnup (BU), initial enrichment (IE), and cooling time (CT) [5]. In these 35 

simulations, mPu was determined with root mean square (RMS) error of 2.1% with respect to its true 36 

content as defined in the simulation input files. The current results are qualitatively as well as 37 

quantitatively nearly identical to those obtained previously for the Differential Die-Away instrument that 38 

is based on an active neutron interrogation technique with an external pulsed neutron generator and tested 39 

against Spent Fuel Library-1 [6], thus demonstrating the robustness of the method. This apparent 40 

robustness in simulation space makes it a promising technique for experimental verification which will be 41 
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the ultimate test of the method. Within this work, we limit ourselves to discussing the theory of the DDSI 42 

instrument and total Pu determination and present simulation results for determining plutonium content in 43 

SFL2a assemblies. 44 

2. DDSI INSTRUMENT AND RESPONSE45 

The simulated DDSI instrument consists of four modules each with 14 46 

high-density polyethylene. The detectors have a 2.54 cm diameter, 40.0 cm active length, and 6 atm 47 

pressure. A cross-sectional view of the simulated 48 

 49 

50 

Fig. 1. Cross51 
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measurements the die-away time describes the decrease of the neutron population over time and is 69 

typically represented by a single exponential of the form:70 
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where N(t) is the neutron population at time t, N(0) is the initial population, and τ is the mean neutron 72 

lifetime in the system, i.e., the die-away time [7]. However, due to re-introduction of thermalized 73 

neutrons to the SFA, which is typically undesirable and absent in traditional neutron coincidence counting 74 

approaches, the real correlation between two neutrons exhibits two distinctive modes. The first mode – 75 

fast correlation – is a result of correlations between neutrons from the same fission event, be it 76 

spontaneous or induced fission (IF), or from fission chains where the inducing neutrons have not been 77 

reduced to thermal energies. The fast correlation reflects the mean lifetime of a single neutron in the 78 

system, and is on the order of 19 µs, which is the characteristic die-away time of the detection system. 79 

The second mode – slow correlation – is a result of correlations among neutrons from different fission 80 

events but within the same fission chain that have undergone the thermal-neutron scattering time-delay. 81 

The slow correlation reflects the difference in detection times between two neutrons of a fission chain 82 

separated possibly by tens or even hundreds of µs due to the time required for a neutron from one fission 83 

event to thermalize in the water, re-enter a fuel pin and induce another fission event. As a consequence 84 

the RAD reflects both of these correlations, each with a significantly different characteristic time 85 

constant. This prevents any accurate description of the system by eq. (1). However, the sum of two 86 

exponentials provides a sufficiently accurate description of the RAD obtained from the simulated 87 

response of the DDSI instrument when assaying SFAs: 88 

���� � ���	 ∙ �
�	 ������ ������ ∙ ��	 ������     (2) 89 

where N(t) is the neutron population at time t, Nfast is the initial population which will be detected in the 90 

fast correlation mode and Nslow the initial population that will be detected in slow correlation mode. Thus, 91 

τfast represents the mean lifetime (i.e., die-away time) of an individual detected neutron in the system, 92 

while τslow represents the mean lifetime of the entire neutron subpopulation that consists of multiple 93 

neutron generations. The interplay of these two quantities is in the early die-away time, τe defined as the 94 

die-away time of a single exponential fit of the early time domain of the RAD from 5-52 µs [3]. Figure 2 95 

is an example of a RAD constructed from the simulated DDSI instrument response with the fast and slow 96 

components as well as the early die-away time displayed and accidental coincidences excluded. 97 

 98 



99 

Fig. 2. An example of RAD from simulated assay of SFA with BU of 100 

additive single exponentials - the fast and slow component101 

with squares. 102 

3. DETERMINATION OF THE 103 

In the work of Henzl et al. [4], the total plutonium content within an a104 

to the SFA multiplication and the detected 105 

within the ensemble of the SFAs that are being assayed (e.g. all SFAs from the same reactor discharge)106 

The multiplication reflects the competition between the fissile content and the amount and composition of 107 

the neutron absorbers (fission products and minor actinides)108 

characteristic parameters such as IE, BU, and CT. 109 

content of major spontaneous fission isotopes in the ass110 

as the main contributors to neutron production via (111 

isotopes are produced by processes that include112 

their quantity, and thus the neutron emission rate,113 

plutonium (i.e., mPu ) [8]. A visual representation of various production modes of individual actinides in 114 

the process of nuclear burning is displayed in Fig.3115 

 116 
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Fig. 3. Visual representation of the most significant 118 
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and f also on CT.  135 

most significant actinide production modes in the spent nuclear fuel
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instrument dependent calibration parameters, which in the case of a and 
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s) of the RAD of the DDSI instruments response is quadratically
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4. RESULTS 136 

All simulations were conducted with MCNPX137 

in the form of RADs which are discussed in detail in [138 

material definitions developed as part of 139 

pressurized water reactor assemblies from SFL2a with IE varying from 2140 

60 GWd/tU, and CT varying from 5 to 80 years. The SFAs are 17x17 Westinghouse type with one radial 141 

region tracked through a 1/8 core using142 

burning process [10]. While the SFLs are designed to describe the complex isotopic composition of SFAs 143 

as realistically as possible, various approximations are 144 

assuming, for example, homogenous axial BU profiles and disregarding fuel expansion and rim effects, 145 

among others. 146 

The two panels of Fig. 4 display results of the simulations in terms of the detected singles rate 147 

panel) and the measured die-away time 148 

thus demonstrate the complex interplay of IE, BU and CT on the measurable signals with respect to the 149 

true Pu content, yet the correction introduced in eq. (6) removes most of these dependences w150 

explicit knowledge of IE, BU and possibly even CT151 

of  Fig. 5 then displays the relative differences between the 152 

as known from the material definition of individual SFAs.153 

Fig.5 is listed in Table 1. The RMS error154 

subset of data with CT ≤ 40y is only 1.5%, while t155 

CT=80y is 3.4%. 156 

157 

Fig. 4. Results of the simulations of the detected singles rate 158 

DDSI instrument. 159 
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Fig. 5. Comparison of the absolute values of the m161 

the relative differences between the determined m162 

Table I. Summary of true and determined mPu163 

BU 
[GWd 
/tU] 

IE 
[%] 

true mPu 
[g] 

det. mPu 
[g] 

CT = 5 y 
15 2 2961.5 2961.6 
15 3 2746.5 2757.9 
15 4 2725.4 2709.2 
15 5 2622.6 2634.5 
30 2 4130.1 4174.2 
30 3 4025.3 4150.7 
30 4 4080.6 4068.6 
30 5 4092.9 3998.9 
45 4 4883.8 4936.7 
45 5 4858.1 4796.1 
60 5 5388.0 5280.7 

Standard Deviation: 
CT = 40 y 

15 2 2761.9 2690.1 
15 3 2591.9 2610.9 
15 4 2595.0 2608.6 
15 5 2508.6 2542.3 
30 2 3748.9 3688.2 
30 3 3663.3 3724.5 
30 4 3737.2 3685.1 
30 5 3764.7 3688.9 
45 4 4408.9 4516.0 
45 5 4387.3 4441.5 
60 5 4838.0 4794.2 

Standard Deviation: 
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Comparison of the absolute values of the mPu determined from eq. (6) and the true mPu in the SFA (left) and 
the relative differences between the determined mPu and the true values (right) 

Pu for 44 SFAs from SFL2a divided into subsets by different 
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previous results do not, as shown in Fig. 6169 

results was not investigated in this work, therefore based 170 

we still can conclude that the CT dependence of the fitting parameters171 

similar. 172 

173 

Fig.6 Values of the fitting parameters d and f from 174 

 175 

5. CONCLUSIONS 176 

We have demonstrated through simulations 177 

determination based on measurement of SFA multiplication and passive neutron count rate is also 178 

applicable for use with the DDSI instrument.179 

by the DDSI instrument, the multiplication is measured in terms of the early die180 

alpha distribution, and the passive neutron count rate is measured in 181 

Overall, considering the CT known and discounting any systematic errors of real182 

fidelity simulations show that the total plutonium content of a SFA is determined with the 183 

2.1% when tested against 44 SFAs from SFL2a184 

or burnup.  185 
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