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Lee-Yang zeros are points in the complex plane of an external control parameter at which the partition function

vanishes for a many-body system of finite size. In the thermodynamic limit, the Lee-Yang zeros approach the

critical value on the real axis, where a phase transition occurs. Partition function zeros have for many years been

considered a purely theoretical concept; however, the situation is changing now as Lee-Yang zeros have been

determined in several recent experiments. Motivated by these developments, we here devise a direct pathway

from measurements of partition function zeros to the determination of critical points and universal critical

exponents of continuous phase transitions. To illustrate the feasibility of our approach, we extract the critical

exponents of the Ising model in two and three dimensions from the fluctuations of the total energy and the

magnetization in lattices of finite size. Importantly, the critical exponents can be determined even if the system

is away from the phase transition. Moreover, in contrast to standard methods based on Binder cumulants, it

is not necessary to drive the system across the phase transition. As such, our method provides an intriguing

perspective for investigations of phase transitions that may be hard to reach experimentally, for instance at very

low temperatures or at very high pressures.

DOI: 10.1103/PhysRevResearch.1.023004

I. INTRODUCTION

Phase transitions are characterized by the abrupt change

of a many-body system from one state of matter to another

as an external control parameter is varied [1–3]. In their

seminal works, Lee and Yang developed a rigorous theory of

phase transitions based on the zeros of the partition function

in the complex plane of the control parameter, for instance

the fugacity or an external magnetic field [4–7]. The crucial

insight of Lee and Yang was that the partition function zeros

with increasing system size will approach the real value of the

control parameter for which a phase transition occurs. These

ideas are now considered a theoretical cornerstone of statis-

tical physics, and they have found applications across a wide

range of topics, including protein folding [8,9], percolation

[10–13], and Bose-Einstein condensation [14,15].

Despite these developments, partition function zeros were

for a long time considered a purely theoretical concept. This

situation is changing now as Lee-Yang zeros have been de-

termined in several experiments [16–23]. Recently, partition

function zeros were measured using carefully engineered

nanostructures involving the precession of interacting molec-

ular spins [17–19], Cooper pair tunneling in superconducting

devices [20–22], or fermionic atoms in driven optical lattices

[23]. In parallel with these experiments, several theoretical

proposals have been put forward for the detection of parti-

tion function zeros [24–28]. These advances motivate further
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investigations of the information that can be extracted from

the determination of Lee-Yang zeros in systems of finite size

and how future experiments on scalable many-body systems

may improve our understanding of phase transitions.

In this work, we present a direct pathway from the detec-

tion of partition function zeros by measuring or simulating

fluctuating observables in systems of finite size to the de-

termination of critical points and universal critical exponents

of continuous phase transitions [1–3]. Our method combines

(a) (b)

FIG. 1. Ising lattice and Fisher zeros. (a) The Ising model, here

in d = 3 dimensions with linear size L = 20 and N = Ld = 8000

lattice sites. The color of each site denotes the orientation of its spin,

blue (up) or red (down). (b) From the energy fluctuations, we find the

leading partition function zeros in the complex plane of the inverse

temperature using Eq. (8). The inverse temperature is βJ = 0.23,

where J is the coupling between neighboring spins. No magnetic

field is applied. The Fisher zeros approach the critical inverse temper-

ature βc with increasing system size, L = 4, 5, . . . , 10. Importantly,

from the scaling of the Fisher zeros, we can determine the critical

exponents as shown in Fig. 2.
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ideas and concepts from finite-size scaling analysis [29–32]

with the Lee-Yang formalism [4–7] and theories of high

cumulants [33–36], and it can be applied in experiments

on a variety of phase transitions including nonequilibrium

situations such as space-time phase transitions in glass for-

mers [37,38] and dynamical phase transitions in quantum

many-body systems after a quench [39–41]. Specifically, we

determine the partition function zeros from fluctuations of

thermodynamic observables and find the critical exponents

from the approach of the zeros to the critical value on the

real axis. As a paradigmatic application, we determine the

critical points and the universal critical exponents of the Ising

model from the fluctuations of energy and magnetization in

small lattices. Unlike most conventional methods, based for

instance on Binder cumulants [30–32], which require the

control parameter to be tuned across the phase transition,

we can determine the critical exponents even if the system

is away from the phase transition, for example at a fixed

high temperature. (In the Appendices, we discuss the sta-

tistical aspects of our method, and we compare it with the

use of Binder cumulants.) As such, our method provides an

intriguing perspective for investigations of phase transitions

that may be hard to reach experimentally, for instance at very

low temperatures or at very high pressures [42,43]. Moreover,

our method opens an avenue for bottom-up experiments on

phase transitions, in which nanoscale structures are carefully

assembled, for example by adding single spins to an atomic

chain on a surface [44] or by loading individual atoms into an

optical lattice one at a time [45], to increase the system size in

a controllable manner.

II. ISING LATTICE AND CRITICALITY

Figure 1(a) illustrates the Ising lattice that we consider in

this work. The lattice has N = Ld sites, where L is the linear

size and d = 2, 3 denotes the spatial dimension. Each site

hosts a classical spin which can take on the values σi = ±1.

An external magnetic field of magnitude h can be applied, and

neighboring spins are coupled via a ferromagnetic interaction

of strength J > 0. The total energy corresponding to a specific

spin configuration σ = {σi} is then

U (σ) = −J
∑

〈i, j〉

σiσ j − h
∑

i

σi, (1)

where the brackets 〈i, j〉 denote summation over nearest-

neighbor spins. The thermodynamic properties of the lattice

are fully encoded in the partition function

Z (β, h) =
∑

σ

e−βU (σ ), (2)

where β = 1/(kBT ) is the inverse temperature. Phase tran-

sitions are signaled by values of the control parameters for

which the scaled free energy f (β, h) = −[ln Z (β, h)]/(Nβ )

becomes nonanalytic in the thermodynamic limit of large

lattices [1–3]. The partition function also captures fluctua-

tions of thermodynamic observables. For instance, energy

fluctuations can be characterized by the moments 〈U n〉 =
[∂n

−βZ (β, h)]/Z (β, h) or cumulants 〈〈U n〉〉 = ∂n
−β ln Z (β, h),

which follow upon differentiation with respect to the conju-

gate variable, here the inverse temperature. The moments and

cumulants of the magnetization are given in a similar manner

by differentiation with respect to the magnetic field strength.

The Ising model exhibits a continuous phase transition,

which close to the critical inverse temperature β ≃ βc can be

completely characterized by a few critical exponents that are

independent of microscopic details and are determined solely

by general features such as the dimensionality of the problem

and its universality class [1–3]. As such, the determination

of critical exponents is of key importance in statistical me-

chanics. In the vicinity of the critical point, we may assume

that the probability distribution for the total energy obeys

the scaling relation PL(U ) = L−1/ν f∞(UL−1/ν ), where f∞ is

a scaling function and the critical exponent ν describes the

divergence of the correlation length as we approach the critical

temperature [29–32]. After some algebra, we then obtain

scaling relations for the cumulants of the form

〈〈U n〉〉 = Ln/νun, (3)

where the un’s depend only weakly on the system size. As we

will see, these relations carry over to the partition function

zeros and their approach to the critical point.

III. PARTITION FUNCTION ZEROS

AND FINITE-SIZE SCALING

Following the seminal ideas of Lee and Yang, we consider

the zeros of the partition function in the complex plane of the

control parameter [4–7]. For finite-size lattices, the partition

function is analytic and it can be factorized as

Z (β, h) = Z (0, h)eβc
∏

k

(1 − β/βk ), (4)

where βk are the zeros in the complex plane of the inverse

temperature and c is a constant. The zeros come in complex

conjugate pairs, since the partition function is real for real

values of β. Often these zeros are referred to as Fisher zeros,

while zeros for complex external fields are known as Lee-

Yang zeros. With increasing system size, the partition function

zeros approach the real value of the control parameter for

which a phase transition occurs in the thermodynamic limit.

From the definition of the cumulants, we now obtain the

relation [20–22]

〈〈U n〉〉 = (−1)(n−1)
∑

k

(n − 1)!

(βk − β )n
, n > 1, (5)

between the cumulants and the partition function zeros. We

then see that the high cumulants are mainly determined by the

pair of Fisher zeros, βo and β∗
o , that are closest to the actual

inverse temperature β on the real axis. The contributions

from other zeros are suppressed with the distance to β and

the cumulant order n [33–36]. Moreover, close to criticality,

we expect the scaling relations (3) to hold and thus that the

leading zeros must approach the critical inverse temperature

as [46–48]

|βo − βc| ∝ L−1/ν (6)

and

Im[βo] ∝ L−1/ν, (7)

023004-2
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FIG. 2. Fisher zeros and critical exponents. (a) The leading Fisher zeros (blue circles) for the Ising model with d = 2 are extracted from the

energy cumulants of order n = 6, 7, 8, 9. With increasing system size, the Fisher zeros approach the critical inverse temperature βcJ ≃ 0.4404

(red circle), which is close to the exact result β2DJ = ln(1 +
√

2)/2 ≃ 0.4407. The simulations were carried out at a temperature above the

phase transition, βJ = 0.35 (black circle). For the Ising model in Fig. 1 with d = 3, we find βcJ = 0.22169, which is close to the best

numerical estimate of β3DJ ≃ 0.22165. The critical inverse temperatures are determined in panel (c). (b) The extracted critical exponents ν

from the finite-size scaling of the imaginary parts are close to the known values for the Ising model, ν2D = 1 (exact) and ν3D ≃ 0.630 (numerics)

[49]. (c) In the thermodynamic limit, the imaginary part of the zeros vanishes, and the real parts approach the critical values indicated with red

circles in panels (a) and (c).

since the critical inverse temperature is real. These relations

are important as they allow us to obtain the critical exponent

ν from the partition function zeros.

IV. FISHER ZEROS AND CRITICAL EXPONENTS

Partition function zeros have recently been experimentally

determined [16–23]. Lee-Yang zeros have been determined by

measuring the quantum coherence of a probe spin-coupled

to an Ising-type spin bath [17–19], and Fisher zeros have

been extracted for a dynamical phase transition involving

fermionic atoms in a driven optical lattice [23]. Partition

function zeros have also been obtained from the fluctuations

of the number of transferred particles in an experiment on full

counting statistics of Cooper pair tunneling [20–22]. Here,

we first determine the Fisher zeros of the Ising lattice from

fluctuations of the energy, since the energy is conjugate to the

inverse temperature. To this end, Eq. (5) can be solved for high

orders, n ≫ 1, to yield the expression

[
−2Re[βo − β]

|βo − β|2

]
=

⎡
⎣1 − κ (+)

n

n

1 − κ
(+)
n+1

n+1

⎤
⎦

−1[
(n − 1)κ (−)

n

n κ
(−)
n+1

]
(8)

for the position of the leading partition function zeros, βo and

β∗
o , in terms of the ratios κ (±)

n ≡ 〈〈U n±1〉〉/〈〈U n〉〉 of cumulants

of subsequent orders. We stress that the energy fluctuations

can be measured (or simulated) at a single fixed temperature,

and the Fisher zeros can then be determined using Eq. (8).

To mimic an experiment, we perform Monte Carlo simu-

lations based on the standard Metropolis algorithm [50,51].

We thereby evaluate the high cumulants of the energy and

subsequently obtain the leading Fisher zeros from Eq. (8)

with increasing system size. The results of this procedure are

shown in Fig. 2(a) and Fig. 1(b) for the Ising lattice in two

and three dimensions. Already for small lattices of linear size

L � 10, we clearly see that the Fisher zeros approach the

critical inverse temperature on the real axis. A quantitative

analysis is provided in Fig. 2(b), where we investigate the

finite-size scaling of the imaginary part and extract the critical

exponent ν based on Eq. (7) [52]. Remarkably, the extracted

critical exponents are close to the best-known values for the

Ising model in two and three dimensions [49], even if obtained

for very small lattices. Moreover, in contrast to conventional

methods [30–32], which typically require that the control

parameter be tuned across the phase transition, we are here

able to determine the critical exponents from the energy

fluctuations at a fixed temperature above the phase transition.

Having determined the critical exponents, we can also find

the critical inverse temperature by extrapolating the position

of the leading Fisher zeros to the thermodynamic limit in

Fig. 2(c). The imaginary part of the Fisher zeros vanishes in

the thermodynamic limit, while the real part comes close to

the best-known values for the Ising model.

V. LEE-YANG ZEROS AND CRITICAL EXPONENTS

Our method can be applied to a variety of phase transitions,

not only in equilibrium settings but also in nonequilibrium

situations such as space-time phase transitions in glass for-

mers [37,38] and dynamical phase transitions in many-body

systems after a quench [39–41]. (In these cases, the role of the

partition function is played by a moment-generating function

or a return amplitude, both of which deliver the moments of

the fluctuating observable upon differentiation with respect to

the appropriate conjugate field.) For example, for the Ising

model we may also consider the partition function zeros in the

complex plane of the magnetic field. These Lee-Yang zeros

can be obtained from the fluctuations of the magnetization

similar to how the Fisher zeros are determined using Eq. (8).

At the critical temperature, the magnetization is assumed to

obey the scaling relation PL(M ) = L
B

ν
−d g∞(ML

B

ν
−d ), where

g∞ is a scaling function for the total magnetization and the

critical exponent B describes how the average magnetization

vanishes as the critical temperature is approached from below

023004-3



AYDIN DEGER AND CHRISTIAN FLINDT PHYSICAL REVIEW RESEARCH 1, 023004 (2019)

FIG. 3. Lee-Yang zeros and critical exponents. (a) The leading Lee-Yang zeros (blue circles) for the Ising model with d = 2 are extracted

from the magnetization cumulants of order n = 6, 7, 8, 9. Above the critical temperature, β = 0.8βc, the Lee-Yang zeros remain complex in the

thermodynamic limit (pair of red circles). For the sake of clarity, these results have been shifted horizontally away from the line Re[h/J] = 0.

At the critical inverse temperature, β = βc, the Lee-Yang zeros approach the critical field hc = 0 (red circle) with increasing system size. We

note that the perpendicular approach to the real-axis shows that the system exhibits a first-order phase transition as a function of the magnetic

field [6,7,53,54]. (b) Finite-size scaling of the imaginary parts of the Lee-Yang zeros and extraction of the ratio of critical exponents B/ν for

d = 2, 3. (c) Determination of the convergence points of the Lee-Yang zeros (red circle) for d = 2, 3. For d = 3, the real part also vanishes

(not shown).

[55–58]. This scaling hypothesis translates into scaling rela-

tions for the Lee-Yang zeros of the form

|ho − hc| ∝ L
B

ν
−d (9)

and

|Im(ho)| ∝ L
B

ν
−d , (10)

where hc is the magnetic field strength at which the phase tran-

sition occurs. We can now determine the Lee-Yang zeros from

the simulated fluctuations of the magnetization. The results of

this procedure for the Ising lattice with d = 2 are shown in

Fig. 3(a). Above the critical temperature, the Lee-Yang zeros

remain complex in the thermodynamic limit, since there is no

phase transition. By contrast, at the critical temperature (and

also below; not shown), the Lee-Yang zeros reach the real

axis, and we can proceed with the finite-size scaling analysis

in Fig. 3(b) for d = 2 and d = 3. Using Eq. (10), we then

extract the ratio B/ν of the critical exponents, also known

as the scaling dimension, and again find good agreement

with existing estimates. We note that from two independent

critical exponents we can obtain all other exponents using

the hyperscaling relations derived in renormalization group

theory [59]. Finally, in Fig. 3(c), we show how both the real

and imaginary parts of the leading Lee-Yang zeros vanish

in the thermodynamic limit, signaling that a phase transition

occurs at zero magnetic field.

VI. CONCLUSIONS

We have presented a method that makes it possible to iden-

tify critical points and determine critical exponents by measur-

ing fluctuations of thermodynamic observables in finite-size

systems kept at fixed external control parameters. Our method

can not only be applied to equilibrium situations but also

nonequilibrium phase transitions, including space-time phase

transitions in glass formers and dynamical phase transitions

in many-body systems after a quench. We have illustrated

the feasibility of our approach using the Ising model for

which the critical behavior depends on the dimensionality

of the problem as confirmed by our results. Importantly,

we can determine the critical points and critical exponents

without having to drive the system across the phase transition,

which is typically required by other methods. As such, our

method paves the way for investigations of phase transi-

tions that may be hard to reach experimentally, for instance

at low temperatures. Extending these ideas to the quantum

realm constitutes an exciting theoretical challenge for future

work.

Note added. Recently we became aware of a preprint that

also investigates partition function zeros for continuous phase

transitions [60].
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APPENDIX A: MONTE CARLO SIMULATIONS

AND ERROR ESTIMATES

Here we further discuss the use of our method on the Ising

model in d = 2 dimensions. As shown in the main text, we can

identify the critical points and determine the universal critical

exponents by analyzing fluctuating observables for different

lattice sizes N = Ld at a single fixed temperature above (or

below) the critical point. As such, our method can be applied

to a variety of phase transitions in finite-size systems that

are away from the critical temperature. To further analyze

the feasibility of our approach, we here discuss the statistical

023004-4
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FIG. 4. Monte Carlo simulations and error estimates. (a) The mean location of the leading partition function zeros obtained from m = 10

Monte Carlo simulations with 105 measurements per site are shown for increasing system sizes, L = 4, 5, . . . , 11. The standard errors are

denoted by red ellipses. The partition function zeros (blue circles) are extracted from the energy fluctuations of order n = 5, 6, 7, 8 at the

inverse temperature β = 0.8βc which is indicated by a black circle. (b) The imaginary parts of the partition function zeros are depicted in

a log-log plot as a function of lattice size L together with the errors bars that increase with the system size. The slope of the plot delivers

the critical exponent ν ≈ 1.004. (c) Determination of the convergence points of the partition function zeros (red circle). The real part of the

zeros moves toward the critical temperature βcJ ≈ 0.4419, which is close to the exact value for the Ising model βcJ ≈ 0.4407, whereas the

imaginary parts vanish in the thermodynamic limit, signaling a sharp phase transition.

aspects of our method including an error analysis. To this

end, we have collected statistics from m = 10 Monte Carlo

simulations with 105 measurements on an N-site Ising lattice

using a total of 105 × N Monte Carlo steps each. This is two

orders of magnitude smaller than for the results presented in

the main text. We then determine the leading partition function

zeros in the complex plane of the inverse temperature from the

cumulants of the energy. The standard errors are calculated as

a measure of the precision of the sample means and expressed

as σ/
√

m, where σ denotes the standard deviation. The mean

values of 10 measurements of the partition function zeros are

indicated with blue circles and the standard errors are shown

by red ellipses in Fig. 4(a) and vertical error bars in Fig. 4(b).

We stress that our method only requires measurements of the

energy at a single fixed temperature, which is indicated by a

black circle at β = 0.8βc in Fig. 4(a).

APPENDIX B: COMPARISON WITH

BINDER CUMULANTS

We now compare our method to the use of Binder cumu-

lants, which are often used to determine critical points and

critical exponents of phase transitions [30–32]. The Binder

parameter M4 is a modified fourth-order cumulant of the order

parameter, which for Ising models is the magnetization M, and

it is defined as

M4(L) = 1 −
〈M4〉

3〈M2〉2
, (B1)

where 〈M2〉 and 〈M4〉 denote the second- and fourth-order

moments of the magnetization. In the thermodynamic limit,

the Binder parameter approaches a nontrivial value that de-

pends on the boundary conditions and the lattice structure

FIG. 5. Binder cumulants. (a) The Binder parameter as a function of the inverse temperature for different system sizes. The Binder

parameter is evaluated at β = (0.7, 0.8, 0.85, 0.9, 0.95, 0.97, 1.03, 1.05, 1.1, 1.15, 1.2, 1.3) × βc. The intersection point (red circle) that is

extrapolated to the thermodynamic limit yields the critical temperature βcJ ≈ 0.4434. The estimation of the critical temperature highly depends

on the proximity of the measurements to the critical point, and collecting more statistics in the vicinity of βc improves the accuracy. The gray

frame corresponds to the data that we utilize to determine the critical exponents and critical temperature with our method. (b) Collapse of the

Binder cumulant for different system sizes. The estimate of the critical point from (a) is used to tune the critical exponent ν ≈ 1.07 so that all

data collapse onto a single curve.

023004-5
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[61–63]. The method exploits that M4 depends only weakly

on the lattice size exactly at the critical point. Therefore,

the crossing point of the Binder parameter for systems of

different sizes as a function of the (inverse) temperature

yields the critical temperature, where the system undergoes

a phase transition in the thermodynamic limit. Based on the

scaling behavior of the Binder parameter, one may identify

the universality class of the phase transitions by estimating

the critical exponent ν of the correlation length,

M4(L) = M̃(L1/ν (β − βc)), (B2)

where M̃ is a scaling function. Substituting the critical temper-

ature βc, which is obtained from the intersection of the Binder

parameters, into this equation causes all curves, corresponding

to different system sizes, to collapse onto the same functional

form for the correct value of the critical exponent ν. We note

that estimating the precise location of the phase transition and

the critical exponent requires a detailed study of the finite-size

scaling and the use of specialized algorithms, which is beyond

the scope of this work. Figure 5 shows the Binder parameter

as a function of the temperature and for different system sizes.

We note that in contrast to our method, to make use of Binder

cumulants, one must collect statistics of the magnetization

at a number of different temperatures and tune the system

across the critical point. From an experimental point of view,

it may be a great advantage to work with fixed parameters as

we do, for instance if the phase transition takes place at a low

temperature, which is hard to reach.
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