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Abstract The multibody simulation of railway vehicle dynamics needs a reliable and ef-

ficient method to determine the location of the contact points between wheel and rail that

represent the application points of the contact forces and influence their directions and in-

tensities. In this work, two semi-analytic procedures for the detection of the wheel–rail con-

tact points (named the DIST and the DIFF methods) are presented. Both the methods con-

sider the wheel and the rail as two surfaces whose analytic expressions are known. The first

method is based on the idea that the contact points are located in the point in which the dis-

tance between the contact surfaces has local maxima, and is equivalent to solve an algebraic

4D-system. The second method is based on the idea that in the contact points the difference

between the surfaces has local minima and is equivalent to solve an algebraic 2D-system.

In both cases, the original problem can be reduced analytically to a simple 1D-problem that

can be easily solved numerically.

Keywords Contact point location · Railway simulation · On-line contact detection

1 Introduction

The research of the contact points between the wheels and the rails in the multibody simula-

tion of railway vehicle dynamics is very important since they represent the application points

of the contact forces. The wheel/rail contact problem has been discussed by several authors

and a number of procedures to evaluate the contact points can be found in the literature.
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In the simulation of the railway dynamics, there are two different approaches to solve

the wheel/rail contact problem: the so-called rigid contact formulation [1] and the semielas-

tic contact description [2, 3]. In the rigid approach (the classical multibody approach), the

contact is represented by means of the constraint equations that impose the contact between

the wheel and the rail surfaces. The contact points are searched during the dynamic simula-

tion by solving the nonlinear algebraic-differential equations associated to the constrained

multibody system. In this case, each wheel has only five degrees of freedom with respect to

the rail, and the indentation and the lift between the contact bodies are not permitted. This

approach has been applied both in the railway [1, 4–6] and in the automotive dynamics [7].

In the formulations based on the elastic approach, the wheel is represented as a rigid

body with six degrees of freedom with respect to the rail and the normal contact forces

are defined as the function of the indentation between the bodies through the Hertz contact

theory [2, 3]. In the literature, several methods for the detection of the contact points can

be found. Some authors started from the idea of minimizing the distance between the wheel

and rail surfaces; most of them, however, introduced additional hypotheses on the position

of the contact points in order to simplify the geometry of the problem [6, 8, 9].

In some preceding works, the authors presented a method [10, 11] in which the contact

points are searched minimizing the difference between the wheel and rail surfaces by means

of numerical iterative algorithms (like the Compass Search algorithm and the Simplex al-

gorithm [12, 13]). These procedures do not introduce additional geometric hypotheses and

allow an efficient management of the multiple contacts (up to two contact points for wheel).

The challenge of this study was the realization of an efficient multibody model, running in

real-time conditions; however, the developed solutions did not allow a direct implementation

of the research procedure in the multibody model. In other words, the solutions described in

[10, 11] were used to generate lookup tables to be used during the simulation of the vehicle

dynamics. The wheel/rail contact problem can be solved in this case finding the minima of

a two dimensional surface. The numerical algorithms conventionally used for this type of

application present various problems:

1. Iterative research algorithms need start points and break conditions that are not simple

to choose and may affect the reliability of the solution; moreover, the convergence of the

procedure cannot be easily assured.

2. The required accuracy cannot be guaranteed a priori.

3. The management of the multiple solutions can be difficult.

4. The required computational burden allows only off-line implementation (a real time im-

plementation requires necessarily the use of lookup tables).

In this work, the authors propose two semianalytic methods to determine the wheel–rail

contact points. These procedures will allow to improve the performances of the preceding

methods and to overcome the problems mentioned above. Both the presented procedures

represent the wheel and the rail as two mathematical surfaces whose analytic expression is

known (Fig. 1). The first method is based on the idea that the contact points are located

in the points in which the distance between the wheel surface and the rail surface assumes

local maxima. This method has been used by several authors to solve the wheel/rail problem

[2, 3, 6]. In the wheel/rail case, the problem can be represented as the research of the sta-

tionary point on a four dimensional surface, that is equivalent to solve an algebraic system

having the form:

F1(x) = 0, F1 : R
4 → R

4. (1)

The second method is based on the idea that in the contact points the difference between the

wheel surfaces and the rail surface evaluated along a direction assumes local minima. In this
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Fig. 1 Wheel and rail surfaces

case, the problem can be reduced to the research of the minima of a two dimensional surface

and is equivalent to solve an algebraic system that can be written as:

F2(x) = 0, F2 : R
2 → R

2. (2)

In both cases, the problem can be reduced analytically to a simple mono-dimensional prob-

lem having the form

F(x) = 0, F : R → R (3)

that can be solved numerically. The first method will be indicated in the paper with the

abbreviation DIST (Distance Method), whereas the second with DIFF (Difference Method).

The performances of the proposed procedures will be compared among them and with

those obtained with other methods previously developed and available in the literature (like

the Compass Search and the Simplex methods [10–13]). The results will be also compared

with those obtained with the direct research of the solution obtained by the calculation of the

function on a multi-dimensional grid and the comparison between the obtained values (this

procedure will be indicated with GRID method throughout the paper). The comparisons will

be carried out in terms of precision and computation times.

The paper is organized as follows: In Sect. 2, the analytic formulation of the problem will

be introduced, in the Sects. 3 and 4, the DIST and DIFF methods will be described in detail;

in Sect. 5 the obtained results are described and the performances of the new procedures

will be compared with those obtained with other methods. A particular attention will be

dedicated to the computation times and the precision of the procedures.

2 The analytic formulation of the problem

In this chapter, the mathematical notations used in the paper and the analytic formulation of

the problem will be introduced. Firstly, a fixed global reference system Of xf yf zf (Fig. 2)

is defined, the xf axis is tangent to the track centerline in the point Of and the zf axis is

normal to the plane of the rails. With respect to this fixed global system, the railway track

can be described by means of a three-dimensional curve Ŵ(s) (s is the curvilinear abscissa):

Ŵ : I ⊂ R → R
3. (4)
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Fig. 2 Definition of the rail

track, base, and auxiliary

reference systems

For convenience, Ŵ̃(s) is defined as the projection of Ŵ(s) on the horizontal plane xf yf .

Usually in the cartographic description of a railway track, the profile is described by its

projection on the horizontal plane and by its longitudinal profile. The curvature K(s) of the

projection Ŵ̃(s) can be obtained from the track planimetry, while the track slope p(s) that

represents the tangent of the angle between the track and the horizontal plane can be obtained

from the longitudinal track profile [15]. From these parameters, the three-dimensional track

curve Ŵ(s) can be calculated. The track is usually composed of a series of straight, circular,

or transition curve segments and their analytical expressions are known. In the more general

case, the curve profile can be obtained integrating the Frenet equations [14]:

dt

ds
= K(s)n(s),

dn

ds
= −K(s)t(s), (5)

where t(s) and n(s) are respectively the tangent and the normal unitary vectors of the curve

Ŵ̃(s). Starting from the boundary conditions t(0) = [1,0]T and n(0) = [0,1]T (in this con-

figuration, the tangent unitary vector is parallel to xf and the normal one is parallel to yf ),

the Frenet equations can be integrated, obtaining t(s) and n(s). Then since t(s) = Ŵ̃(s)

ds
, the

first two components of Ŵ(s) can be calculated by the following integration:

Ŵ̃(s) =

∫ s

0

t(u) du, (6)

in which u represents the integration variable. The third component of Ŵ(s) is calculated

using the definition of the track slope:

Ŵz(s) =

∫ s

0

p(u)du. (7)

A second reference system (referred as auxiliary reference system) Orxryrzr (Fig. 3) is

defined, ir , jr , and kr represent the unitary vectors relative to the axes xr , yr , and zr , respec-

tively. It is defined on the rails, but follows the wheelset during the simulation. The xr axis
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Fig. 3 Track auxiliary reference

system and wheelset local

reference systems

is tangent to the track centerline in the point Or and the zr axis normal to the plane of the

rails. The position of the point Or , identified by its coordinates o
f
r relative to the fixed ref-

erence system, can be calculated from the wheelset center of mass location G, identified by

its coordinates relative to the fixed reference system of
w , imposing the following condition:

(
of

w − of
r

)
· ir = 0, (8)

since the point Or is on the curve Ŵ(s) describing the rail track, o
f
r = Ŵ(s) and ir = ir(s),

then (8) can be rewritten as:
(
of

w − Ŵ(s)
)
· ir(s) = 0. (9)

Equation (9) can be solved with respect to the variable s. This condition is equivalent to

impose that the plane yrzr contains the wheelset center of mass G.

In order to define the axes yr and zr , another reference system (named secondary refer-

ence system) is defined, its unitary vectors ir ′ , ir ′ , and ir ′ , relative to the axes xr ′ , yr ′ , and

zr ′ , respectively, are calculated as follows:

ir ′ = ir =
dŴ

ds

/∥∥∥∥
dŴ

ds

∥∥∥∥,

jr ′ = kf × ir ′ , (10)

kr ′ = ir ′ × jr ′ .

The unitary vectors of the auxiliary system can then be defined as follows:

[ ir jr kr ] = [Rcant] [ ir ′ jr ′ kr ′ ] = [R1], (11)

where the rotation matrix [Rcant] is defined as:

[Rcant] = [Rx,βc ] =

⎡
⎢⎣

1 0 0

0 cosβc − sinβc

0 sinβc cosβc

⎤
⎥⎦ , (12)
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βc is the cant angle and [R1] is the rotation matrix that links the auxiliary system with the

fixed one.

Finally, the local reference system Owxwywzw is defined. The yw axis is coincident with

the rotation axis of the wheels and is rigidly connected to the axle (except for the rotation

around this axis). The xw axis is parallel to the plane xryr and the origin Ow coincides with

the center of mass G of the wheelset.

Indicating with pf , pr , and pw the position of a generic point expressed respectively

in the fixed, auxiliary, and local reference systems, then the following standard kinematic

relations hold:

pf = o
f
r + [R1]p

r ,

pr = or
w + [R2]p

w,

pf = of
w +

[
R̂
]
pw,

(13)

where [R̂] = [R1][R2] is the rotation matrix that links the local system with the fixed one,

or
w and of

w are the coordinates of the wheelset center of mass expressed in the auxiliary and

in the fixed reference system, respectively. The matrix [R2] (that links the local system with

the auxiliary one) is defined as:

[R2] = [Rz,α][Rx,β] =

⎡
⎢⎣

cosα − sinα 0

sinα cosα 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 cosβ − sinβ

0 sinβ cosβ

⎤
⎥⎦

=

⎡
⎢⎣

cosα − sinα cosβ sinα sinβ

sinα cosα cosβ − cosα sinβ

0 sinβ cosβ

⎤
⎥⎦ , (14)

where α and β are respectively the yaw and roll angles of the axle with respect to the

track.

In order to parametrize a surface, different options can be considered. However, being

the wheel a solid of revolution, an angular parameter, and a translational parameter in the

direction of the wheel profile seem the natural option. Similarly, an arc length parameter and

a translational parameter in the direction of the rail profile is also a natural option for the

track. However, in this work for both wheel and rail, the surfaces two translational parame-

ters have been used; this choice allows to simplify the algebraic manipulations necessary to

develop the DIST and DIFF methods described in the following sections.

In the local system the axle (and, therefore, the wheels) can be described by means of

a revolution surface. The generative function, schematically sketched in Fig. 4 is indicated

with r(yw) (the function r(yw) is known). The profile of the single wheel is plotted in detail

in Fig. 5. In this case, an ORE S 1002 has been chosen [15]. The position of a generic

point of the axle in the local reference frame pw
w has consequently the following analytic

expression (Fig. 6):

pw
w(xw, yw) =

⎡
⎢⎣

xw

yw

−
√

r(yw)2 − x2
w

⎤
⎥⎦ , (15)
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Fig. 4 Generative function of

the wheelset

Fig. 5 Profile of the wheel

while the position of the same point in the auxiliary system is given by (Fig. 3):

pr
w(xw, yw) = or

w + [R2]p
w
w(xw, yw) =

⎡
⎢⎣

xr
w(xw, yw)

yr
w(xw, yw)

zr
w(xw, yw)

⎤
⎥⎦ ; (16)

as consequence of the choice of the reference systems the matrix [R2], defined in (14) as a

function of the wheelset yaw and roll angle has the following structure:

[R2] =

⎡
⎢⎣

rT
1

rT
2

rT
3

⎤
⎥⎦=

⎡
⎢⎣

r11 r12 r13

r21 r22 r23

0 r32 r33

⎤
⎥⎦ (17)

while the coordinates of the wheelset center of mass are:

or
wb =

⎡
⎢⎣

0

Gy

Gz

⎤
⎥⎦ . (18)
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Fig. 6 Coordinates of a point on the wheel surface

Fig. 7 Railway generative

function

Similarly, the rails can be described in the auxiliary system by means of a extrusion

surface. The generative function indicated with b(yr) is known and is sketched in

Fig. 7.

The profile of the single rail is plotted in detail in Fig. 8. This profile is rotated with

respect to the xr axis with an angle αp corresponding to the railway laying angle, in the

figure, an UIC 60 is shown [15].

The position of a generic point of the rail in the auxiliary system are:

pr
r(xr , yr) =

⎛
⎜⎝

xr

yr

b(yr)

⎞
⎟⎠ . (19)

For both surfaces the normal unitary vectors (outgoing for convention) can be defined.

The normal unitary vector on the wheel surface (Fig. 9) is defined, in the local system,
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Fig. 8 Rail profile

Fig. 9 Normal unitary vector on

the wheel surface

as follows:

nw
w

(
pw

w

)
= −

(
∂pw

w

∂xw

×
∂pw

w

∂yw

)/∥∥∥∥
∂pw

w

∂xw

×
∂pw

w

∂yw

∥∥∥∥

=

(√
r(yw)2(r ′(yw)2 + 1)

r(yw)2 − x2
w

)−1

⎡
⎢⎢⎣

xw/
√

r(yw)2 − x2
w

−r(yw)r ′(yw)/
√

r(yw)2 − x2
w

−1

⎤
⎥⎥⎦ . (20)

In this expression, r ′(yw) is the wheel profile derivative r ′(yw) =
dr(yw)

dw
. In the auxiliary

reference system, the unitary vector normal to the wheel surface can be calculated as:

nr
w

(
pr

w

)
= [R2]n

w
w

(
pw

w

)
. (21)

It is useful to remark that in this case
√

r(yw)2 − x2
w is a real positive number since

r(yw)2 ≫ x2
w .
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Fig. 10 Normal unitary vector

of the rail

The unitary vector relative to the rail surface (Fig. 10), with respect to the auxiliary

system is defined as:

nr
r

(
pr

r

)
=

(
∂pr

r

∂xr

×
∂pr

r

∂yr

)/∥∥∥∥
∂pr

r

∂xr

×
∂pr

r

∂yr

∥∥∥∥ (22)

=
(√

1 + b′(yr)2
)−1

⎡
⎢⎣

0

−b′(yr)

1

⎤
⎥⎦ . (23)

In this expression, b′(yr) represents the rail profile derivative b′(yr) =
db(yr )

dyr
.

3 The DIST method

As mentioned in the Introduction, the DIST method is based on the idea that in each contact

point the distance between the wheel surface and the rail surface assumes a local maximum.

The problem can be efficiently solved imposing the following conditions (Fig. 11) [14]:

• The normal unitary vector relative to the rail surface nr
r(p

r
r) has to be parallel to the wheel

surface normal unitary vector nr
w(pr

w);

nr
r × nr

w

(
pr

w

)
= nr

r

(
pr

r

)
× [R2]n

w
w

(
pw

w

)
= 0. (24)

• The rail surface normal unitary vector nr
r(p

r
r) has to be parallel to the vector representing

the distance between the generic point of the wheel and of the rail dr = pr
w − pr

r

nr
r(p

r
r) × dr = 0. (25)

The vector representing the distance between the generic point of the wheel and of the rail

can be expressed as

dr(xw, yw, xr , yr) = pr
w(xw, yw) − pr

r(xr , yr) = or
w + [R2]p

w
w(xw, yw) − pr

r(xr , yr). (26)

The vector dr(xw, yw, xr , yr) depends on four parameters, namely the parameters used to

identify a point on the rail and on the wheel surface, respectively. The conditions defined

in (24) and (25) represent a system with six equations (since two vectorial constraints are
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Fig. 11 DIST method: vector

representing the distance between

the generic point of the wheel

and of the rail

imposed) and four unknowns (xw ,yw ,xr ,yr ), then only four of them are independent. Carry-

ing out the calculations, it could be verified that the third component of both the vectorial

equations (24) and (25) are proportional to the second one. Then only the first and second

components of the equations can be considered for the solution of the problem.

The solutions of the system (24–25) are indicated with

(
xC

wi, y
C
wi, x

C
ri, y

C
wi

)
, i = 1,2, . . . , n, (27)

while

p
r,C
wi = pr

w

(
xC

wi, y
C
wi

)
, p

r,C
ri = pr

r

(
xC

ri, y
C
wi

)
, i = 1,2, . . . , n (28)

are the corresponding contact points on the wheel and on the rail (Fig. 11).

The system solutions depends on the relative displacement between the wheelset and the

rail, defined by the kinematic parameters Gy,Gz, α,β . Because of the problem geometry,

if the conditions b(yr) = b(−yr) and r(yw) = r(−yw) are satisfied (in other terms if the

wheel and the rail profile are symmetric with respect to the yw and yr axis), the following

symmetry conditions holds:

• If (xC
wi, y

C
wi, x

C
ri, y

C
wi) is a solution associated to the kinematic variables (Gy,Gz, α,β),

then (−xC
ri, y

C
wi,−xC

ri, y
C
ri) will be a solution associated to the kinematic variables

(Gy,Gz,−α,β).

• If (xC
wi, y

C
wi, x

C
ri, y

C
ri) is a solution associated to the kinematic variables (Gy,Gz, α,β),

then (−xC
wi,−yC

wi,−xC
ri,−yC

ri) will be a solution associated to the kinematic variables

(−Gy,Gz, α,−β).

A generic solution of the system (24–25) can be considered an effective contact point

only if the normal indentation between the surfaces pn is negative (according to our conven-

tion). Therefore, as regards the i-th solution, the following condition has to be verified:

pni = d
r,C
i · nr

r

(
p

r,C
ri

)
≤ 0, (29)

where d
r,C
i = p

r,C
wi − p

r,C
ri . Otherwise, the solution must be rejected.



338 M. Malvezzi et al.

The i-th solution has to pass also another test to be considered a contact point: the curva-

tures of the surfaces in the contact points have to satisfy some algebraic conditions so that

the contact could be physically possible.

The normal principal curvatures K1w(yw) and K2w(yw) in a generic point of the wheel

are defined as follows [14]:

K1w(yw) =
1

|r(yw)|
√

1 + r ′(yw)2
,

K2w(yw) =
r ′′(yw)

(1 + r ′(yw)2)3/2
,

(30)

while the normal principal curvatures K1r(yr) and K2r(yr) in a generic point of the wheel

are defined as:

K1r(yr) = 0,

K2r(yr) =
−b′′(yr ′)

(1 + b′(yr ′)2)3/2
.

(31)

In these expressions, r ′′(yw) =
d2r(yw)

dy2
w

and b′′(yr) =
d2b(yr )

dy2
r

represent the second derivative

of the wheel and the rail profile, respectively. The curvatures are positive if the surfaces

are convex (Fig. 12). Concerning the wheel principal directions of curvature the following

relations hold:

vw
1w(xw, yw) =

1

|r(yw)|

⎡
⎢⎣

√
r(yw)2 − x2

w

0

xw

⎤
⎥⎦ ,

vw
2w(xw, yw) =

1√
1 + r ′(yw)2

⎡
⎢⎢⎣

−
r ′(yw)

|r(yw)|
xw

1

r ′(yw)

|r(yw)|

√
r(yw)2 − x2

w

⎤
⎥⎥⎦ .

(32)

Fig. 12 Signs of the normal

principal curvatures
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The rail principal directions of curvature are:

vr
1r(xr , yr) =

⎡
⎢⎣

1

0

0

⎤
⎥⎦ ,

vr
2r(xr , yr) =

1√
1 + b′(yr)2

⎡
⎢⎣

0

1

b′(yr)

⎤
⎥⎦ .

(33)

These relations can be used to calculate the normal curvatures K1r(y
C
ri), K2r(y

C
ri), K1w(yC

wi),

and K2w(yC
wi) and the principal directions of curvature v

r,C
1ri = vr

1r(x
C
ri, y

C
ri), v

r,C
2ri =

v2r(x
C
ri, y

C
ri), v

w,C
1wi = vw

1w(xC
wi, y

C
wi), and v

w,C
2wi = v2w(xC

wi, y
C
wi) in the contact points.

Then the curvatures of the wheel and rail surfaces kC
1wi , kC

2wi , kC
1ri , kC

2ri in the longitudinal

and lateral rail direction can be calculated. The bundle of planes passing through the axis

defined by the unitary vector nr
r(p

r,C
ri ) defined on the point p

r,C
ri is considered (or equivalently

the bundle defined by the axis passing through the unitary vector nr
w(p

r,C
wi ) defined on the

point p
w,C
wi ). Cutting the contact surfaces with the planes of the bundle containing the unitary

vectors v
r,C
1ri and v

r,C
2ri , by means of the Euler’s formula, the following expressions for the

curvature can be found [14]:

kC
1wi = K1w

(
yC

wi

)
cos2 ϕC

i + K2w

(
yC

wi

)
sin2 ϕC

i ,

kC
2wi = K1w

(
yC

wi

)
cos2 ψC

i + K2w

(
yC

wi

)
sin2 ψC

i ,

kC
1ri = K1r

(
yC

wi

)
,

kC
2ri = K2r

(
yC

ri

)
,

(34)

where

cosϕC
i = v

w,C
1wi · v

w,C
1ri ,

cosψC
i = v

w,C
1wi · v

w,C
2ri ,

v
w,C
1ri = [R2]

T v
r,C
1ri ,

v
w,C
2ri = [R2]

T v
r,C
2ri .

Since ψC
i = ϕC

i + π
2
, the following relation holds:

kC
2wi = K1w

(
yC

wi

)
sin2 ψC

i + K2w

(
yC

wi

)
cos2 ψC

i . (35)

The generic solution (xC
wi, y

C
wi, x

C
ri, y

C
ri) with i = 1,2, . . . , n of the system (24–25) can be

considered an effective contact point only if the following conditions are verified:

kC
1ri + kC

1wi > 0,

kC
2ri + kC

2wi > 0;
(36)

otherwise the contact is physically impossible. The situation is shown in Fig. 13 for the

second direction, as it can be seen, in the point P C,2 the curvatures satisfy the inequality
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Fig. 13 Normal curvatures in

the contact points

kC
2ri + kC

2wi < 0, in other terms in this case the wheel curvature radius is larger than the rail

one: even if the point P C,2 was a solution of the system (24–25) it could not be considered an

effective contact point. Because of the geometry of the problem, the first of (36) conditions

is always satisfied, and thus only the second has to be verified.

As hinted in the Introduction, the research of the distance stationary points is equivalent

to solve an algebraic 4D-system defined by the first two components of the vectorial equa-

tions (24–25). However, the problem dimension can be analytically reduced from four to

one. In other words, it is possible to express the variables xw , xr , yr as a function of yw in

order to obtain a simple scalar equation in the unknown yw .

From the second component of the vectorial equation defined in (24), the following ex-

pression can be found:

r13

√
r(yw)2 − x2

w = r11xw − r12r(yw)r ′(yw). (37)

In this expression, r13, r11, and r12 are components of the matrix [R2]. Indicating for brevity

A = r13, B = r(yw), C = r11, and D = r12r(yw)r ′(yw), it can be rewritten as:

A

√
B2 − x2

w = Cxw − D, (38)

and, therefore, squaring both the members, it can be solved to obtain xw as a function of yw:

xw1,2(yw) =
CD ±

√
C2D2 − (C2 + A2)(D2 − A2B2)

C2 + A2
. (39)

As it can be seen, there are two possible values of xw for each value of yw . From the first

component of the vectorial equation defined in (24) the following expression can be found.

The index (1,2) indicates that the value has to be calculated for both the roots of (39)

b′(yr)1,2 =
r21xw1,2(yw) − r22r(yw)r ′(yw) − r23

√
r(yw)2 − xw1,2(yw)2

r32r(yw)r ′(yw) + r33

√
r(yw)2 − xw1,2(yw)2

. (40)

The following condition:

r32r(yw)r ′(yw) + r33

√
r(yw)2 − xw1,2(yw)2 �= 0 (41)

is always assured since

r(yw)2 ≫ x2
w, r(yw) ≫ r ′(yw) and r33 ≫ r32.
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Without loss of generality, the left and the right side of the track can be considered sep-

arately. In the first case, yw ∈ [700 790] mm and yr ∈ [720 780] mm and in the second

yw ∈ [−790 −700] mm and yr ∈ [−780 −720] mm. Under these assumptions, the func-

tion b′(yr) is numerically invertible and the values of yr1,2(yw) can be calculated. Finally,

from the second component of the vectorial equation defined in (25), the following relation

can be written:

xr1,2(yw) = r1 · pw
w

(
xw1,2(yw), yw

)
= r11xw1,2(yw) + r12yw − r13

√
r(yw)2 − xr1,2(yw)2.

(42)

The variables xw , xr , yr have been expressed as a function of yw and can be introduced in the

first component of the vectorial equation (25). Then the following relations can be found:

F1,2(yw) = −b′
(
yr1,2(yw)

)(
Gz + r3.p

w
w

(
xw1,2(yw), yw

)
− b
(
yr1,2(yw)

))

−
(
Gy + r2.p

w
w

(
xw1,2(yw), yw

)
− yr1,2(yw)

)

= −b′
(
yr1,2(yw)

)(
Gz + r32yw − r33

√
r(yw)2 − xw1,2(yw)2 − b

(
yr1,2(yw)

))

−
(
Gy + r21xw1,2(yw) + r22yw − r23

√
r(yw)2 − xw1,2(yw)2 − yr1,2(yw)

)
= 0.

(43)

It is a simple scalar equation in the variable yw (where yw ∈ [700 790] mm for the left

side and yw ∈ [−790 −700] mm for the right side) and can be solved numerically. Also,

in this case, the index (1,2) indicates that the equation has to be solved for both the roots

of (39).

For simplicity, the solutions yC
wi (with i = 1,2, . . . , n) of (43) are split in two groups:

yC
w1j (with j = 1,2, . . . , n1) indicates the roots of F1(yw) = 0 (obtained with the first root

of (39)) and yC
w2k (with k = 1,2, . . . , n2) those of F2(yw) = 0, where n = n1 + n2. Through

(39), (40), and (42), the values of the variables xw , xr , yr corresponding to yC
w1j and yC

w2k

can be calculated:

xC
w1j = xw1

(
yC

w1j

)
, xC

r1j = xr1

(
yC

w1j

)
, yC

r1j = yr1

(
yC

w1j

)
, j = 1,2, . . . , n1,

xC
w2k = xw2

(
yC

w2k

)
, xC

r2k = xr2

(
yC

w2k

)
, yC

r2k = yr2

(
yC

w2k

)
, k = 1,2, . . . , n2

(44)

and, therefore, by means of (15), (16), and (19), the positions of the contact points on the

wheel and on the rail are calculated:

p
r,C
w1j = pr

w

(
xC

w1j , y
C
w1j

)
, p

r,C
r1j = pr

r

(
xC

r1j , y
C
r1j

)
, j = 1,2, . . . , n1,

p
r,C
w2k = pr

w

(
xC

w2k, y
C
w2k

)
, p

r,C
r2k = pr

r

(
xC

r2k, y
C
r2k

)
, k = 1,2, . . . , n2.

(45)

Not all the solutions (xC
w1j , y

C
w1j , x

C
r1j , y

C
r1j ) (with j = 1,2, . . . , n1) and (xC

w2k, y
C
w2k,

xC
r2k, y

C
r2k) (with k = 1,2, . . . , n2) obtained finding the roots of (43) can be accepted, since

(37)–(43) contain irrational terms. Consequently, the following conditions have to be veri-
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fied for every j and k:

• xC
w1j and xC

w2k (calculated by (39) as a function of yC
w1j and yC

w2k) have to be real numbers.

• The terms
√

r(yC
w1j )

2 − (xC
w1j )

2 and

√
r(yC

w2k)
2 − (xC

w2k)
2 appearing in (43) have to be

real.

• (xC
w1j , y

C
w1j ) and (xC

w2k, y
C
w2k) have to be effective solutions of (37).

If one of these conditions is not verified, the solution has to be rejected. Moreover, con-

cerning eventual multiple solutions, if m is the multiplicity of the solution, only one

of these can be considered because the others m − 1 have not physical meaning. The

multiplicity of the solution has to be evaluated considering all the solutions in both the

sets (xC
w1j , y

C
w1j , x

C
r1j , y

C
r1j ) (with j = 1,2, . . . , n1) and (xC

w2k, y
C
w2k, x

C
r2k, y

C
r2k) (with k =

1,2, . . . , n2).

For each wheel/rail configuration, the DIST method requires therefore the following

steps:

1. Determination of the solutions (xC
wi, y

C
wi, x

C
ri, y

C
ri) (with i = 1,2, . . . , n) of the system

(24–25)

2. Research and elimination of the multiple solutions

3. Check of the analytic conditions

4. Check of the condition on the curvatures

5. Check of the condition on the normal indentation.

These controls allow to verify that the solutions are physically realistic, in the analytic de-

velopment no simplifications and approximations were assumed then no solution of the

problem should be excluded.

4 The DIFF method

The DIFF method has been developed in order to simplify the method described in the

preceding section and then to further improve its efficiency. The DIFF method is based on

the idea that the contact points minimize the difference between the wheel surface and the

rail surface in the direction identified by the unitary vector kr :

D(xw, yw) =
(
pr

w(xw, yw) − pr
r(xw, yw)

)
· kr , (46)

where pr
w is defined according to (15), while pr

r(xw, yw) is defined as follows:

pr
r(xw, yw) =

⎡
⎢⎣

xr
w(xw, yw)

yr
w(xw, yw)

b(yr
w(xw, yw))

⎤
⎥⎦ . (47)

In other terms, the point pr
r(xw, yw) is evaluated as the intersection between the rail surface

and a line parallel to the axis zr passing through the point pr
w on the wheel surface (Fig. 14).

For each wheel/rail relative configuration, the difference D(xw, yw) is then a function de-

pending on two variables (in other terms it is a two dimensional surface).

The method is based on an approximation that could be a priori unacceptable, it is ap-

proximately true when considering wheel–rail tread contact, but it may be wrong when con-

sidering wheel–rail flange contact. However, it allows to simplify the problem and to obtain
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Fig. 14 Minimization of the

difference: definition of the

difference function

a procedure with an higher computational efficiency that could be implemented directly in

the multibody code. In order to verify the reliability of the proposed procedure, its results

have been compared with those obtained with the DIST method described above. The results

of the tests are summarized in Sect. 5.

The contact points between the surfaces can be approximated with the minima of the

difference function. In some preceding works [10, 11], the authors presented some proce-

dures to find numerically the minima, based on iterative methods (namely Simplex method

and Compass search [12, 13]). The efficiency of these methods was not sufficiently high to

allow an on-line implementation of the procedure.

The problem could be solved analytically imposing the following conditions on the par-

tial derivatives of the function D(xw, yw) [14]:

∂D(xw, yw)

∂xw

= 0,
∂D(xw, yw)

∂yw

= 0. (48)

Also, in this case, (xC
wi, y

C
wi) with i = 1,2, . . . , n indicate the solutions of the system (48),

and p
r,C
wi = pr

w(xC
wi, y

C
wi), p

r,C
ri = pr

r(x
C
wi, y

C
wi) with i = 1,2, . . . , n the corresponding contact

points on the wheel and on the rail (for each wheelset/rail configuration, n is the total number

of contact points).

Because of the problem geometry, if b(yr) = b(−yr) and r(yw) = r(−yw), the same

symmetry conditions described in the preceding section are verified.

To be considered possible contact points, the solutions of the system (48) have to be ef-

fectively a minimum of the surface (46), then the Hessian matrix HD(xw, yw) of D(xw, yw),

defined as [14]:

HD(xw, yw) =

⎛
⎝

∂2D

∂x2
w

∂2D
∂xw∂yw

∂2D
∂xw∂yw

∂2D

∂y2
w

⎞
⎠ (49)

has to be positive defined in the points (xC
wi, y

C
wi) with i = 1,2, . . . , n. Since D(xw, yw) :

R
2 → R, this is equivalent to

∂2D

∂x2
w

(
xC

wi, y
C
wi

)
> 0, detHD

(
xC

wi, y
C
wi

)
> 0 (50)

with i = 1,2, . . . , n.

The generic solution of (48) can be considered an effective contact point only if the nor-

mal indentation between the surfaces pn is negative. In this case, the normal indentation
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Fig. 15 Minimization of the

difference: definition of the

surface indentation

pn cannot be calculated directly from the values of xw , yw because the normal to the con-

tact surfaces in the contact point is not unique with this approach. For this reason, it was

approximated with the value p̃ni calculated as follows (Fig. 15):

p̃ni = D
r,C
i · nr

r

(
p

r,C
ri

)
= pvi cosϑi . (51)

In this expression, D
r,C
i is the vector representing the difference between the surfaces, de-

fined as:

D
r,C
i = p

r,C
wi − p

r,C
wi ,

pvi represents the indentation evaluated in the zr direction, defined as:

pvi = D
r,C
i · kr , (52)

and ϑi is the angle between the zr direction and the unitary vector normal to the rail surface:

cosϑi = nr
r

(
p

r,C
ri

)
· kr .

Therefore, for each solution of (48), the following condition has to be verified:

p̃ni =≤ 0. (53)

The minimization of the difference is equivalent then to solve an algebraic 2D-system (48).

However, also in this case, the problem dimension can be analytically reduced, since it is

possible to express the variable xw as a function of yw in order to obtain a simple scalar

equation in the variable yw . Introducing the definitions of pr
w(xw, yw) and pr

r(xw, yw) into

(46), the following expression can be found:

D(xw, yw) =
(
pr

w(xw, yw) − pr
r(xw, yw)

)
· kr = zr

w(xw, yw) − b
(
yr

w(xw, yw)
)

= Gz + r3 · pr
r(xw, yw) − b

(
Gy + r2 · pw

w(xw, yw)
)
. (54)
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The partial derivatives of the function (48) are:

∂D

∂xw

(xw, yw) = r3.
∂pw

w

∂xw

(xw, yw) − b′
(
Gy + r2.p

w
w(xw, yw)

)
r2.

∂pw
w

∂xw

(xw, yw) = 0, (55)

∂D

∂yw

(xw, yw) = r3.
∂pw

w

∂yw

(xw, yw) − b′
(
Gy + r2.p

w
w(xw, yw)

)
r2.

∂pw
w

∂yw

(xw, yw) = 0. (56)

The last term of (55) and (56) can be rewritten as follows:

r2.
∂pw

w

∂yw

(xw, yw) =

(
r22 − r23

r(yw)r ′(yw)√
r(yw)2 − x2

w

)
, (57)

and its value is different from zero, since r(yw)2 ≫ x2
w and r22 ≫ r23r

′(yw). The term

b′(Gy + r2.p
w
w(xw, yw)) can be obtained from (56) and can be introduced in (55), in order to

achieve:
(

r3.
∂pw

w

∂xw

(xw, yw)

)(
r2.

∂pw
w

∂yw

(xw, yw)

)
=

(
r2.

∂pw
w

∂xw

(xw, yw)

)(
r3.

∂pw
w

∂yw

(xw, yw)

)
(58)

and, carrying out the calculations:

r21r32

√
r(yw)2 − x2

w = (r22r33 − r23r32)xw + r21r33r(yw)r ′(yw). (59)

Setting for brevity A1 = r21r32, B1 = r(yw), C1 = r22r33 − r23r32, and D1 = r21r33r(yw) ×

r ′(yw), (59) can be rewritten as:

A1

√
B2

1 − x2
w = C1xw + D1 (60)

and, therefore, squaring both the members, the term xw can be calculated:

xw1,2(yw) =
−C1D1 ±

√
C2

1D
2
1 − (C2

1 + A2
1)(D

2
1 − A2

1B
2
1 )

C2
1 + A2

1

. (61)

The variable xw is then expressed as a function of yw and as it can be seen, there are again

two possible values of xw for each value of yw . Finally, we can introduce the relation (61)

in the second member of (55) obtaining:

F1,2(yw) =
∂D(xw1,2(yw), yw)

∂yw

= r3.
∂pw

w(xw1,2(yw), yw)

∂yw

− b′
(
Gy + r2.p

w
w

(
xw1,2(yw), yw

))
r2.

∂pw
w(xw1,2(yw), yw)

∂yw

= r32yw − r33

r(yw)r ′(yw)√
r(yw)2 − xr1,2(yw)2

− b′
(
Gy + r21xw1,2(yw) + r22yw − r23

√
r(yw)2 − xr1,2(yw)2

)

×

(
r22 − r23

r(yw)r ′(yw)√
r(yw)2 − xw1,2(yw)2

)
= 0. (62)
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The problem is reduced to a simple scalar equation in the variable yw (where yw ∈

[700 790] mm for the left side and yw ∈ [−790 −700] mm for the right side) that can

be solved numerically [12]. Also, in this case, the index (1,2) indicates that the equation has

to be solved for both the roots of (61).

As usual for simplicity, the solutions yC
wi (with i = 1,2, . . . , n) of (62) are split in

two groups: yC
w1j (with j = 1,2, . . . , n1) indicate the roots of F1(yw) = 0 (obtained us-

ing the first root of (61)) and yC
w2k (with k = 1,2, . . . , n2) those of F2(yw) = 0 where n =

n1 +n2 (obtained using the second root of (61)). Through (61), the values of the variable xw

corresponding to yC
w1j and yC

w2k can be evaluated:

xC
w1j = xw1

(
yC

r1j

)
, j = 1,2, . . . , n1,

xC
w2k = xw2

(
yC

r2k

)
, k = 1,2, . . . , n2

(63)

and, therefore, by means of (15), (16), and (47), the positions of the contact points on the

wheel and on the rail surfaces can be calculated:

p
r,C
w1j = pr

w

(
xC

w1j , y
C
w1j

)
, p

r,C
r1j = pr

r(x
C
w1j , y

C
w1j ), j = 1,2, . . . , n1,

p
r,C
w2k = pr

w

(
xC

w2k, y
C
w2k

)
, p

r,C
r2k = pr

r

(
xC

w2k, y
C
w2k

)
, k = 1,2, . . . , n2.

(64)

As in the case of the DIST method, not all the solutions (xC
w1j , y

C
w1j ) (with j = 1,2, . . . , n1)

and (xC
w2k, y

C
w2k) (with k = 1,2, . . . , n2) of (62) can be accepted. Equation (59) contains

irrational terms, and consequently the following analytic conditions have to be verified for

every j and k:

1. xC
w1j and xC

w2k calculated by means of (61) have to be real.

2. The terms
√

r(yC
w1j )

2 − (xC
w1j )

2 and

√
r(yC

w2k)
2 − (xC

w2k)
2 appearing in (62) have to be

real.

3. (xC
w1j , y

C
w1j ) and (xC

w2k, y
C
w2k) have to be effective solutions of (59).

Moreover, as regards eventual multiple solutions, the same considerations explained for the

DIST method are necessary.

The DIFF method requires, therefore, the following steps:

1. Determination of the solutions (xC
wi, y

C
wi ) (with i = 1,2, . . . , n) of (48)

2. Research and elimination of the multiple solutions

3. Check of the analytic conditions

4. Check of the minimum condition and

5. Check of the condition on the normal indentation.

5 Numerical results

In this section, the numerical results of the proposed procedures will be illustrated in order

to evaluate the performances of the new procedures for the detection of the contact points.

In the first part, some simulations of a standard railway vehicle dynamics are described.

The simulations have been carried out by means of a multibody 3D model within which the

described methods for the evaluation of the contact point have been implemented. In the

second part, the performances of the proposed procedures are be compared with those of

the methods present in literature. Particular attention will be dedicated to the computation

burden and to the precision of the methods [10–13].
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5.1 Dynamic simulations

The railway vehicle chosen for the dynamic simulations is the Manchester Wagon whose

physical and geometric characteristics are easily available in the literature [16]. The multi-

body 3D model of this vehicle has been studied and validated in different conditions. Con-

sequently, the model can be considered a reliable benchmark for the evaluation of the per-

formances of the previously presented procedures [10, 11]. The multibody 3D model of the

Manchester Wagon, implemented in the Matlab computation environment, is schematically

shown in Fig. 16.

The vehicle is composed of the following parts:

1. The car body (Fig. 16)

2. Two bogies (Figs. 17a and b)

3. Four axles (Fig. 17c)

4. Primary and secondary suspensions modeled by three-dimensional nonlinear force ele-

ments like bushings, dampers, and bumpstops (Figs. 17b and c).

The contact point locations are calculated with the procedures described in the preceding

section. The indentation value is used to calculate the normal component of the contact

force, N , according to the elasto-viscous approach as sum of a term that depends on the

normal indentation between the bodies (the elastic component), and a term proportional to

the surface relative velocities in the contact point (the viscous term):

N =

(
−kh|p|γ + kv|v|

sign(v) − 1

2

)
sign(p) − 1

2
. (65)

In this expression:

• kh is a constant that is calculated according to Hertz theory as a function of the surface

geometries and of the material characteristics [10, 11].

• p is the indentation in the contact point, defined as described in (29) if the DIST method

is used and as described in (51) if the DIFF method is used.

• γ is a constant derived from Hertz theory, in this case γ = 3
2

[17].

• kv is a constant depending on material properties, its value has been chosen on the basis

of data available in the literature (kv = 104 Ns/m) [2, 11].

• v is the indentation velocity.

The indentation velocity v is defined on the basis of the relative speed between the contact

bodies in the contact point vc:

v = vr
c · nr

r . (66)

Fig. 16 Multibody 3D model of

the Manchester Wagon
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Fig. 17 Bogie, suspensions, and axle of the Manchester Wagon, (a) vehicle bogie, (b) secondary suspen-

sions, and (c) primary suspensions and axle

The relative speed on the contact points can be calculated from the kinematics of the

wheelset:

vr
c = vr

ow + �
r
w ×

(
prC

w − or
w

)
, (67)

• vr
c is the wheel speed in the contact point expressed with respect to the railway auxiliary

reference system.

• vr
ow is the wheelset center of mass velocity.

• �
r
w is the wheelset angular speed.

• prC
w is the contact point location expressed with respect to the auxiliary reference system.

• or
w is the wheelset center of mass location expressed with respect to the auxiliary reference

system.

The magnitude of the tangential component of the contact forces is calculated on the ba-

sis of Kalker and Hertz theory [9, 17, 18]. The Hertz’s theory is used to define the contact

area dimensions and shape that depend on the normal force magnitude, the material proper-

ties, and the local profile geometry. The Kalker linear theory results are used to define the

components of the creep forces as follows:

Tx = −f11ξ,

Ty = −f22η − f23φ, (68)

Msp = f23η − f33φ, (69)
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where Tx and Ty represent respectively the longitudinal and lateral component of the con-

tact force, Msp is the spin moment. The coefficients f11, f22,f33, f23 are the linear creep

coefficients, depending on the contact ellipse semiaxis and on the material properties, their

values are tabulated and can be found, for example, in [17]. The coefficients ξ , η, and φ rep-

resent respectively the longitudinal, lateral, and spin creepage components and are defined

as follows [9]:

ξ =
vr

c · ir

vow

,

η =
vr

c · tr

vow

, (70)

φ =
�

r
w · nr

vow

.

In the above expressions, vr
c is the wheel speed in the contact point calculated as shown in

(67), ir is the unitary vector that identify the rail longitudinal direction, tr is the unitary vec-

tor tangent to the contact surface and orthogonal to ir (it identifies the lateral direction), nr

is the unitary vector normal to the contact surfaces in the contact point, vow is the magnitude

of the wheelset center of mass velocity.

The unlimited resultant creep force obtained from the linear model is:

Tr =
√

T 2
x + T 2

y ; (71)

however, the magnitude of the resultant creep force cannot exceed the pure slip value that

depends on the adhesion coefficient μ:

Tr,lim = μN. (72)

Then a creep force saturation coefficient ǫ is defined according to the following modified

Johnson–Vermeulen formulation [9]:

ǫ =

⎧
⎨
⎩

μN

Tr
[( Tr

μN
) − 1

3
( Tr

μN
)2 + 1

27
( Tr

μN
)3] for Tr ≤ 3μN,

μN

Tr
for Tr > 3μN.

(73)

Finally the nonlinear creep force components are given by:

T ′
x = ǫTx, (74)

T ′
y = ǫTx . (75)

This model is approximated since considers a constant adhesion coefficient μ. More so-

phisticated models are present in the literature [19, 20], that consider the adhesion coefficient

as a function of the sliding; they will be implemented in future versions of the software.

As an example, the results of a simulation of the vehicle dynamics on a curved track

carried out through the Matlab software are shown. The results are obtained using the DIST

method for the detection of the contact points. The main characteristics of the curve are

summarized in Table 1.

Figures 18a and b show the curvature K(s), the cant angle βc(s) as a function of the

curvilinear abscissa s. Figure 18c shows the track centerline on the plane xf , yf : it is com-

posed of an initial straight part (50 m), the curve, and a final straight part.
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Table 1 Characteristics of the

curve Laying angle αp 1/20 rad

Curvature K −1/1200 m−1

Slope p 0

Cant angle βc 60/1435 rad

Train velocity V 45 m/s

Kinematic friction coefficient μc 0.2

Fig. 18 Characteristics of the curve, (a) rail curvature, (b) cant angle, and (c) the track on the xf yf plane

The multibody model allows to calculate all the kinematic and dynamic characteristic of

each part of the model during the simulation; for brevity, only the following variables are

considered:

• The lateral displacement Gy of the center of mass of the first axle with respect to the

track centerline (expressed in the auxiliary reference system). In the presented simulation,

a right curve is considered (negative curvature) and, therefore, when the vehicle is on the

curve the displacement is positive (Fig. 19).

• The positions of the contact points on the wheels and on the rails (expressed respectively

in the local and in the auxiliary system). In order to clarify the results, the positions of

these points have been plotted on two right cylinder surfaces having the same generative
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Fig. 19 Lateral displacement

Gy of the first axle

functions of the wheel and rail and a length equal to the distance traveled by the vehi-

cle (350 m). As it can be observed during the curve, two contact points on the left side

(Figs. 20a and c) and one on the right side (Figs. 20b and d) are present.

• The vertical contact forces Fz on the wheels of the first axle (expressed in the auxiliary

reference system) (Figs. 21a, b, and c). As it can be seen when the vehicle performs, the

curve on the left wheel two contact points are present. When the second contact point

appears, the vertical load on the first one decreases.

In the presented simulations, the DIST method has been implemented directly on the

simulator (on line), then for each integration sample the contact points are evaluated as

described in Sect. 2 as a function of the wheelset displacement, the contact point locations,

the indentation values, and the wheelset velocity are used to evaluate the contact force,

which allows to define the vehicle dynamics equations [11]. The proposed method is able to

easily manage multiple contact points: The equation to be solved is the same both in case of

single and multiple solution, the variable is the number of solutions.

5.2 Performances of the proposed procedures

The performances of the procedures for the detection of the contact points previously de-

scribed have been compared among them and with those of other methods present in the

literature [10, 11]. Concerning the precision of the procedures, the following steps have

been carried out:

1. Firstly, the DIST and the DIFF method have been compared: (43) and (62) have

been solved numerically by means of a simple GRID algorithm (with grid resolution

pg = 0.1 mm).

2. Then the DIFF method results has been compared with those obtained applying a simple

multi-dimensional GRID method. This procedure consists essentially in the calculation

of the difference D(xw, yw) between the wheel and rail surfaces in the points defined by

a fixed grid (with a resolution pG = 1.0 mm on both the dimensions). As mentioned in

the Introduction, this method is computationally inefficient, especially if the problem is

multi-dimensional, but can be considered a reliable benchmark in terms of precision.
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Fig. 20 Contact points on the wheels and on the rails, (a) left wheel, (b) right wheel, (c) left rail, and (d) right

rail

3. The GRID method has been compared with the procedures described in the litera-

ture, based on numerical iterative algorithms applied to find the minima of the surface

D(xw, yw). In particular, the Compass Search method (indicated with CS) and the Sim-

plex method (indicated with S) have been considered (with a tolerance of 0.1 mm for

both the algorithms) [12, 13].

4. Finally, the DIFF method and the procedures based on the numerical iterative algorithms

have been compared.

The comparison between the performance of the different methods for the evaluation of the

contact point locations has been realized considering a set of relative wheelset/railway con-

figurations composed of approximately 4.2 × 106 elements. The relative positions between

wheel and rail have been obtained varying the parameters Gy , Gz, α, and β into the range

summarized in Table 2 (the range has been chosen taking into account the symmetries of the

problem).

All the configurations considered in the comparisons have been chosen in order to have in

correspondence of the contact points, normal indentations pn (or p̃n) physically acceptable:

the bound pn ≤ pl = 0.33 mm has been imposed. The limit value pl has been calculated

through the Hertz theory hypothesizing a maximum normal load of 105N applied on a single

contact point.
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Fig. 21 Vertical contact forces, (a) vertical force Fz on the first contact point of the left wheel, (b) vertical

force Fz on the second contact point of the left wheel, and (c) vertical force Fz on the contact point of the

right wheel

Table 2 Ranges of variability of

the parameters Gy 0 mm ÷ 10 mm

Gz 490 mm ÷ 510 mm

α 0 rad ÷ 0.01 rad

β −0.01 rad ÷ 0.01 rad

The algorithm used to compare two procedures for the determination of contact point

locations detects the configurations in which the analyzed procedures evaluate a different

number of contact points or the evaluated locations are not the same. To this purpose, a

single wheel and the corresponding rail (indifferently on the left or on the right side) can

be considered. The procedures used for the comparison are indicated with A (benchmark)

and B . For a generic wheel/rail configuration, pCA
bi with i = 1,2, . . . ,NA and pCB

bj with j =

1,2, . . . ,NB indicate the contact points (on the rail surface) detected by the procedures A

and B , respectively, NA and NB are the numbers of contact points detected by the procedure

A and B, respectively. The number EAB of the errors associated to this configuration can be

determined through the following algorithm:
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1. the vectors vA = 0 and vB = 0 where vA ∈ R
NA

and vB ∈ R
NB

are initialized

2. for i = 1,2, . . . ,NA

for j = 1,2, . . . ,NB

if ‖pCA
bi − pCB

bj ‖2 ≤ toll and vB(j) = 0

set vA(i) = 1 and vB(j) = 1

break

end

end

end

3. set nA = NA − ‖vA‖2
2 and nB = NB − ‖vB‖2

2

4. EAB = max(nA, nB)

The elements of the vectors vA and vB are logical variables (their value can be 0 or 1). For

example, the j -th element of the vector vA is set equal to 1 if one of the contact points

detected by the procedure B is sufficiently near to the j -th contact point detected by the

procedure A, in other terms, if the distance between the locations of the detected contact

points is lower than a fixed value, identified by the variable toll. If the procedures A and

B calculated the same number of contact points and their locations would be the same,

NA = NB and all the elements of the vectors vA and vB would be 1. If the procedures A

and B calculate a different number of contact points and/or if the distance between their

locations overcome the fixed value toll, some of the elements of the vectors vA and vB

are equal to 0. For each procedure, the difference between the number of detected contact

points and the number of contact points matching with the other procedure is defined with

the variables nA and nB .

For each wheel/rail configuration, the error EAB between the procedures A and B in the

definition of the contact point locations is defined as the maximum between nA and nB .

Furthermore, EAB represents the sum of the undetected pairs of points EAB
1 = min(nA, nB)

and of the points in excess EAB
2 = max(nA, nB) − min(nA, nB). In order to evaluate the

global algorithm performance and to analyze the configurations with multiple contact points,

the error EAB
hk is defined as the number of errors between the procedures A and B in the

k-th configuration with h contact points. The partial errors eAB
h can then be defined as

follows:

eAB
h =

∑T A
h

k=1 EAB
hk

hT A
h

, h = 1,2, . . . ,P A, (76)

where T A
h is the number of relative wheel–rail configurations with h contact points and P A

is the maximum number of contact points present on a single wheel. The global error eAB is

then defined as:

eAB =

∑PA

h=1

∑T A
h

k=1 EAB
hk

T A
, (77)

where T A =
∑PA

h=1 hT A
h is the total number of the contact points.

Concerning the comparison between the DIST and the DIFF method, Tables 3 and 4

summarizes the partial errors edD
h and the global error edD for different values of the laying

angle αp . In this case, the DIST method has been chosen as benchmark with a tolerance

toll = 2.0 mm.
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Table 3 Comparison between

the DIST (benchmark) and the

DIFF methods, partial errors edD
h

and global error edD

(αp = 1/40)

Error type αp = 1/40

edD
1

(%) 1.0

edD
2

(%) 1.1

edD (%) 1.0

Table 4 Comparison between

the DIST (benchmark) and the

DIFF methods, partial errors edD
h

and global error edD

(αp = 1/20)

Error type αp = 1/20

edD
1

(%) 0.3

edD
2

(%) 2.3

edD
3

(%) 1.6

edD (%) 0.9

Table 5 Comparison between

the DIST (benchmark) and the

DIFF methods, global error edD

(αp = 1/40)

toll (mm)

0.5 1.0 1.5 2.0 2.5 3.0

pn 0.30 2.3 1.9 1.3 1.1 1.0 0.9

(mm) 0.24 2.1 1.7 1.3 1.1 0.9 0.9

0.18 2.1 1.5 1.1 1.0 0.9 0.9

0.12 1.8 1.2 1.0 0.8 0.8 0.8

0.06 1.0 0.6 0.4 0.4 0.4 0.4

Table 6 Comparison between

the DIST (benchmark) and the

DIFF methods, global error edD

(αp = 1/20)

toll (mm)

0.5 1.0 1.5 2.0 2.5 3.0

pn 0.30 1.8 1.4 1.3 1.3 1.3 1.3

(mm) 0.24 1.3 1.1 1.0 1.0 1.0 1.0

0.18 0.9 0.7 0.7 0.7 0.7 0.7

0.12 0.5 0.4 0.4 0.4 0.4 0.4

0.06 0.2 0.2 0.2 0.2 0.2 0.2

Due to the wheel and rail geometries, when the laying rail angle is αp = 1/20 configura-

tions with one, two, and three contact points are present, when its value is αp = 1/40, there

are only configurations with one and two contact points. The comparison between DIST

and DIFF shows a global error approximately equal to 1%; its value substantially does not

dependent on the laying angle.

Then the behavior of the global error edD has been analyzed as a function of the tolerance

toll and of the normal indentation pn; both the standard values of the laying angle αp have

been considered (Tables 5 and 6). Also, in this case, the DIST method has been considered

as the benchmark.

From the obtained results, it can be observed that

1. The global error edD decreases if the tolerance toll increases. However, a bias error is

present: this systematic error is due to the differences in the analytic formulation of the
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Table 7 Comparison between

the DIFF (benchmark) and the

GRID methods, global error eDG

(αp = 1/40,1/20)

Error type αp = 1/40 αp = 1/20

eDG (%) 1.1 4.2

Table 8 Comparison between

the GRID (benchmark) and the

iterative (Compass Search and

Simplex) methods, global errors

eGCS and eGS (αp = 1/40,1/20)

Error type αp = 1/40 αp = 1/20

eGCS (%) 3.2 5.9

eGS (%) 1.6 7.1

Table 9 Comparison between

the DIFF (benchmark) and the

iterative (Compass Search and

Simplex) methods, global errors

eDCS and eDS (αp = 1/40,1/20)

Error type αp = 1/40 αp = 1/20

eDCS (%) 5.0 10

eDS (%) 3.4 10

two methods and to the different checks on the solutions: The first one evaluates the

contact points as the points in which the distance between the body surfaces has a local

maximum, while the second one minimizes the difference between the surface in the zr

direction. The locations identified with the procedures are approximately the same if the

indentation is small: the bias error decreases as the indentation decreases.

2. The global error edD decreases if the normal indentation pn decreases.

As regards instead, the comparison between the DIFF and the GRID methods, the global

error eDG for the usual values of the laying angle αp (Table 7) have been considered. In this

case, the DIFF method has been chosen as benchmark with a tolerance toll = 2.0 mm.

In the same way, both the CS and the S method have been compared to the GRID method

(chosen as benchmark with tolerance toll = 4.0 mm). Table 8 summarizes the values of

the global errors eGCS for the CS method and eGS for the S method, with αp = 1/40 and

αp = 1/20.

As regards finally, the comparison between the procedures based on the numerical itera-

tive algorithms and the DIFF method (chosen as benchmark with tolerance toll = 2.0 mm),

the global errors eDCS and eDS for the standard values of the laying angle αp are summarized

in Table 9.

The performances of the various procedures, moreover have been compared among them

in terms of computation times. Figure 22 shows the mean time required to evaluate the

contact points in a generic relative wheel–rail configurations (the corresponding values are

summarized in Table 10). The described performance have been obtained with a processor

Intel Pentium 4 (3.0 GHz).

On the basis of the described results, the following considerations can be made:

1. The performances of the DIST and the DIFF methods are similar in terms of precision

and computation times.

2. The semianalytic procedures are reliable as regards precision.

3. The DIST and the DIFF methods are faster and more accurate than the procedures based

on the numerical iterative algorithms.
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Table 10 Computation times
Method Time (s)

GRID 9.3

S 0.255

CS 0.105

DIST 0.045

DIFF 0.037

Fig. 22 Comparison among the

computation times

6 Conclusions

In this work, two semianalytic methods for the detection of the wheel–rail contact points (the

DIST and the DIFF methods) are presented. Both the procedures consider the wheel and the

rail as two mathematical surfaces whose analytic expression is known. The DIST procedure

is based on the idea that the contact points minimize the distance between the surfaces and

is equivalent to solve an algebraic 4D-system. The DIFF method instead is based on the

idea that the contact points minimize the difference between the surfaces and is equivalent

to solve an algebraic 2D-system, it is based on an approximation whose consequences in

terms of reliability has been verified with a series of tests.

In both cases, the original problem has been reduced analytically to an equation with one

scalar unknown that is then solved numerically. Since the problem dimension is one, even

elementary noniterative algorithms have shown to be efficient and reliable.

Subsequently, the performances of the described procedures have been compared among

them and with those of the methods present in the literature. The GRID method and other

procedures based on numerical iterative algorithms (like the Compass Search algorithm and

the Simplex algorithm) have been considered. The comparison has been carried out in terms

of precision and computation times.

The developed procedures (named DIST and DIFF methods) have similar performances

in terms of precision and computation times, both of them are reliable as regards the preci-

sion and are more accurate and more efficient than the procedures based on the numerical

iterative algorithms.
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The reduced computational times allow to overcome the usual off-line implementation,

in which the contact points are calculated independently from the vehicle dynamics model

and used to build lookup tables used during the simulations and to realize an online imple-

mentation (the procedure can be implemented directly in the multibody model).
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