
Boston University
OpenBU http://open.bu.edu
Computer Science CAS: Computer Science: Technical Reports

1998-04-02

Determining Acceptance Possibility
for a Quantum Computation is Hard
for PH

Fenner, Stephen; Green, Frederic; Homer, Steven; Pruim, Randall. "Determining
Acceptance Possibility for a Quantum Computation is Hard for PH", Technical Report
BUCS-1998-008, Computer Science Department, Boston University, April 2, 1998.
[Available from: http://hdl.handle.net/2144/1765]
https://hdl.handle.net/2144/1765
Boston University

Determining Acceptance Possibility for a Quantum

Computation is Hard for PH

Stephen Fenner �

University of Southern Maine

Frederic Green y

Clark University

Steven Homer z

Boston University

Randall Pruim x

Boston University

Calvin College

November 14, 1997

Abstract

It is shown that determining whether a quantum computation has a non-

zero probability of accepting is at least as hard as the polynomial time hierarchy.

This hardness result also applies to determining in general whether a given

quantum basis state appears with nonzero amplitude in a superposition, or

whether a given quantum bit has positive expectation value at the end of a

quantum computation.

1 Introduction

This decade has seen renewed interest and great activity in quantum computing.

This interest has been spurred by the clear formal de�nition of the quantum com-

puting model and by the surprising discovery that some important computational

problems which seem to be classically infeasible are feasible using quantum com-

puters. One central result is Shor's bounded-error polynomial-time algorithm for

�Computer Science Department, University of Southern Maine, Portland, ME 04104. E-mail:

fenner@cs.usm.maine.edu. Supported in part by the NSF under grant and CCR 95-01794.
yDepartment of Mathematics and Computer Science, Clark University, Worcester, MA 01610.

E-mail: fgreen@black.clarku.edu.
zComputer Science Department, Boston University, Boston, MA 02215. E-mail:

homer@cs.bu.edu. Supported in part by the NSF under grant NSF-CCR-9400229.
xComputer Science Department, Boston University, Boston, MA 02215. E-mail:

rpruim@calvin.edu. On leave from Department of Mathematics and Statistics, Calvin College,

Grand Rapids, MI 49546.

1

discrete logarithm and integer factoring on both a quantum Turing machine [Sho94]

and (equivalently) quantum circuits [Sho97]. This opens the possibility that if such

machines can be constructed, or e�ectively simulated, then one can rapidly factor

large integers and compromise a good deal of modern cryptography.

While the main research focus has been on �nding e�cient quantum algorithms

for hard problems, attention has also been paid to determining the strength of

quantum computation vis-�a-vis its classical (probabilistic) counterpart [BB92]. In

this paper we take a further step in this direction by proving that testing for non-

zero acceptance probability of a quantum machine is classically an extremely hard

problem. In fact, we prove that this problem, which we call QAP (\quantum

acceptance possibility") is hard for the polynomial-time hierarchy, by showing that

QAP is equivalent to the problem of exact counting [Wag86a]. Exact counting, in

turn, is hard for PH under randomized reductions [Tod91, TO92], and may still be

hard even if P = NP. Our main result is

Theorem 1.1 The problem of determining if the acceptance probability of a quan-

tum computation is non-zero (QAP) is hard for the polynomial time hierarchy under

polynomial-time randomized reductions.

We prove Theorem 1.1 in Section 3. The proof can be easily adapted to show

hardness of determining whether any given quantum bit must be zero (or one)

with certainty in a quantum computation, or more generally, whether some given

quantum state shows up in a superposition with nonzero amplitude. Both of these

questions are equivalent to QAP .

Determining non-zero acceptance probability of a classical machine is NP-complete,

whereas determining exact accepting probability is much harder: it is hard for #P.

By analogy, one might have hoped QAP would be signi�cantly easier than the prob-

lem of determining the exact accepting probability of a quantum computation, and

possibly even to locate QAP within the polynomial hierarchy. Our work shows that

this is not the case.

Work of Bennet et al. [BBBV] and recently of Fortnow and Rogers [FR97] has

suggested that quantum computation with bounded error probability (BQP) is most

likely unable to solve NP-hard problems. Combined with our result, this implies

that BQP is even less likely than PH to contain QAP . We take this as evidence that

quantum computers, even if implemented, will be unable to amplify exponentially

small probabilities to such an extent that they become reliably detectable by means

of repeated experiments and observations. This di�erence between bounded error

computation and determining non-zero acceptence probability exists classically as

well; in the classical case, bounded error computation corresponds to BPP and

2

determining non-zero acceptence probability, as mentioned before, corresponds to

NP.

The relationship between quantum computing and counting problems has been

previously observed ([Sim94, FR97, BBBV]). Our result further strengthens the

connections between quantum computation and counting complexity and strength-

ens previous results in this area by providing the �rst example of a quantum com-

putation problem whose complexity can be precisely characterized in terms of a

counting class.

The essential distinction between classical probabilistic models and quantum

machines, and the true source of power in the latter, rests in the fact that the

states in a quantum superposition can cancel each other, a phenomenon known as

destructive interference. Since many states can be involved in such a cancellation,

certain measurable properties of the quantum state can be very sensitive to the

number of classically accepting paths. Our result, while using and extending the

resulting connection between quantum computation and counting problems, also

serves to clarify it. The method employed here is to prove the hardness of QAP by

giving an exact characterization of QAP in terms of counting problems.

2 Probabilistic and Quantum Computation

We let � = f0; 1g. We are interested in decision problems (languages) over ��. Of
particular interest is the language

QAP = fhM;xi jM encodes a quantum machine which has

non-zero probability of accepting on input xg:

We review here briey the models of classical probabilistic computation and

quantum computation which we will employ in this paper. Those who are already

familiar with quantum models of computation can skip the rest of this section.

Our development is based on Turing machines, but can just as easily be based on

quantum circuits [Deu85], which are polynomially equivalent to quantum Turing

machines [Yao93]. See the references for more details regarding the models used

here (e.g., [Sim94]) as well as equivalent formulations (e.g., [Ber97]).

A classical probabilistic computation can be viewed as a tree. Each node in the

tree is labeled with a con�guration (instantaneous description of tape contents, head

location and internal state) of the Turing Machine. Edges in the tree are labeled

with real numbers in the interval [0; 1], which correspond to the probability of a

transition from the parent con�guration to the child con�guration. Each level of

the tree represents one time step (hereafter referred to as a step). Throughout this

paper we will consider only computations (both classical and quantum) for which

3

the depth of the tree (time) is polynomial in the length of the input. Probabilities

can be assigned to a node by multiplying the probabilities along the path from the

root to that node. The probability of the computation being in con�guration c at

time t is obtained by adding the probabilites assigned to each node at level t which

has been assigned con�guration c.

In order for such a tree to represent a probabilistic computation, it must be

constrained by locality, and classical probability. Locality constraints require that

the probability assigned to the transition from one node to another (1) is non-zero

only if a Turing machine could actually make such a transition (thus for example,

the only tape cells which can change are the ones which were under a head in the

parent con�guration), and (2) the probabilities depend only on the con�gurations

and not on their location in the tree, thus a con�guration may label more than

one node in the tree, but in each case the subtree below is identical. Probability

constraints require that the sum of all probabilities on any level is always 1. It

is equivalent to require that the sum of the probabilities on the edges leaving any

node equal 1. For the purposes of complexity considerations, it is usually su�cient

to consider probabilities from the set f0; 12 ; 1g. If one considers the probabilistic

machine to be a Markov chain, the entire computation can be represented by a

matrix which transforms vectors of con�gurations into vectors of con�gurations,

with the coe�cients corresponding to probabilities. The probability that a machine

accepts on input x after t steps is
X

c2�acc
Pr[con�guration c at step t j con�guration c0 at step 0]

where �acc is the set of all accepting con�gurations and c0 is the initial con�guration

corresponding to an input x.

A quantum computation can be similarly represented by a tree, only now the

constraints are locality and quantum probability. In the quantum computation, the

edges are assigned complex-valued probability amplitudes. The amplitude of a node

is again the product along the path to that node. The amplitude associated with

being in con�guration c at step t is the sum of the amplitudes of all nodes at level

t labeled with c. The probability is the squared absolute value of the amplitude.

A con�guration c uniquely corresponds to a quantum state, denoted by jci. The

states jci, for all con�gurations c, form an orthonormal basis in a Hilbert space. At

each step we consider a quantum computation to be in a superposition j'i of basis
states, and write this as X

c2�
�cjci

where �c is the amplitude of jci. Since the basis states jci are mutually orthonormal,
the amplitude �c of jci in a superposition j'i is the inner product of jci with j'i,

4

denoted by hc j 'i. The probability of accepting is de�ned as for the probabilistic

computation.

Once again the sum of the probabilities on any level must be 1 (
P j�cj2 = 1).

As before, a restricted set of amplitudes for local transitions is su�cient, namely

rational numbers or square roots of rational numbers. In fact, the machine we

construct will only use amplitudes in f0;� 1p
2
;�1g. It is not, however, su�cient

to require that the sum of the squares of the amplitudes leaving any node be 1.

This is due to the e�ects of interference among the con�gurations. A quantum

computation can also be represented by a matrix which transforms quantum states

into quantum states (represented as vectors in a Hilbert space with basis states jci,
i.e., states of form j'i as above). To satisfy the constraints of quantum probability,

this matrix must be unitary (its inverse is its conjugate transpose). In the case

where all amplitudes are real numbers, a matrix is unitary i� it is orthogonal.

3 Main Result

Theorem 1.1 follows immediately from Corollary 3.5 below, which precisely charac-

terizes the di�culty of testing a quantum computer for non-zero accepting proba-

bility in terms of a counting class known to be hard for PH. This corollary follows

from Theorem 3.2, which shows how to design quantum machines for which the

resulting amplitude of the unique accepting state is closely related to some given

function in the class GapP. Before giving the proof, we must de�ne this class of

functions.

De�nition 3.1 Given any L � ��, let

Lx = fy 2 �� j hx; yi 2 Lg

A function f : f0; 1g� ! Z is in GapP if there is a language L in P and an integer

k such that

f(x) =
j�nk \ Lxj � j�nk � Lxj

2
:

See [FFK94] for more information about the intuition behind this de�nition and the

basic properties of the class GapP.

Now we are ready to prove the technical theorem on which Theorem 1.1 rests.

Theorem 3.2 For any f 2 GapP, there is a ptime quantum Turing machine Q and

a polynomial p such that, for all x of length n,

Pr[Q(x) accepts] =
f(x)2

2p(n)
:

5

In fact, for all x, Q(x) has a unique accepting con�guration which it reaches with

probability amplitude exactly �f(x)=2p(n)=2.
Proof Sketch: Our proof directly uses techniques of Simon [Sim94] and Deutsch

and Jozsa [DJ92]. Let k 2 N and let L � �� be a set in P such that for all x of

length n,

f(x) =
j�nk \ Lxj � j�nk � Lxj

2
:

Fix an input x of length n and let m = nk. When our quantum machine Q takes x

on its read-only input tape, it will use m + 1 bits of a special work tape t. It will

use other work tapes only for deterministic, reversible computation. We denote a

possible con�guration of Q(x) as a basic state

jx; ~y; bi
where x is the contents of the input tape and ~y; b are the contents of t (~y is a vector

of m bits, and b is a single bit). We suppress the other con�guration information,

i.e., the state of Q, the positions of the heads, and the contents of the other work

tapes. This other information is irrelevant because at all important steps of the

computation, the same state and head positions ofQ will appear in all con�gurations

in the superposition, and all other work tapes besides t will be empty.

Initially, ~y = ~0 and b = 0. Q �rst scans over all the bits of ~y and applies to each

bit what has become a useful and popular local transition rule

j0i 7! 1p
2
(j0i+ j1i)

j1i 7! 1p
2
(j0i � j1i):

In general, scanning an arbitrary state jx; ~y; bi in this way yields

jx; ~y; bi 7! 1

2m=2

X

~y0

(�1)~y�~y0 jx; ~y0; bi;

where ~y � ~y0 is the dot product of the bit vectors ~y and ~y0 [DJ92, Sim94]. Thus Q
scanning the �rst m bits of the tape t corresponds to the global transition

jx;~0; 0i 7! 1

2m=2

X

~y

jx; ~y; 0i:

Q then simulates the deterministic computation of L(x; ~y) in a reversible man-

ner, using other work tapes [Deu85, Ben82].1 Let b~y be the one-bit result of the

1This computation is also done obliviously so that the internal state and tape head position

of the machine is the same for all components of the superposition at any given time. If we used

quantum circuits for the proof, this technicality goes away.

6

computation of L(x; ~y). Q sets b = b~y . The superposition is now

1

2m=2

X

~y

jx; ~y; b~yi:

Afterwards, Q repeats the scan it performed at the beginning, using the same local

transformation rule, except that it now includes all m + 1 bits, including b, in the

scan. This leads Q into a new superposition

j i = 1p
2

1

2m

X

~y

X

~y0;b0

(�1)~y�~y0+b~yb0 jx; ~y0; b0i:

We now consider the coe�cient of jx;~0; 1i in j i:

hx;~0; 1 j i =
1p
2

1

2m

X

~y

(�1)~y�~0+b~y1

=
1p
2

1

2m

X

~y

(�1)b~y

= � 1p
2

1

2m�1 f(x):

Finally, Q deterministically looks at the m + 1 bits of the tape t. If it sees ~0; 1 it

accepts; otherwise, it rejects.

Thus jx;~0; 1i is the unique accepting con�guration of Q, and it has probability

amplitude

� 1p
2

1

2m�1 f(x)

which implies the theorem by setting p(n) = 2m� 1 = 2nk � 1.

A converse to Theorem 3.2 directly follows from work of Fortnow and Rogers

[FR97].

Theorem 3.3 (Fortnow, Rogers) For any ptime quantum machine M (whose

transition amplitudes are positive or negative square roots of rational numbers),

there is a GapP function f , a natural number d, and a polynomial p such that M

accepts any input x with probability exactly f(x)=dp(jxj).

QAP provides a complete characterization of the following known complexity

classes. The characterization is immediate from the de�nition of QAP and from

Theorems 3.2 and 3.3.

De�nition 3.4 A language L is said to be in the class C=P if there is a GapP

function f such that for any x, x 2 L i� f(x) = 0. The class co-C=P is the set of

all languages with complements in C=P.

7

Corollary 3.5 A language L is in C=P (resp., co-C=P) i� there is a polynomial-

time quantum Turing machine Q such that for any x,

x 2 L () Pr[Q(x) accepts] = 0(resp., Pr[Q(x) accepts] 6= 0):

Thus, QAP is complete for co-C=P.

Graph Nonisomorphism is an example of a problem in co-C=P that is not known

to be in NP. Corollary 3.5 shows that there is a quantum machine that takes two

graphs as input and accepts with probability zero i� the two graphs are isomorphic.

It is known that C=P is hard for the polynomial hierarchy under randomized

reductions [TO92, Tar93].

Corollary 3.6 QAP is hard for PH under randomized reductions.

Hence if QAP is anywhere in PH, then PH collapses; in fact, the counting

hierarchy2 also collapses. Combining our results with those of Fortnow and Rogers

[FR97], we �nd that QAP 2 BQP also implies the collapse of the counting hierarchy.

4 Conclusion

One may ask if a polynomial-time nondeterministic Turing machine has a non-zero

acceptance probability. This problem exactly characterizes the class NP. QAP is

the analogous problem in the quantum setting and, as we have seen in this paper,

exactly characterizes the class co-C=P. This is a much harder class than NP, and

our characterization shows that QAP is nowhere in the polynomial hierarchy unless

the polynomial hierarchy and the counting hierarchy collapse and are equal.

We interpret this as a lower bound on the capabilities of quantum computers.

Just as it is unlikely that an NP machine's acceptance probability can be ampli�ed

(i.e., that NP � BPP), so is it unlikely that a quantum machine's acceptance proba-

bility can be ampli�ed (i.e., co-C=P � BQP), and even more unlikely that it can be

ampli�ed classically (i.e., co-C=P � BPP). To our knowledge, this is the �rst hard-

ness result of this nature regarding quantum computation. The result also shows

how destructive interference can lead to vastly di�erent behaviors for acceptance

probabilities in classical and quantum machines.

There are a number of problems left open. For the purposes of BQP computation

it is su�cient to use a restricted set of rational amplitudes for quantum computa-

tion, namely amplitudes in the set f�1;�4
5 ;�3

5 ; 0;
3
5 ;

4
5 ; 1g (see [ADH97, SY96]).

However, it is not clear if our method would work using only such amplitudes.

2This is a hierarchy built over the class PP instead of NP. See [Wag86b] for a de�nition.

8

Also, we found here that if QAP 2 BQP, then the counting hierarchy collapses to

PP. It would be interesting to see if it collapses even further (say, to BQP). This

would give us a better understanding of how much harder QAP is than BQP.

References

[ADH97] L. Adelman, J. DeMarrais, and M. Huang. Quantum computability.

sicom, 26:1524{1540, 1997.

[BB92] Andr�e Berthiaume and Gilles Brassard. The quantum challenge to struc-

tural complexity theory. In Proceedings of the 7th IEEE Structure in

Complexity Theory Conference, pages 132{137. IEEE, 1992.

[BBBV] C.H. Bennet, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and

weaknesses of quantum computation. Manuscript.

[Ben82] P.A. Benio�. Quantum mechanical hamiltonian models of turing ma-

chines. Journal of Statistical Physics, 29:515{546, 1982.

[Ber97] Andr�e Berthiaume. Quantum computation. In L. Hemaspaandra and

A. L. Selman, editors, Complexity Theory Retrospective II, chapter 2,

pages 23{50. Springer-Verlag, 1997.

[Deu85] D. Deutsch. Quantum theory. In Proceedings of the Royal Society of

London, pages 97{117, 1985.

[DJ92] D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum com-

putation. In Proceedings of the Royal Society of London, pages 553{558,

1992.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-de�nable counting classes.

Journal of Computer and System Sciences, 48(1):116{148, 1994. An ear-

lier version appeared in Proceedings of the 6th Annual IEEE Structure in

Complexity Theory Conference, 1991, pp. 30{42.

[FR97] Lance Fortnow and John Rogers. Complexity limitations on quantum

computation. Unpublished manuscript, 1997.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete loga-

rithms and factoring. In Proceedings of the 35th IEEE Symposium on

Foundations of Computer Science, pages 124{134. IEEE, 1994.

9

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime number factoriza-

tion and discrete logarithms on a quantum computer. SIAM J. Comp.,

26:1484{1509, 1997.

[Sim94] D. Simon. On the power of quantum computation. In Proceedings of

the 35th IEEE Symposium on Foundations of Computer Science, pages

124{134. IEEE, 1994.

[SY96] R. Solovay and A. Yao. Manuscript., 1996.

[Tar93] J. Tarui. Probabilistic polynomials, AC(0) functions and the polynomial-

time hierarchy. Theoretical Computer Science, 113:167{183, 1993.

[TO92] S. Toda and M. Ogiwara. Counting classes are at least as hard as the

polynomial-time hierarchy. SIAM Journal on Computing, 21(2):316{328,

1992.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal

on Computing, 20(5):865{877, 1991.

[Wag86a] K. Wagner. Compact descriptions and the counting polynomial time

hierarchy. Acta Informatica, 23:325{356, 1986.

[Wag86b] K. Wagner. The complexity of combinatorial problems with succinct

input representation. Acta Informatica, 23:325{356, 1986.

[Yao93] A.C.-C. Yao. Quantum circuit complexity. In Proceedings of the 34th

IEEE Symposium on Foundations of Computer Science, pages 352{361,

1993.

10

