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Abstract

We present an out-of-core FFT algorithm based on the in-core FFT method developed by

Swarztrauber. Our algorithm uses a recursive divide-and-conquer strategy, and each stage in

the recursion presents several possibilities for how to split the problem into subproblems. We

give a recurrence for the algorithm's I/O complexity on the Parallel Disk Model and show how

to use dynamic programming to determine optimal splits at each recursive stage. The algorithm

to determine the optimal splits takes only �(lg2N) time for an N -point FFT, and it is practical.

The out-of-core FFT algorithm itself takes considerably longer.

1 Introduction

Although in most cases, Fast Fourier Transforms (FFTs) can be computed entirely in the main

memory of a computer, in a few exceptional cases, the input vector is too large to �t. One must

use out-of-core FFT methods in such cases.

In out-of-core methods, data are stored on disk and repeatedly brought into memory a section

at a time, operated on there, and written out to disk. Because disk accesses are so much slower

than main memory accesses (typically at least 10,000 times slower), e�cient out-of-core methods

focus on reducing disk I/O costs. We can reduce disk I/O costs in two ways: reduce the cost of

each access, and reduce the number of accesses.

�Supported in part by the National Science Foundation under grant CCR-9625894. Portions of this work were

performed while the author was visiting the Institute for Mathematics and Its Applications at the University of

Minnesota.

To appear in Proceedings of the Workshop on Algorithms for Parallel Machines, 1996-97 Special Year on Math-

ematics of High Performance Computing, Institute for Mathematics and Its Applications, University of Minnesota,

Minneapolis, September 1996.
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We can reduce the per-access cost by using parallel disk systems. That is, we take advantage of

the increase in I/O bandwidth provided by using multiple disks. If we use D disks instead of one

disk, the I/O bandwidth may increase by up to a factor of D. Parallel disk systems are available on

most parallel computers, and they are relatively simple to construct on networks of workstations.

In this paper, we shall concentrate on reducing the number of parallel disk accesses for per-

forming out-of-core FFTs. We use the Parallel Disk Model (PDM) of Vitter and Shriver [VS94] to

compute I/O costs.

Of the many known variants of FFT methods (see Van Loan's excellent book [Van92] for a

comprehensive treatment), this paper is based on a lesser-known method, which we shall refer to

as Swarztrauber's method.1 Unlike the traditional Cooley-Tukey formulation [CT65], which uses a

2-way divide-and-conquer strategy, Swarztrauber's method performs a
p
N-way divide-and-conquer

for an input vector of length N .

In fact, assuming that N is a power of 2, both the Cooley-Tukey and Swarztrauber methods

are speci�c points in a design strategy of using an N=R-way divide-and-conquer strategy, where R

is also a power of 2. Here, R is the size of each subproblem (N=2 for Cooley-Tukey and
p
N for

Swarztrauber). Like the recursive form of the Cooley-Tukey method (see [CLR90, Chapter 32]),

each problem of size R may be solved recursively.

The question we examine in this paper is what value of R to use in the recursion. That is,

which subproblem size yields the fewest number of parallel disk accesses over the course of the FFT

computation? We shall see that although this value is not a �xed portion of the problem size N , we

can compute it for all stages of the recursion via dynamic programming in only �(lg2N) time. For

even out-of-core problems, lgN is reasonably small (lgN = 50 for a 1-petapoint FFT). Computing

the optimal subproblem sizes to use in the recursion is a small in-core problem that runs quickly.

On a 175-MHz DEC Alpha workstation, for example, it takes under 25 milliseconds to compute

them and print them out on the screen. This cost of computing optimal sizes is negligible compared

to the hours or days it would take to actually compute huge FFTs.

The remainder of this paper is organized as follows. Section 2 gives fundamental background

information on the FFT, focusing on the in-core version of Swarztrauber's method. Section 3

presents the Parallel Disk Model, which provides the cost metric for our out-of-core algorithm, and

it also gives I/O costs for relevant algorithms in the PDM. Section 4 describes the modi�cations we

make to the in-core version of Swarztrauber's method to make it work in an out-of-core setting on

the PDM, and it also analyzes the I/O cost of the modi�ed algorithm for a given subproblem size.

Section 5 shows how to use dynamic programming to compute optimal subproblem sizes. Finally,

we conclude in Section 6.

For other work in out-of-core FFTs, see [Bai90, Bre69, CN96, CWN97, SW95].

2 FFT background

This section presents fundamental background information on the FFT in general and the in-core

version of Swarztrauber's method in particular. For further background on the FFT, see any of the

texts [CLR90, Nus82, Van92].

1This method is attributed by Bailey [Bai90] to P. Swarztrauber as a variation of an algorithm by Gentleman and

Sande. It is also attributed by Brenner [Bre69] to E. Granger.
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Discrete Fourier transforms

Fourier transforms are based on complex roots of unity. The principal Nth root of unity is a

complex number !N = e2�i=N , where i =
p
�1. For any real number u, eiu = cos(u) + i sin(u).

Given a vector a = (a0; a1; : : : ; aN�1), where N is a power of 2, the Discrete Fourier Transform

(DFT) is a vector y = (y0; y1; : : : ; yN�1) for which

yk =
N�1X
j=0

aj!
jk
N for k = 0; 1; : : : ;N � 1 : (1)

We also write y = DFTN (a).

Fast Fourier Transforms

Viewed merely as a linear system, �(N2) time is needed to compute the vector y. The well-

known Fast Fourier Transform technique requires only �(N lgN) time, as follows. Splitting the

summation in equation (1) into its odd- and even-indexed terms, we have

yk =

N=2�1X
j=0

!
kj
N=2

a2j + !kN

N=2�1X
j=0

!
kj
N=2

a2j+1 :

Each of these sums is itself a DFT of a vector of length N=2. When 0 � k < N=2, it is easy to

see how to combine the results of these smaller DFTs. When N=2 � k < N , it is easy to show

that !
kj
N=2 = !

(k�N=2)j

N=2 and !kN = �!k�N=2N . Hence, we can compute y = DFTN(a) by the following

recursive method:

1. Split a into aeven = (a0; a2; : : : ; aN�2) and aodd = (a1; a3; : : : ; aN�1).

2. Recursively compute yeven = DFTN=2(a
even) and yodd = DFTN=2(a

odd).

3. For k = 0; 1; : : : ; N=2� 1, compute yk = yevenk + !kNy
odd
k and yk+N=2 = yevenk � !kNy

odd
k .

By fully unrolling the recursion, we can view the FFT computation as Figure 1 shows. First,

the input vector undergoes a bit-reversal permutation, and then a buttery graph of lgN stages is

computed. A bit-reversal permutation is a bijection in which the element whose index k in binary is

klgN�1; klgN�2; : : : ; k0 maps to the element whose index in binary is k0; k1; : : : ; klgN�1. In the sth

stage of the buttery graph, elements whose indices are 2s apart (after the bit-reversal permutation)

participate in a buttery operation, as described in step 3 above. The buttery operations in the

sth stage can be organized into N=2s groups of 2s operations each.

When the FFT is computed according to Figure 1 in a straightforward manner|left to right and

top to bottom|the result is the classic Cooley-Tukey FFT method [CT65]. Several other methods,

including Swarztrauber's, have been developed to improve performance on vector machines and in

memory hierarchies, by avoiding the bit-reversal permutation to improve locality of reference.
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Figure 1: The FFT computation after fully unrolling the recursion, shown here with N = 8. Inputs (a0; a1;

: : : ; aN�1) enter from the left and �rst undergo a bit-reversal permutation. Then lgN = 3 stages of buttery

operations are performed, and the results (y0; y1; : : : ; yN�1) emerge from the right. This �gure is taken from

[CLR90, p. 796].

Swarztrauber's method

Swarztrauber's method generalizes the above divide-and-conquer method by splitting the summa-

tion of equation (1) into
p
N summations each with

p
N terms. In this description, however, we

shall generalize the method even further to split the summation into N=R summations of R terms

each, where R may be any power of 2 such that 2 � R � N=2. The DFT in each subproblem

is comprised of all terms whose indices are congruent modulo N=R. The analog of a buttery

operation adds N=R terms|also expressible as DFTs|that are computed by recursive calls to

subproblems of size N=R. The generalized method is given by the following steps:

Step 1. Treating the vector a = (a0; a1; : : : ; aN�1) as an R � N=R matrix stored in row-major

order, transpose it into an N=R � R matrix so that elements whose original indices are

congruent modulo N=R now appear in the same row.

Step 2. Compute the DFT of each R-element row individually.

Step 3. Scale the resulting matrix by multiplying the entry in row l and column j by !ljN .

Step 4. Transpose the matrix back into an R�N=R shape.

Step 5. Compute the DFT of each N=R-element row individually.

Step 6. Transpose the matrix back to N=R�R and interpret it once again as an N-element vector

to produce the result y = (y0; y1; : : : ; yN�1).

4
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memory
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Figure 2: The Parallel Disk Model. Records are stored on disks D0;D1; : : : ;DD�1, with an equal number

of records on each disk. The records on each disk are partitioned into blocks of B records each (not shown

here). Disk I/O transfers records between disks and memory that can hold M records. Processor and

memory organization are unspeci�ed. An algorithm's cost is the number of parallel I/O operations, each of

which transfers one block per disk.

On a sequential machine, the running time of this method is expressed by the recurrence

T (N) =
N

R
T(R) +RT (N=R) + �(N) ;

which is easily shown to have the solution T (N) = �(N lgN).

In practice, once the subproblem size becomes small enough, we use a more straightforward

method, such as Cooley-Tukey, to solve the subproblems. If we choose R =
p
N (as was done in

the original formulation of the method), then all subproblems in steps 2 and 5 are of size
p
N . On

most machines, these subproblems �t in cache, and so Cooley-Tukey is a good way to solve them.

Of course, in order to choose R =
p
N , we must have that N is a power of 4.

3 The Parallel Disk Model

This section describes the Parallel Disk Model (PDM) [VS94], upon which our modi�cations to

Swarztrauber's method for out-of-core FFTs are based. It also covers prior PDM algorithms relevant

to performing out-of-core FFTs.

PDM structure and cost metric

Figure 2 shows the Parallel Disk Model, in which N records are stored on D disks D0;D1; : : : ;DD�1,
with N=D records stored on each disk. For our purposes, a record is a complex number comprised of

two 8-byte double-precision oats. The records on each disk are partitioned into blocks of B records

each. Any disk access transfers an entire block of records. Disk I/O transfers records between the

disks and an M -record random-access memory. Any set of M records is a memoryload. Each

parallel I/O operation transfers up to D blocks between the disks and memory, with at most one

block transferred per disk, for a total of up to BD records transferred. The most general type of

parallel I/O operation is independent I/O, in which the blocks accessed in a single parallel I/O may
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be at any locations on their respective disks. A more restricted operation is striped I/O, in which

the blocks accessed in a given operation must be at the same location on each disk.

We assess an algorithm by the number of parallel I/O operations it requires. While this does

not account for unavoidable variation in disk-access times, the number of disk accesses can be

minimized by carefully designed algorithms.

We place some restrictions on the PDM parameters. We assume that B, D, M , and N are

exact powers of 2. We also require that BD � M in order to fully utilize disk bandwidth, and of

course we assume that M < N so that the problem is out-of-core.

Since each parallel I/O operation accesses at most BD records, any algorithm that must access

all N records requires 
(N=BD) parallel I/Os, and so O(N=BD) parallel I/Os is the analogue of

linear time in sequential computing.

We note two prior results for the PDM. In the original PDM paper, Vitter and Shriver showed

that the I/O complexity of pebbling a buttery graph is �
�

N
BD

lgmin(B;N=B)

lg(M=B)

�
, which appears to be

the analogue of the �(N lgN) bound seen for so many sequential algorithms on the standard RAM

model. The FFT algorithms for the PDM in [CN96, CWN97] achieve this bound.

Low-order transpose

We will rely heavily on the second PDM result, which is based on a class of permutations known as

BMMC (bit-matrix-multiply/complement) permutations [CSW94]. The class of BMMC permuta-

tions includes many permutations encountered in practice; among them are matrix transpose when

both matrix dimensions are powers of 2. Here, we will use a slight variation on matrix transpose.

First, let us examine the usual 2-dimensional matrix-transpose permutation. Suppose we have

an N-element matrix, where N is a power of 2, and let the matrix be stored in row-major order.

Suppose the matrix is R�C, where RC = N , so that both R and C are powers of 2. Each element

has a lgN-bit index x = xlgN�1; xlgN�2; : : : ; x0, and we can partition this index into the lgR-bit

row part xlgN�1; xlgN�2; : : : ; xlgC and the lgC-bit column part xlgC�1; xlgC�2; : : : ; x0. Because the

matrix transpose permutation simply interchanges the row and column numbers of each element,

the original column number becomes the new row number and the original row number becomes

the new column number. That is, the mapping from the source index to the target index for each

record interchanges the high-order lgR and the low-order lgC bits to produce the target index

xlgC�1; xlgC�2; : : : ; x0; xlgN�1; xlgN�2; : : : ; xlgC . Using techniques from [CSW94], one can show

that transposition of an R � C matrix can be performed in 2N
BD

�l
lgmin(R;C;M;N=M)

lg(M=B)

m
+ 1

�
parallel

I/Os.

The variation we use to perform an out-of-core FFT is a low-order transpose, and it works as

follows. Let K be any integer such that 1 � K � N and K is a power of 2, and let R and C be

powers of 2 such that RC = K. Intuitively, we consider the data as a sequence of N=K matrices,

each of which is R � C. We wish to transpose the individual matrices, leaving them in the same

relative order. To do so, we partition a source index x into three parts: the lgK high-order bits

xlgN�1; xlgN�2; : : : ; xlgN=K , the next lgR bits xlgN=K�1; xlgN=K�2; : : : ; xlgC , and the lgC low-order

bits xlgC�1; xlgC�2; : : : ; x0. In the low-order transpose permutation, the corresponding target index

has the same lgK high-order bits, but the next two parts are interchanged. That is, the target

index is xlgN�1; xlgN�2; : : : ; xlgN=K ; xlgC�1; xlgC�2; : : : ; x0; xlgN=K�1; xlgN=K�2; : : : ; xlgC . Again

using techniques from [CSW94], one can show that a low-order transpose can be performed in

6



2N
BD

�l
lgmin(R;C;M;K=M)

lg(M=B)

m
+ 1

�
parallel I/Os. Observe that when K = N , low-order transpose is the

usual 2-dimensional matrix transpose, and the I/O complexities are equal.

In later sections, we shall use the procedure call Low-Order-Transpose(N;K;R;C) to indicate

the low-order transpose operation.2

4 Out-of-core Swarztrauber's method

This section describes to how modify the in-core version of Swarztrauber's method for out-of-core

operation on the PDM. The algorithm is recursive.

At any point in the recursion, we have a problem size of K, where K is a power of 2 such that

2 � K � N . The value of K will vary during the course of the algorithm, and at any given time,

there are N=K distinct problems. Initially, K = N so that there is just one problem of size N .

The problems are stored in sequence on the parallel disk system so that each set of K consecutive

points comprises a problem.

We express the out-of-core FFT algorithm by the following recursive procedure which takes the

problem size K as a parameter; K will always be a power of 2. Because the other parameters (e.g.,

N and M) do not vary over the course of the algorithm, we do not treat them as parameters. We

express the procedure in pseudocode in which indenting indicates control ow and comments start

with the character � .

Out-of-Core-FFT(K)

1 if K �M

2 then � Base case: problem �ts in memory

3 for j  0 to N=M � 1

4 do read the jth memoryload from the disks into memory

5 for l 0 to M=K � 1

6 do perform a K-point FFT on points lK to (l + 1)K � 1 in memory,

using any in-core FFT method

7 update the jth memoryload on the disks by writing out the result

of the in-core FFT

8 else � Recursive case: problem is larger than memory

9 choose integers R and C such that R and C are powers of 2

and RC = K (we will see in Section 5 how to choose R and C)

10 Low-Order-Transpose(N;K;R;C)

11 Out-of-Core-FFT(R)

12 scale each entry (see below)

13 Low-Order-Transpose(N;K;C;R)

14 Out-of-Core-FFT(C)

15 Low-Order-Transpose(N;K;R;C)

This procedure works as follows. Lines 2{7 handle the base case when the recursion bottoms

out; this occurs when K � M so that each problem �ts in memory. In the base case, we perform

N=K consecutive FFTs, each of size K. The loop of lines 3{7 reads in each memoryload, performs

2Since RC = K, only two of the parameters K, R, and C are absolutely necessary. We include all three for clarity.
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FFTs on the data in the memoryload, and writes it out. The loop of lines 5{6 performs the FFTs

on the data of a given memoryload; there are M=K such FFTs to perform.

The recursive case of lines 8{15 follows the in-core description of Swarztrauber's method from

Section 2. Lines 9{10 emulate step 1; each problem of size K is treated as an R � C matrix and

transposed. (Section 5 will address the question of how to pick R and C optimally.) Problems

remain in the same order relative to each other, and so the low-order transpose operation is ap-

propriate here. Line 11 emulates step 2, which computes the DFT of each R-element row. We

defer discussion of line 12, which emulates step 3, for the moment. Line 13 is the inverse of line 10,

just as step 4 is the inverse of step 1. Line 14 emulates step 5, which computes the DFT of each

C-element row. Finally, line 15 is the same as line 10, just as step 6 repeats step 1.

The scaling of line 12 works as follows. After the low-order transpose of line 10 and the recursive

calls of line 11, each point is in some row l and column j, where 0 � l � C � 1 and 0 � j � R� 1.

(For any given values of l and j, there are N=K points, one per size-K problem.) We scale each

point by multiplying it by !
lj
K ; note that the root of unity here is !K and not !N . At �rst glance,

this operation would seem to require an additional pass through all N records. We can avoid

this additional pass, however. Because the scaling immediately follows a recursive call, and that

recursive call will eventually bottom out with a single pass through all N records (lines 3{7), we

can fold the scaling operation into the base case. We omit the programming details here, although

we note that we would add parameters to the procedure Out-of-Core-FFT to indicate whether

scaling should occur (since the recursive call of line 14 should not invoke scaling) and values of R,

C, and K in the caller.

Analysis

To analyze the I/O complexity of this algorithm in the PDM, we start with the easy base case.

Here, we make one pass through the data, and so there are 2N=BD parallel I/Os: N=BD to read

each record, and N=BD to write each record.

For the recursive case, the I/O costs come from the three low-order transposes and the two

recursive calls. For given values of K, R, and C, each low-order transpose operation requires
2N
BD

�l
lgmin(R;C;M;K=M)

lg(M=B)

m
+ 1

�
parallel I/Os.

If we let T (K) denote the number of parallel I/Os for an out-of-core FFT problem of size K,

we have the following recurrence:

T (K) =

8>>>>><
>>>>>:

2N

BD
if K �M ;

min
2 � R � K=2

R a power of 2

C = K=R

�
3 �

2N

BD

��
lgmin(R;C;M;K=M)

lg(M=B)

�
+ 1

�
+ T (R) + T (C)

�
if K > M :

(2)

The next section shows how to determine the optimal values to use for R and C at each point

in the recursion.
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5 Determining optimal subproblem sizes by dynamic

programming

Given the recurrence (2), how do we select the optimal values to use for R and C at a given point

in the recursion? This section shows how to use dynamic programming to do so. We refer the

reader to Chapter 16 of [CLR90] for background on the technique of dynamic programming.

Recall that there are two properties that an optimization problem must have for dynamic

programming to apply:

Optimal substructure: an optimal solution to the problem contains within it optimal solutions

to the subproblems. Recurrence (2) exhibits optimal substructure, which we see as follows.

Suppose that an optimal solution for a problem of size K used a non-optimal solution for

one of the subproblems. Then we could replace the non-optimal subproblem solution by an

optimal solution and lower the cost of the original size-K problem, which contradicts our

assumption that we had an optimal solution for the size-K problem.

Overlapping subproblems: a recursive algorithm revisits the same problem over and over again.

Our FFT algorithm has overlapping subproblems, since each problem of a given size is con-

sidered for all larger problems.

A dynamic-programming solution to determining the subproblem sizes takes as input the prob-

lem size N , memory size M , block size B, and number of disks D, and it produces two arrays as

output. Because problem sizes are powers of 2, which is a sparse index set, we index into the arrays

by the base-2 logarithm of the problem size. The arrays are the following:

� cost [1 : : lgN ] is de�ned such that cost [k] is the minimum I/O cost for a subproblem of size

K = 2k.

� split [1 : : lgN ] is de�ned such that split [k] contains an optimal value of R to use for a sub-

problem of size K = 2k.

In the following pseudocode for the dynamic-programming algorithm, indices are base-2 loga-

rithms of the variables we have been using so far: k = lgK, r = lgR, and c = lgC.

Determine-Optimal-Sizes(N;M;B;D)

1 for k  1 to lgN

2 do if 2k �M

3 then cost [k] 2N=BD

4 split [k] 0 � no split: base of recursion

5 else cost [k] 1
6 for r 1 to k � 1

7 do c k � r

8 this-cost  3 � 2N
BD

�l
min(r;c;lgM;k�lgM)

lg(M=B)

m
+ 1

�
+ cost [r] + cost [c]

9 if this-cost < cost [k]

10 then cost [k] this-cost

11 split [k] r

9



Simple inspection of the code shows that the running time of this procedure depends on the

inner loop of lines 6{11. This loop runs �(lg2N) times, and so the running time is �(lg2N). We

point out that �(lg2N) is merely the time to determine the optimal I/O cost and subproblem sizes.

The time to actually perform the out-of-core FFT is far, far greater!

Results

Although one might expect that subproblem sizes should be as close to
p
K as possible, that does

not always turn out to be the case. Figure 3 is a graphic depiction of a run of Determine-Optimal-

Sizes with N = 250, M = 220, B = 212, and D = 24. Each row shows an out-of-core problem size,

ranging from 221 to 250. Column indices indicate possible split positions from 21 to 249. Vertical

and diagonal bars delimit the possible ranges of split positions. A + indicates a split position that

is optimal for the problem size. For example, the + in row 23, column 15 indicates that R = 215

is one of the optimal split positions for K = 223. Spaces indicate non-optimal split positions. We

show the \halfway points" (values equal to
p
K if lgK is even, and values equal to

p
K=2 andp

2K if lgK is odd) specially. A # indicates a halfway point that is optimal, and an O indicates one

that is non-optimal. For lgK � 40, all halfway points are optimal split positions. For lgK > 40,

however, no halfway point is optimal.

The picture can become even more complicated. Figure 3 shows the optimal split positions

determined by a run of Determine-Optimal-Sizes with N = 260, M = 215, B = 29, and D = 24.

It is usually the case, however, that N � M2. (For example, in a 1-terapoint problem with

N = 240, the memory size would have to be under M = 220 points, or under 16 megabytes, in

order for N to exceed M2. Any contemporary workstation, or personal computer for that matter,

provides at least that much memory.) Every case we have run with N � M2 looks like the top

lgM lines of Figures 3 and 4 (i.e., the top 20 lines of Figure 3 and the top 15 lines of Figure 4). In

particular, for a problem of size K, any split position from K=M to M is optimal.

6 Conclusion

We have seen how to use dynamic programming to select subproblem sizes in a recursive out-of-

core FFT algorithm. The dynamic-programming algorithm is fast, requiring only �(lg2N) time to

determine the decomposition for an N-point FFT.

Unlike previous work in out-of-core FFTs [CN96, CWN97, VS94], we have not presented the

asymptotic parallel I/O complexity of the resulting FFT algorithm. Why not? As Figures 3 and 4

show, the solution provided by the dynamic-programming method appears to defy a straightforward

analysis. Consequently, we do not know how to determine the asymptotic I/O complexity when

N > M2.

Another question not answered here is how well this method works in practice. Our earlier work

[CN96, CWN97] presents empirical results for a di�erent (and provably asymptotically optimal)

out-of-core FFT method on a uniprocessor and on a multiprocessor. How would the method of

the present paper compare? Although it has yet to be implemented, we suspect that it would be

slower, due to the expense of three low-order transpose operations per recursive stage.

Practical considerations aside, we view this work as interesting for two reasons. First, it extends

Swarztrauber's method to out-of-core FFTs in as straightforward a manner as can be expected,

given the existing machinery for performing low-order transpose permutations. Second, it uses
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1111111111222222222233333333334444444444

1234567890123456789012345678901234567890123456789

21 |+++++++++##+++++++++\

22 | +++++++++#+++++++++ \

23 | ++++++++##++++++++ \

24 | ++++++++#++++++++ \

25 | +++++++##+++++++ \

26 | +++++++#+++++++ \

27 | ++++++##++++++ \

28 | ++++++#++++++ \

29 | +++++##+++++ \

30 | +++++#+++++ \

31 | ++++##++++ \

32 | ++++#++++ \

33 | +++##+++ \

34 | +++#+++ \

35 | ++##++ \

36 | ++#++ \

37 | +##+ \

38 | +#+ \

39 | ## \

40 | # \

41 | ++++ ++++ OO ++++ ++++ \

42 | +++ +++ O +++ +++ \

43 | ++ ++ OO ++ ++ \

44 | + + O + + \

45 | ++++++++++++++++ OO ++++++++++++++++ \

46 | +++ +++++++ +++ O +++ +++++++ +++ \

47 | ++ ++++++ ++ OO ++ ++++++ ++ \

48 | + +++++ + O + +++++ + \

49 | ++++ OO ++++ \

50 | +++ O +++ \

Figure 3: Optimal split positions determined by a run of Determine-Optimal-Sizes with N = 250,M = 220,

B = 212, and D = 24. Rows show out-of-core problem sizes, and columns are potential split positions.

Vertical and diagonal bars border the range of possible split positions. A + indicates an optimal split

position for the problem size, and a space indicates a non-optimal split position. \Halfway points" (as close

as possible to the square root of the problem size) are indicated specially: # and O indicate optimal and

non-optimal split positions, respectively.
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11111111112222222222333333333344444444445555555555

12345678901234567890123456789012345678901234567890123456789

16 |+++++++#+++++++\

17 | ++++++##++++++ \

18 | ++++++#++++++ \

19 | +++++##+++++ \

20 | +++++#+++++ \

21 | ++++##++++ \

22 | ++++#++++ \

23 | +++##+++ \

24 | +++#+++ \

25 | ++##++ \

26 | ++#++ \

27 | +##+ \

28 | +#+ \

29 | ## \

30 | # \

31 | +++ +++ OO +++ +++ \

32 | ++ ++ O ++ ++ \

33 | + + OO + + \

34 | ++++++++++++ O ++++++++++++ \

35 | ++ +++++ ++ OO ++ +++++ ++ \

36 | + ++++ + O + ++++ + \

37 | +++ OO +++ \

38 | ++ O ++ \

39 | + OO + \

40 | ++++++ O ++++++ \

41 | ++ ++ OO ++ ++ \

42 | + + O + + \

43 | +++ OO +++ \

44 | ++ O ++ \

45 | + OO + \

46 | ++++++++++++ +++ O +++ ++++++++++++ \

47 | ++ +++++ ++ ++ OO ++ ++ +++++ ++ \

48 | + ++++ + + O + + ++++ + \

49 | +++ OO +++ \

50 | ++ O ++ \

51 | + OO + \

52 | ++++++ +#+ ++++++ \

53 | ++ ++ ## ++ ++ \

54 | + + # + + \

55 | ++++++ ++##++ ++++++ \

56 | ++ ++ ++O++ ++ ++ \

57 | + + +OO+ + + \

58 | +++ +#+ +++ \

59 | ++ ## ++ \

60 | + # + \

Figure 4: Optimal split positions determined by a run of Determine-Optimal-Sizes with N = 260,M = 215,

B = 29, and D = 24.
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dynamic programming to determine the course of an out-of-core algorithm for the PDM. The only

other out-of-core work that we know of using dynamic programming in such a fashion is by Li

[Li96].
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