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Deter mining attribute weights for multiple attribute decision analysis

with discriminating power in belief distributions
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School of Management, Hefei University of Technology, Hefei, Box 270, Hefei 230009, Anhui,
P.R. China
%Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of
Education, Hefel 230009, Anhui, PR. China
®Decision and Cognitive Sciences Research Centre, Alliance Manchester Business School,
The University of Manchester, Manchester M13 9SS, UK
Abstract Attribute weight assignment plays an importané io multiple attribute decision
analysis (MADA). When the performances of altewegion each attribute are expressed by
distributions instead of single values, how to theedifferences in the performances to obtain
attribute weights is an interesting but difficdsiie. To address this issue, in this paper, we
propose a method for obtaining attribute weightsmfrdiscriminating power in belief
distributions. With the consideration of the difaces among the utilities of all assessment
grades used to profile belief distributions, thesdhnilarity based discriminating power, the
standard deviation based discriminating power, #mel Gini's mean difference based
discriminating power of the performances of aleatgtives on each attribute are constructed
to determine three sets of respective weightstdbates. They are convexly combined using
three coefficients to generate integrated weiglitatsibutes. To relieve the burden on a
decision maker to provide precise values for theeftoefficients, they are allowed to change
between 0 and 1, as long as their sum is equal tdntler such constraints on the three
coefficients, an optimization model is constructedletermine the minimum and maximum
expected utilities of each alternative. From th@ested utilities, all alternatives are then
compared using Hurwicz rule with the provided opgimn degree interval to generate
solutions to MADA problems. The transitivity of trmomparison outcomes among three
alternatives under a given optimism degree inteisséheoretically analyzed to guarantee the
rationality of the outcomes. A focal form selectiproblem is investigated to demonstrate the
applicability and validity of the proposed method.
Keywords Multiple attribute decision analysis; Attributeeights; Transitivity; Belief

distributions; Analytical algorithm
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1. Introduction

In existing studies, many different methods havenbdeveloped for multiple attribute
decision analysis (MADA). Representative methodsuite multiple attribute utility function
(MAUF) methods (Balla et al. 2014; Keeney and Raifp93; Butler et al. 1997; Butler et al.
2001; Wakker et al. 2004), multiple attribute valuection methods (Belton and Stewart
2002; Chin et al. 2015; Fischer 1995; Fu and Xu62®L et al. 2016; Kadaski et al. 2014;
Keeney 2002; Lan et al. 2015; Zhang et al. 201Tyaoking methods such as PROMETHEE
methods (Chen 2014a; Mitosz and Krzysztof 2016) Bh8ECTRE methods (Chen 2014b;
Corrente et al. 2016), and distance based methaitsas the extensions of TOPSIS method
(Baykas@lu and Golcuk 2015; Wang et al. 2016) and VIKOR moet (Qin et al. 2015;
Madjid et al. 2016). One similarity among thosdeatént methods is that attribute weights are
taken into account although the meanings of theyhtsimay be different. Different sets of
attribute weights may generate different solutitma decision problem no matter whichever
method is applied. For this reason, determiningpatte weights is a common step in MADA
methods.

To focus on how to determine attribute weights iIADA, different types of methods have
been proposed in the literature. Some methods geaupport for a decision marker to assign
weights to attributes subjectively, which are dhllsubjective methods. Representative
methods include direct rating method (Bottomley d&mlle 2001; Roberts and Goodwin
2002), Delphi method (Hwang and Yoon 1981), eigetoremethod (Saaty 1977; Takeda et al.
1987), point allocation method (Doyle et al. 19%gberts and Goodwin 2002), linear
programming model (Horowitz and Zappe 1995), anal googramming model (Shirland et
al. 2003).

Many other methods use the information in a decisiatrix to determine attribute weights
instead of requiring a decision maker to providenthwhich are called objective methods. By
following the idea that the amount of information discriminating power contained in
performances of alternatives on an attribute cdleatethe weight of the attribute, many
objective methods have been designed. Representawdihods include standard deviation
method (Deng et al. 2000), correlation coefficiantl standard deviation integrated method
(Wang and Luo 2010), criteria importance throughercriteria correlation method
(Diakoulaki et al. 1995), entropy method (Chen Bn#010, 2011; Deng et al. 2000; He et al.
2016), deviation maximization metho@ahin and Liu 2016; Wang 1998), and multiple
objective programming model (Choo and Wedley 198baddition, there is another idea to
derive the weight of each attribute by using thetgbution of performances of alternatives

on an attribute to some special quality of the tohs to the MADA problem, such as high



solution reliability (Fu and Xu 2016).

In some papers, subjective and objective methodscambined to generate attribute
weights when a decision maker wishes to providéigdarequirements for attribute weight
assignment. This type of methods is referred tanéegrated methods. In the integrated
methods, the requirements for attribute weightsgameerally considered as constraints to be
incorporated into objective methods (Fan et al.200a et al. 1999; Wang and Parkan 2006;
Chin et al. 2015; Fu and Wang 2015; Fu and Xu 2@862013; Rao et al. 2011).

In a decision situation, a decision maker may prefaise subjective methods to carry out
attribute weight assignment when the decision makerhave his or her opinions about the
weights. However, it is also known that differenbgctive methods may lead to different
attribute weights, even if a decision maker hasesopinions about the weights (Barron and
Barrett 1996; Deng et al. 2000; Diakoulaki et &93). Objective methods are useful when
subjective preferences of the decision maker dhedu partially unavailable.

When single values are used to characterize tHerpgances of alternatives on an attribute
in MADA, it is easy to use objective methods toaibtattribute weights. On the condition
that the performances of alternatives are exprebgebelief distributions (see Section 2),
however, the amount of discriminating power corgdinn the performances is difficult to
measure. As such, it is challenging to use objeatreight elicitation methods based on the
discriminating power in this situation.

There are also two more issues related to the usbjective weight elicitation methods
when the performances of alternatives are repredeby belief distributions. One is the
uncertainty in the weights and the second the taicgy in the ranking of the alternatives due
to the uncertainty (or unknowns) in the performanoepresented by belief distributions or
performance distributions for short. The uncertaimt belief distributions (see Section 2)
leads to the uncertainty in the calculated disarating power and hence the attribute weights
calculated using the discriminating power. The utadety in weights in turn leads to the
second issue, the uncertain comparison outcomeBratdanking of alternatives.

For alternatives with uncertainty in their performmas but their best and worst
performance scores being known or obtainable, Hirwille can be applied to rank them
(Corrente et al. 2017; Jiang et al. 2015; Klein@2A9To avoid the problem of comparison
cycle and thus guarantee the validity of the coimspar outcomes and ranking among
alternatives, the transitivity of the ranking amaitgrnatives (Yang et al. 2016) needs to be
analyzed for the various values of optimism degndéurwicz rule. Or else, when alternative
1 is superior to alternative 2 and alternative Zlternative 3 judged by following Hurwicz

principle with a specific value of optimism degréecannot be guaranteed that alternative 1



is certainly superior to alternative 3 under thensaconditions. If such comparison cycle
occurs, decisions made based on the comparisoproagwill be questionable (Yang et al.
2016).

In this paper, we propose a method for obtainitgbate weights from the discriminating
power contained in performances of alternativesfilptb by belief distributions. In the
method, three ways are developed to measure theindisating power contained in the
performances of all alternatives on an attributee Tirst way is to construct a dissimilarity
measure between two belief distributions, the séapay to calculate the standard deviation
of belief degrees on each grade in belief distiiing, and the third way to calculate the Gini’'s
mean difference (Kotz and Johnson 1982) of beliefredes on each grade in belief
distributions. Correspondingly, three types of distating power on each attribute are
obtained, which are the dissimilarity, the standdediation, and the Gini’'s mean difference
based discriminating power. Utilities of gradese(8ection 2) are taken into account in the
calculation of the three types of discriminatingveo to reflect the difference among grades.
From the three types of discriminating power orhegitribute, three sets of attribute weights
are generated respectively. Then a set of intedyraiegghts is obtained by linearly combining
the three sets of weights using three non-negatpedficients, whose sum is equal to 1.
Suppose that the three coefficients of the thrée skattribute weights are variables. An
optimization model is constructed based on thegnated weights of attributes to determine
the minimum and maximum expected utilities of ealthrnative. Given the expected utility
interval for each alternative, Hurwicz rule is dpglto compare and rank alternatives and the
preference relation between any two alternativekasretically analyzed and established for
the whole value range of the optimism degree inwitter rule which is from 0 to 1. If the
optimism degree is given as an interval instead eingle value, how to compare and rank
alternatives based on the established preferehatoreis also given and the transitivity of
such comparison outcomes is theoretically analyzed.

The rest of this paper is organized as followstiBe@ presents the modeling of MADA
problems by using belief distributions. SectiomBaduces the proposed method of obtaining
attribute weights. In Section 4, a focal firm sél@t problem is investigated to demonstrate
the applicability and validity of the proposed nmathThe paper is concluded in Section 5.

2. Modeling of MADA problemsusing belief distributions

Suppose that a MADA problem h&4 alternatives denoted by (I = 1,...M) and L

attributes denoted by (i = 1, ...,L). Relative weights of the attributes are denoted lay=

(Wi, W, ..., W) such that &w; <1 and >~ w =1.

Suppose tha® = {H;, H,, ..., H\} denotes a set of grades and the utilities ofdgtedes



u(Hy (n =1, ...,N) satisfy the constraint 0 &(H;) < u(H) < ... <u(Hy) = 1 to reflect the
difference among grades. Thealternatives are assessed atlthadtributes by usingl, (n =
1,...N). Let p,i(a) denote the belief degree assigned to grddevhen alternativeyy is
assessed on attribuge Then the assessment can be profiled by a bedigfalition B(e(a)) =

{( Hn’ ﬁn,i(al))’ n= 1a va (Q, ﬁ.@l(al))}v Whereﬁn,i(al) z O, Z::lﬁn,i (a1) < 11 andﬁ.@,i(al) =1

- Z:ﬂ,b’nvi(ai) represents the degree of global ignorance (Xu 2¥42g and Xu 2013; Fu

and Wang 2015). I8,;(a) = 0, the assessment is complete; otherwise jicamplete. When
the belief distribution of each alternative on eattibute is given, a belief decision matrix
S.m is formed. Note that because the degree of glgmalrance could be assigned to any
grades, its impact needs to be analyzed in MADA.

To generate a solution, the individual assessnigg&)) (i = 1, ...,L) weighted by their
respective weights are combined to generate theathassessmer(y(a)) = {(Hn, fn(&)), n
=1, ...,N; (Q, fo(a))}, where So(a) represents the degree of aggregated global ignera
Based on the overall assessment, the utilitiesraflesu(H,) (n = 1, ..., N) are used to

produce the minimum and maximum expected utilit@dsalternativea, i.e., u'(g) =
SiLB(@)m(H,) +B@)+fa(@)-uHy) and u'@) = YT A(a)I(H,) +(Gu(@)+

Ba(@))-u(Hy) with 0 < u'(a) < u'(a) < 1. The expected utilities are then used to compare
alternatives with the help of a decision rule cstesit with the preferences of the decision
maker, such as Hurwicz rule.

What presented above is also called the evidem#sloning (ER) approach, which is a type
of MAUF method (Wang et al. 2006b; Yang 2001; Yah@l. 2006; Fu et al. 2015).
3. Proposed method

In MADA, attribute weights play an important role ¢haracterizing how the performance
of an alternative on an attribute affects the olvgrarformance in comparison with other
attributes. On the assumption that there is fléigjbin attribute weight assignment, we
propose a method to determine attribute weightsfifating solutions to MADA problems
which are modeled by using belief distributionseTgrocess of how to determine attribute
weights and the process of how to find solutionselddaon the attribute weights with the help
of Hurwicz rule are given in details in this seatio
3.1. Determination of attribute weights

In the proposed method, the amount of informatipiscriminating power contained in
the performances of alternatives on each attrilsudelopted to determine attribute weights.

As shown in Section 2, the assessment of an atteefsaperformance is profiled by a

belief distribution rather than a precise numbeth@it loss of generality, we assume that the
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gradedsH, (n =1, ...,N) used to profile such an assessment satisfy thst@nt 0 =u(H,) <

u(Hy) < ... <u(Hy) = 1, which means that they are arranged in ooflgsreferences from
worst to best. In this situation, the dissimilaniyeasure between two assessments developed
by Fu et al. (2015) can be used to measure therimisating power contained in
performances of alternatives on an attribute.

Definition 1. Suppose that the distributed dissimilarity betwem assessmenBe(a)) and
B(e(am)) represented b@D(e(an)) is defined as

GD(e(alm)) = (:Ell (alm)l ey Bn,i (alm) LR ] EN,i (alm)) =
(1Bri(@)-Bri(@n)l, -, Bri(@)=Pni(@n)l, .-, Pni(@)-Ani(@n)])- (1)

Then, a dissimilarity measure between the two assessisertiastructed usin@D(e(am))

as

De@m) = YIS B, (@) DBy, (@) “(U(Ho)~u(Hy)). 2)

Through using the dissimilarity measure between two assassnt@e discriminating
power on an attribute can be measured.
Definition 2. Suppose that the dissimilarity between any two assessrBéefs)) and
B(e(ay)) is measured by using Definition 1. Then, the average dlasity between the
assessmeiié(g(a)) and any other assessmefs(an)) (m#1) is defined as

_ v D(e(a,
De@) = z“"l'"“;'A e, @)

and the discriminating power on attribatés further defined as

As the discriminating power in Eq. (4) is generabteded on the dissimilarity between two
assessments, it is called the dissimilarity basedrichinating power. In addition to such
discriminating power, there are two other ways teasure the discriminating power on
attributee. In the second way, standard deviation (SD) ofebelegrees of assessments on
each grade is calculated and combined with uslitef grades to characterize the
discriminating power on attributg
Definition 3. Given assessmenie(a)) (I = 1, ...,M), the SD of belief degreghi(a) (I =
1, ...,M) on gradeH, is defined as

_ _ 1 " =
S = | T, @) B ©)



where G, =

M
—Z':lﬁn’i @) represents the mean of belief degrégéa) (I = 1, ...,M) on

gradeH,. Then, the discriminating power on attribetés measured using_sn(e,) by

S@®) = Tor Y Si(8) 5y (@) (uHo)-u(Ho). (6)
The discriminating power on attribugein Eq. (6) is generated based on the SD of belief
degrees of assessments on each grade and thus aartielSD based discriminating power.
Its construction is inspired by the idea of thesifiglarity measure between two assessments
in Definition 1. In addition to the above two way#)e third way to measure the
discriminating power on attribute is developed based on Gini's mean difference (GMD)
(Kotz and Johnson 1982). The GMD of belief degreEsssessments on each grade is
calculated and combined with utilities of gradeslaracterize the discriminating power on
attributee.
Definition 4. Given assessmenie(a)) (I = 1, ...,M), the GMD of belief degrees,i(a) (I
=1, ...,M) on gradeH, is defined as

= 1
G(®) =z 2 B @) = By (@) 7)
Then, the discriminating power on attribetés measured usings, (g) by

G(g) = YMSN  G.(8) By (8) (U(Ho)~U(Hy)). ®)

Similar to the first two ways, the discriminatingvger contained in attribute in Eq. (8) is
called the GMD based discriminating power.
What discussed above is on the assumption thass#issments are complete. In a general

case, there can be some incomplete assessmerdsloatibute. Under the conditiorf;(a)
becomes a variable denoted i (a), which is limited to fyi(a), Sni(a)+Bei(a)] due to
the fact that there is no prior knowledge on howalocatef,;(a), but the constraint on

B (a), ie, Z::lﬁ;i (a) =1 needs to be satisfied a8,;(a) are probabilities by nature.
All constraints on ﬂ;,i (a) generate a region. Let us analyze the featurethisfregion.
Giveno such that & ¢ < 1 and any two belief distributionsHg, ,Brf,i (&)),n=1, ...,N}and

{(Hn, ﬁji(q) ), n = 1, ..., N} in the region, it can be found thagf,i(a) <

3B, (a) +(L-0) B (@) <pni(@)+Bos(@) and 3 3B, (&) +(1-0) B () =1. From



this we recognize that the constraints are convek @rm a bounded closed domain.
Meanwhile, Definitions 1-4 show thaD(g), S(g), and G(g) can be seen as continuous

functions ofM-N variables, as demonstrated below.
Theorem 1. (Nikolsky 1977) If a function of multiple variatdes formed by a finite number
of operations, including addition (sum), subtracti@ifference), multiplication (product),
division (quotient) without a zero-valued denomaratand composition on continuous
functions of multiple variables on a bounded closet] then it is continuous.
Theorem 2. (Nikolsky 1977) Suppose thais a continuous function of multiple variables on
a bounded closed set. Then,

(1) its minimum and maximum values on that setlmaneached, and

(2) any point between the minimum and maximum &l that set can be reached.

When there are some incomplete assessments oragdlohte, Theorems 1 and 2 indicate

that D(g), S(g), and G(g) become intervals denoted by[(g), D*(g)], [S(e),

S*(e)], and [G (), G'(g)], respectively. In each of the three intervalsshepoint may

be possible to occur. The following three pairsopfimization problems are constructed to

determine the three intervals.

MIN/MAX  D(g) (9)
st pfu@) s B(a) <pu@)tpei@),n=1,..N1=1, ..M, (10)
YN Bi@)=1,1=1,..,M. (12)
MIN/MAX  S(e) (12)
st fu(@ < B,(@) <pa@+foi@),n=1,...N1=1, ..M, (13)
YrBi@)=1,1=1, .. ,M. (14)
MIN/MAX  G(g) (15)
st pfu@) s B(a) <pu@)tpei@),n=1,..N1=1, ..M, (16)
Y Bi(a)=1,1=1, .. M. (17)

By following the idea that an attribute containiamdarger amount of discriminating power
should be assigned a larger weight, frobi [g), D*(g)] the weight of each attribute can
be proportionally determined by the following pairoptimization problems.

8



MIN/MAX  w' = 5*—9) (18)

st. D(g) < D(g) < D*(g),i=1,..L. (19)
In the pair of optimization problemsD’(g) represents decision variable. Suppose that

the minimum and maximum values off are denoted byw’~ and w'*, respectively.
They can be analytically determined with the hédlthe following theorem.

Theorem 3. Suppose that™(g), D*(g)] (i =1, ...,L) is obtained from solving the pair of

optimization problems in Egs. (9)-(11) arid’ (g) is a variable limited toD (g), D*(g)].

Then, w' = _b@ is increasing with respect t®"(g) and decreasing with respect

S YD)
to D'(e) (#i).

Theorem 3 is proven in Appendix. In accordance Witeorem 3,w’~ and w'* can be

analytically determined as follows:

Y S - ) R——; (20)
D (q) +Zj:1,j¢i D+(ei)
W = D*(g) . (21)

D*(§)+X,.1,.D (e)
In a similar way, interval-valued weights of attribs [w*, w*"] from [§'(e,) , §+(e,)] and

[w9™,we* ] from [G (g),G"(g)] can be analytically determined by

W= 5@ (22)
S_(Q) +Zj:1,j¢i S+(ej)
" = 5'(8) (23)

§+(ei)+zlj_:l,j¢i §_(ej) ,

____GE&®
G'(Q)+Z,-L:1,j¢iG+(ei)

and (24)

WQ+ — é+ (q ) (25)

G (§)+Y|,.G ()




Based on W'~ ,w'* ], [w*,w*" ], and [w®",w?"], the integrated weights of attributes are

defined as the weighted combination wf’ , W, and w?® with three coefficientgy, s, and

g i.€.,

W= edwvid-i-eswvis-'-egljwig' (26)

where 0< 603< 1, 0<6s<1,0<60;<1,04+ 0+ 6,=1,andw, w’, and w® limited to
[w'™ W LIwe™, W], and [w®",we"], respectively, satisfy> w' =1, " w’=1, and

ZiLzlwf‘ =1. The integrated weights of attributeg (i = 1, ...,L) are then used to generate

solutions to MADA problems.
3.2. Generation of solution

Individual assessments of alternatives on eaclbatity weighted by the integrated weights

W can be combined using the ER analytical algorifivang et al. 2006a) to generate the

overall assessments of alternatives, which carutibdr combined with utilities of grades to

determine the minimum and maximum expected utlitté alternatives. As mentioned in

Section 3.1, w is associated three coefficiemts 6;, anddy such that G ;< 1, 0<6s<1,0
<0y < 1, andby + 05 + 05 = 1, and three sets of weightg’, w’, and w® such that

W OIwW™, W] wOw, w’ ], woO[w™,w’] Yow =1, Y w=1, and

i i=1
ZiLzlwf‘ =1. This means thatn is not precise. To take into account all possible the

following optimization model is constructed to deténe the minimum and maximum

expected utilities of alternativa, denoted by (a) andu’(a) respectively.

MIN  u(@) = 3,5, (@)u(H,) +(Bi(a)+Ba(@))u(Hs) (27)

st W o= v+ +6, ,i=1, ..L, (28)
0< g, <1, (29)
WS W' o< wti=1, L, (30)
S =1, (31)
0< 6, <1, (32)

10



W< w o< wi=1, L, (33)

L —
Zizlvvls* =1, (34)
0< 6, <1, (35)
WS w o< W=, L (36)
W =1, (37)
6,+6 +6, =1. (38)

In this model, w", w*, w*, §,, &., and 6’; represent decision variables. To obtain
the values ofg,, 4., and 62 by using the optimization model relieves the burda a

decision maker to provide those values which aee dbefficients ofw", w®, and w"

when generating the integrated weight of attribgteThe overall assessmeB(y(a)) is

generated by using the ER analytical algorithm (gVaet al. 2006a) from individual

assessments of alternatigeon each attribute together withi . Solving this optimization
model will generate the minimumi(a). When the objective of this optimization model is
changed to “MAXu'(a) = Y17'A3,(3)u(H,) + (Bu(@)+fa(a))u(Hy)", the maximumu’(a)

will be obtained. From the optimal{a), u(a)] (I = 1, ..., M), comparison between
alternatives can be made for further analysis er ghneration of solutions to the MADA
problem with the assistance of decision rules st with the preferences or behaviors of
the decision maker.

When the optimaly (a), u’(a)] is obtained, the maximax and maximin decisiolesican
be used to compare alternatives by their expedikties. Alternatives are compared by their
maximum expected utilities when the maximax deaiside is adopted while alternatives are
compared by their minimum expected utilities whee tmaximin decision rule is adopted.
That is, alternatives are compared in their bedtaarst situations when the maximax and
maximin decision rules are applied. On the othardhahe weighted combination of the
maximax and maximin decision rules with the optimiglegreey limited to [0,1] forms
Hurwicz rule, which means that the two rules arecg&d cases of Hurwicz rule and a
compromised situation is usually considered in Hezwule. To cover all possible situations,
Hurwicz rule is adopted to make selection, in whjiali(a)+(1-y)-u'(a) is used to compare

alternatives. Given two alternativesanda,, alternativea is superior taa, whenu'(a) >

11



u‘(am) andu(a) > u(ay,) while g is inferior toa,, whenu'(a) < u*(ay) andu(a) < u (ay).
The two conclusions are independent of the value bf other two situations wheté(a) >
u*(a,) andu (a) < u'(ay), oru’(a) < u*(a,) andu (a) > u(a,), making a comparison between
alternativesy, anda,, is dependent of the value gfwhich is analyzed below.
Theorem 4. Given the optimaly (a), u'(a)] and u'(ay), u’(a,)] for two alternativesy, and
am, suppose tha(a) = y-u’(a)+(1-y)-u'(a) andE(am) = y-u'(am)+(1-y)-u (av) represent the
expected utilities of alternatives and a, in Hurwicz rule andAE(a,,) = E(a) - E(am)
represents the difference between the expectetfiestiof  and a,, then we have the
following conclusions.

(1) Whenu'(a) > u'(a,) andu’(a) < u(a.), AE(a) is monotonously increasing with
respect tg, and it is smaller than, equal to, and larger thavheny is limited to [0,)), [y,

y], and ¢, 1], respectively, where

y* - - l:I_(am)_u:(al) _ ) (39)
u'(@)-u(@a))-(u(a,) -u(a,))

(2) Whenu'(a) < u'(a,) andu(a) > u(an), AE(a;) is monotonously decreasing with
respect toy, and it is larger than, equal to, and smaller thavheny is limited to [0,)), [y,
y], and ¢, 1], respectively.

Theorem 4 is proven in Appendix. This theorem iatks that different values gfmay
result in different comparison outcomes between alternatives. In general, the value range
of the optimism degree, i.e., [0,1] can be simply divided into two intats [0,0.5] and
[0.5,1]. To compare two alternatives, a decisiorkends inclined to anticipate their best
situations whern is limited to [0.5,1] while he or she anticipatheir worst situations when
is limited to [0,0.5]. Suppose that a decision nmakecapable of providing either a precise
or a value range of, i.e., |, y']. In the two situations whera'(a) > u*(a,) andu’(a) <
U (ay), oru*(a) < u'(ay) andu(a) > u(a,), a certain comparison outcome can be obtained
when |7, »'7 U [0, y) or [, 9] U (¢, 1]. If y is in the rangey[, y'], then there is
uncertainty about the outcomes of comparison betwaternativess, and a,,. Within the
intervals |7, ) and ¢, y'], the rankings between alternativ@sanda,, are reversed in the
above two situations. As there is no other prefeeénformation abouty[, y] provided by a
decision maker, it is assumed that the outcomeoofparison between alternativasanda,
within the interval {7, y) is preferred whep -y~ >y" - »" while the outcome of comparison
within the interval {, y'] is preferred when' - y~ < y* - »". Such comparison is formally
defined below.

Definition 5. Given the optimaly (a), u*(a)] and u (a,), u*(ay)] for two alternatives, and
am, suppose that is calculated using Eq. (39) and,[y'] is provided by a decision maker,
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then we have

a > anif u(a) >Uu'(ay) andu(a) > u(am), oru’(a) > u'(ay) andu’(a) = u(am), or

u'(a) = u'(ay) andu’(a) > u (am), (40)
a = anif[y,y7 U (@, 1ory U [,y Twithy -y <y -y
whenu'(a) > u'(ay) andu(a) < u(an), (41)
a = amif[y,y7 U [0,y)ory U [y, yTwithy -y >y -y
whenu'(a) < u’(a,) andu(a) > u(a,), and (42)

a = an if u'(a) = u*(am andu’(a) =u(am), ory" U [y, yTwithy -y =y" -y’ (43)
where the notation* ” denotes “is superior to”.

If any of the first three situations in Definitidhoccurs, we can know that alternatiyes
superior toa,. Otherwise, a converse conclusion can be madolild be noticed that if a
decision maker cannot accept the comparison outcgergerated in accordance with
Definition 5, he or she can reconsider, [']. To facilitate the comparison among multiple
alternatives by using their expected utilitiesnsigivity of the comparison outcomes among
any three alternatives needs to be analyzed irr ¢odeevoid the problem of comparison cycle
and guarantee the validity of the outcomes (Yang.e016). That is, givenT, y'], if & >
ananda, > aas defined in Definition 5, then there shouldhegtd, >~ a..

Theorem 5. Given the optimal (a), u*(a)], [u(amn), U'(am)], and U (ay), u’(a)] for three
alternativesa, a,, anda,, suppose tha, > a;,anda, > & in accordance with Definition
5 on the condition thayT, y'] is provided, then we hawg > a,.

Theorem 5 is proven in Appendix. By using Definiti®, we can construct a binary
comparison matrix denoted by

B = (Bimmxms (44)
whereb,, = 1 ( # m) stands fom, > a,andb,=0(#m) fora < a,(i.e.,a, > a).In

particular,by is set as 0. Suppose that the superior indicdtalt@rnativea, is defined a®, =
zm:lqm, then the ranking of is calculated ad1-b. Theorem 5 can effectively avoid the

problem of comparison cycle to guarantee the ratignand robustness of the ranking of
each alternative fronM-b, (I = 1, ..., M). Wheng > a, anda, > & are judged by
following Definition 5 given {7, y'], the preference relation between alternatiyjeanda,, is
certain to bey > ainstead ofax > a under the same conditions. The consistency among
the preference relations of alternatives is guaetht As a result, a valid ranking order of all
alternatives can be generated.
3.3. Process of the proposed method

The process of finding solutions to MADA problemgsusing the proposed method can be

summarized as follows and shown in Fig. 1.
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Formation of a
MADA problem

Basis

Dissimilarity based weights

Determination of the
dissimilarity based

discriminating power interval

Generation of dissimilarity

based weight interval on each

attribute

Preparation for solving
the MADA problem

SD based weights

Determination of the SD
based discriminating power
interval

Generation of SD based
weight interval on each
attribute

 Collection of assessments

GMD based weights

Determination of the GMD
based discriminating power
interval

Generation of GMD based f
weight interval on each
attribute

Generation of integrated weights of attributes

Attribute weights

Hurwicz rule

Determination of the minimum and maximum expected utilities of each alternative with

6,6 ,and g, and three sets of weight intervals

Comparison between alternatives with the consideration of the optimism degree interval

Decision

Generation of a solution based on integrated weights of attributes

with Hurwicz rule

Fig. 1. Process of the proposed method.
Step 1: Form a MADA problem.

A decision maker identifiels attributes andN assessment grades, and Iidtalternatives to

form a MADA problem.

Step 2: Prepare for the proposed method to sobv&MhDA problem.

The decision maker specifiaéH,) (n=1, ...,N) and |, '] in Hurwicz rule.

Step 3: Collect assessments from the decision maker

The decision maker evaluates each alternative @h e#tribute to provide individual

assessmen®e(a)) (i=1,..L,1=1,..M).

Step 4: Determine the integrated weights of attebu

With the consideration of a general case whereetigeat least one incomplete individual

assessment on an attribute, three pairs of optifmizgroblems in Egs. (9)-(11), (12)-(14),

and (15)-(17), respectively, are solved to genethee dissimilarity based discriminating

power interval [D (g) , D*(g) ], the SD based discriminating power interval

[S™(e),S"(e)], and the GMD based discriminating power intefv@l (¢) ,G*(g)]. From
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the three intervals, the dissimilarity based weigherval [w~,w "], the standard deviation

based weight interval " ,w*" ], and the GMD based weight intervaiv{™,w®"] are
calculated using Egs. (20)-(21), (22)-(23), and){25), respectively. Three sets of weights
limited to W™, w™* ], [w,w*], and [w® ,w?"] are then combined by the non-negative

coefficientség, 6s, andfy such thatdy + 6s + 6; = 1 to generate the integrated weights of
attributes.

Step 5: Determine the minimum and maximum expeagtditles of each alternative.

On the condition that the three coefficiefijsds, andd, are relaxed as variables satisfying
0<64<1,0<6:<1,0<6y<1, anddy + 65 + 64 = 1, the optimization model in Egs. (27)-(38)

is solved to generate the optimala). When the objective of this optimization model is
changed to “MAXu'(a) = Y7 B,(a)u(H,) + Bu@)+Ba(@))u(Hy)", the optimalu‘(a) is

obtained.

Step 6: Compare alternatives using Hurwicz rule.

Alternativesa, anda, (m=1+ 1, ...,M) are compared by using Definition 5 to determine
the upper triangle of the binary comparison maBias defined in Eq. (44). Then the lower
triangle ofB can be directly determined from the upper triamglaccordance withy, + by =
1.

Step 7: Generate a ranking order of all alternative

From the binary comparison matr& by (I = 1, ..., M) is calculated to determine the
ranking of alternativey, i.e.,M-b,. A ranking order of all alternatives is then gexted.

Step 8: Finish the process.

The ranking order of all alternatives is considemed solution to the MADM problem.

4. lllustrative example

In this section, a focal firm selection (FFS) perhlis analyzed by the proposed method to
demonstrate the generation of integrated weightatoifbutes and the process of finding
solutions to MADA problems. The purpose is to cleot®e most appropriate two focal firms
from five candidates to provide lamp accessorigsafo enterprise located in Tongling of
Anhui province of China. A solution system develdpe the Matlab environment is
employed to analyze the FFS problem.

4.1. Description of the FFSproblem

Most enterprises, especially small and medium pritgs usually supply products or

components to downstream firms which are also d@dibeal firms if they directly provide

customers with final goods. In general, an entegomay supply products or components to
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multiple focal firms. When the requirements, sustoeder quantity and quality of products or
components, of focal firms change, however, therpnise may be incapable of meeting the
requirements of all focal firms simultaneously dwecash flow difficulties or production
capacity. In this situation, the enterprise fache thallenge to select one or several
appropriate focal firms to provide products or comgnts.

In this paper, we investigate the selection of fdoens for an enterprise located in
Tongling of Anhui province of China who primarilyqvides lamp accessories for many focal
firms in the lighting industry. As a small and meali enterprise, its cash flow and production
capacity are limited so that it cannot cope witl iicrease in order quantity and quality of
accessories for focal firms. To achieve sustaindbleelopment in line with its cash flow and
production capacity, the enterprise has to selpptrapriate focal firms to provide lamp
accessories. To address the selection problembdhed of directors firstly identifies five
candidates from all focal firms for which the eptiése has provided lamp accessories before.
The five candidates include Yankon, Nvc, Opple,stap and Philips. The board of directors
wishes to select the most appropriate two focaidifrom the five candidates to provide lamp
accessories. Note that the board of directors doésvant to find the best portfolio of any
two focal firms but to find the best focal firm atide second best focal firm. The general
manager of the enterprise acts as the decision mtakiee responsible for the selection of
appropriate focal firms with the help of five exigefrom the departments of sales, research
and development, production, quality managemert,fenmance. Eight attributes are selected
to carry out the selection of focal firms, includiprofits of supply, requirements of supply,
scale of supply, scale of focal firm, customer segts of focal firm, market share of focal
firm, growth of focal firm, and cooperativenesdagal firm.

Suppose that the five focal firms are represenyele i = 1, ..., 5), and the eight attributes
bye (i =1, ..., 8). The five focal firms are assessed achettribute using the following set
of assessment graddor (P), Average (A), Good (G), VeryGood (V), andExcdlent (E), i.e.,
Q={H,n=1, ..., 5}={Poor, Average, Good, VeryGood, Excellent} = { P, A, G, V, E}. Step
1 is completed.

The decision maker uses a probability assignmeptoagh (Winston 2011) to set the
utility of each assessment graalél,)) (n=1, ..., 5) to be (0, 0.25, 0.5, 0.75, 1). The mEm
degree intervaly[, y'] is set as [0, 0.5] because the decision makderré¢o examine the
outcomes from comparing different focal firms ireithworst scenarios to avoid potential
risks. The decision maker is risk averse as hisrprise has limited cash flow and production
capacity which does not allow him to take too muick. As selecting focal firms is very

important for the enterprise, the decision mak&woiswilling to give subjective judgements to
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assign attribute weights in order to avoid persdaades of his judgments towards those focal
firms. To objectively carry out the overall evalgat of the five focal firms, the proposed
method is used to determine the integrated weigiftsattributes and generate the
corresponding solution. Step 2 is completed.
4.2. Generation of solution to the FFS problem

The decision maker gives his assessments of eatiedive focal firms on each of the
eight attributes with the assistance of the fivpegts, as presented in Table 1. For example,
the assessment0.2), (/,0.6), (2,0.2)} records that the performanceFafon attributeg, is
assessed as 'Good' by one expert, as 'Very Godkelyther three experts, and as ‘unclear' by

the remaining expert. Step 3 is completed.

Table1

Assessment data from the decision maker for tteefieal firms.

Attributes Fy F Fs Fy Fs

e {(G,0.2), {(v,0.8), {(G,0.2), {(v,0.8), {(G,0.4),
(v,0.6), (£2,0.2)} (v,0.6), (2,0.2)} (v,0.4),
(2,0.2)} (2,0.2)} (2,0.2)}

& {(A0.2), {(A,0.6), {(A,0.2), {(A,0.8), {(A,0.8),
(G,0.6), (G,0.4)} (G,0.4), (G,0.2)} (G,0.2)}
(v,0.2)} (v,0.4)}

e {(V,0.6), {(v,0.8), {(G,0.4), {(G,0.6), {(Vv,0.2),
(E,0.4)} (E,0.2)} (v,0.6)} (V,0.4)} (E,0.8)}

€ {(V,0.6), {(v,0.4), {(Vv,0.4), {(v,0.8), {(Vv,0.2),
(E,0.2), (E,0.4), (E,0.4), (2,0.2)} (E,0.6),
(2,0.2)} (£2,0.2)} (2,0.2)} (2,0.2)}

& {(G,0.4), {(v,0.6), {(G,0.2), {(v,0.2), {(G,0.2),
(v,0.4), (E,0.2), (v,0.6), (E,0.6), (v,0.6),
(2,0.2)} (2,0.2)} (2,0.2)} (2,0.2)} (2,0.2)}

s {(V,0.4), {(v,0.4), {(Vv,0.2), {(G,0.2), {(V,0.6),
(E,0.2), (E,0.2), (E,0.4), (v,0.4), (2,0.4)}
(2,0.4)} (2,0.4)} (©2,0.4)} (2,0.4)}

€ {(Vv,0.6), {(v,0.4), {(G,0.2), {(v,0.6), {(G,0.2),
(E,0.2), (E,0.4), (v,0.6), (E,0.2), (v,0.6),
(2,0.2)} (2,0.2)} (2,0.2)} (2,0.2)} (2,0.2)}

(=Y {(G,0.2), {(G,0.6), {(A,0.4), {(A,0.4), {(G,0.2),
(v,0.6), (v,0.2), (G,0.4), (G,0.4), (v,0.6),
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(22,0.2)} (2,0.2)} (2,0.2)} (2,0.2)} (2,0.2)}

By finding the solutions to three pairs of optintiea problems in Egs. (9)-(11), (12)-(14),
and (15)-(17) with the data in Table 1, the diskintly based discriminating power interval ,

the SD based discriminating power interval, and &&éD based discriminating power
interval on the eight attributes, i.eD[(e),D*(g)], [S (g).S"(e)], and [G (g),G"(e)]

are obtained and presented in Table 2. Such inseara then used to calculate three sets of
weight intervals, i.e., & ,w'™], [w",w™"], and [w? ,w®*] in accordance with Egs.

(20)-(21), (22)-(23), and (24)-(25), which are gmezd in Table 3. Step 4 is completed.
Table 2

Three types of discriminating power intervals oe éight attributes.

Attributes ~ [D™(g),D*(g)] [S(g).S'(8)] [G(8).G"(g)]
e [0.0034, 0.108] [0.0017, 0.0785] [0.0016, 0.0968]
& [0.08, 0.08] [0.0473, 0.0473] [0.064, 0.064]
& [0.12, 0.12] [0.0825, 0.0825] [0.1144, 0.1144]
e [0.01,0.17] [0.005, 0.1236] [0.0064, 0.1552]
es  [0.022,0.2153] [0.0197, 0.1743] [0.0184, 0.198]
& [0.0019, 0.2622] [0.0013, 0.3041] [0.0016, 0.2912]
e [0.004, 0.1242] [0.002, 0.105] [0.0016, 0.1164]
e [0.038, 0.2579] [0.0257, 0.175] [0.0324, 0.2152]

Table 3

Three types of weight intervals of attributes ineliwith the corresponding discriminating

power intervals.

Attributes [ W] (W™, W] [, W]
e [0.0028,0.2813] [0.0016, 0.2996] [0.0014, 0.2884]
&  [0.0598, 0.2863] [0.0434, 0.2553] [0.0512, 0.2662]
&  [0.0897, 0.4295] [0.0757, 0.4455] [0.0914, 0.4758]
e [0.0085, 0.3869] [0.0051, 0.4068] [0.0058, 0.3987]
&  [0.0192, 0.4555] [0.0211, 0.5129] [0.0172, 0.4714]
&  [0.0018, 0.4858] [0.0016, 0.623] [0.0017, 0.5494]
e, [0.0033, 0.3109] [0.002, 0.3644] [0.0014, 0.3277]
&  [0.034,0.5165] [0.0274, 0.5231] [0.0303, 0.5085]
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On the condition that the three coefficiefijsés, andf, are relaxed as variables satisfying
0<63<1,0<6:;<1,0<6,<1, andby + 65 + 63 = 1, from finding the solutions to the
optimization model in Egs. (27)-(38) with the olfjees of “MIN u'(F))” and “MAX u’(F)”
the optimal {"(F), u’(F)] (I = 1, ..., 5) is obtained as ([0.5362, 0.8619], [33,60.8648],
[0.4098, 0.8946], [0.3366, 0.868], [0.455, 0.9278fep 5 is completed.

To use Definition 5 to compare focal firms, theticél value of the optimism degree in
Hurwicz rule, i.e.y” between any two focal firms is calculated in ademce with Eq. (39), as
presented in Table 4. Note that becau$gs) > u'(F,) andu’(Fs) > u'(F,), u(Fs) < u(Fs)
andu’(Fs) < u’(Fs), andu (F4) < u'(Fs) andu’(Fs) < u'(Fs), there are no critical values for
those cases and the notatiof' is placed in the corresponding cells in the tablleen from
Definition 5 the comparison outcomes between any fwecal firms are generated and also
presented in Table 4. Such outcomes are furthed tsegenerate the binary comparison
matrix B, as presented in Table 5. Step 6 is completed.

Table4
Critical value of the optimism degree in Hurwicderbetween any two focal firms and the

comparison outcomes (in brackets) between the owal firms.

Fi F, Fs Fs4 Fs
Fy 0.9616 ¢) 0.7945 ¢ ) 0.9703 ¢&) 0.552 ()
F, 0.6431 ¢) 0.9754 ¢) 0.1189 )
Fs -(>) - (=)
Fa - (=)
F5
Table5
Binary comparison matrix.
Fy F, Fs Fs4 Fs
Fi 0 1 1 1 1
F, 0 0 1 1 0
Fs 0 0 0 1 0
F4 0 0 0 0 0
Fs 0 1 1 1 0

It is clear from the binary comparison matrix thatfl = 1, ..., 5) = (4, 2, 1, 0, 3), which
results in the rankings of the five focal firme.j.(1, 3, 4, 5, 2) foF; to Fs respectively. As a
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result, a ranking order of the five focal firmsoistained a§; >~ Fs = F, > F3 = F4 lt
should be noticed that such a ranking order caulitetly obtained from the comparison
outcomes between any two focal firms in Table 4abse there are limited alternatives in the
FFS problem. For the real problems with a large lmermof alternatives, the binary
comparison matrix will be necessary for generatéimgnking order. Step 7 is completed.

The ranking order of the five focal firms indicatbat Yankon It,) and Philips fts) should
be selected with the preferential orderFef - Fs to provide lamp accessories. This is the
solution to the FFS problem. Step 8 is completed.

Next, we will find the solutions to the FFS problesn the assumption that different
optimism degree intervals are provided to compheentwith the above solution. This helps
highlight the significant influence of optimism deg interval on solutions obtained by using
the proposed method.

4.3. Influence of optimism degree interval on solutions

In the above solution process, the optimism degreeval [y, y'] is set as [0, 0.5] by the
decision maker due to the limited cash flow anddpotion capacity of the enterprise. Assume
that different optimism degree intervals are set,present what will happen to the solutions
to the FFS problem below.

After the optimal {"(F)), u’(F)] (I = 1, ..., 5) is obtained, different optimism degree
intervals may generate different comparison outcoimetween alternatives when Hurwicz
rule is applied. To demonstrate this, without loggenerality, {7, y] is set as [0, 0.2], [0.1,
0.3], [0.3, 0.5], [0.5, 0.7], [0.6, 0.8], [0.8, 14nd [0.5, 1], respectively. For each setting, the
comparison outcomes between any two focal firmsracalculated using Definition 5 and
presented in Table 6. Also, the corresponding picamparison matrices are reobtained and
presented in Table 7, where “(0, 0, 0, 0, O, 0,@)d “(1, 1, 1, 1, 1, 1, 1)” mean that such
comparison outcomes are independentof[].

Table 6

Comparison outcomes between any two focal firmk different optimism degree intervals.

= F» F3 Fs4 Fs
(=, =, =, (= =, =, (=, =, =, (=, =, =,
Fl >_’>_’>_1 >_1>_1<1 >_1>_’>_1<1<1<’
~) ~) ~) <)

F> T R i TR o G S
<) =) <)
F3 (>_1>_’>_1(<1<’<’
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F, <, =<, =<,

<)

FS

Table7

Binary comparison matrix with different optimismgtee intervals.

Fi F, Fs F, Fs

. (,0,0,00,0(,1,2,1,2,12,(2,1,2,1,1,0,(2,1,2,12,1,12,(2,1,1,0,0,0,
0) 1) 1) 1) 0)

, (,0,0,0,0,0,(,0,0,000(1,1,12,1,0,0,(2,1,2,12,1,1,(1,0,0,0,0,0,
0) 0) 0) 1) 0)

e, (,0,0,0,0,1,(,0,0,0,1,1,(,0,0,0,0,0,(,1,2,12,1,1, (0,0,0,0,0, 0,
0) 1) 0) 1) 0)
(,0,00,0,0,(,0,0,0,0,0,(,0,0,0,0,0, (0,0,0,0,0,0, (0,0,0,0,0, 0,

" o) 0) 0) 0) 0)

. (,0,0,1,12,1,(0,1,2,1,2,1,(2,1,2,1,2,1,(2,1,2,12,1,1,(0,0,0,0,0,0,
1) 1) 1) 1) 0)

Tables 6 and 7 indicate that different optimism rdegintervals can result in different
comparison outcomes in most situations, such asdhmarison outcomes betweenandF,
F. andFs, F, andF3, andF; andFs. In particular, the comparison outcomes betwegand
Fs andF, andF; have significantly changed with the increasejin f]. From the binary
comparison matrices with different optimism degrgervals in Table 7 (I = 1, ..., 5) and
the ranking of each focal firm are obtained and@néed in Table 8, where the element “4; 1”
associated witlr; and |7, y'] = [0,0.2] means that, = 4 and the ranking d¥; is 1. Table 8
shows that the rankings &1, F,, F3;, andFs have significantly changed with the increase in
[y", 7']. In particular, wheny[, y'] is set as [0,0.2], [0.5,0.7], [0.6,0.8], [0.8,4hd [0.5,1], the
solutions to the FFS problem dfgandF, with the preferential order ¢f;, > F,, Fs andF;
with the preferential order ¢fs > F;, Fs andF; with the preferential order ¢fs >~ Fi, Fs
andF3 with the preferential order ¢¥s > Fs3, andFs andF; with the preferential order &fs
= F4, which are clearly different from the solution gested in Section 4.2. All these verify

the great influence of7, y'] on solutions to the FFS problem.
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Table 8

Superior indicator and ranking of each focal firithwdifferent optimism degree intervals.

[y,»1 [00.2] [0.1,0.3] [0.3,05 [050.7 [0.60.8] 0B [0.5,1]

Fi 41 4:1 4.1 3;2 3;2 2;3 3;2
F, 3;2 2:3 2:3 2:3 14 1;4 1;4
F; 1;4 14 14 1;4 2:3 3;2 2;3
F,4 0;5 0;5 0;5 0;5 0;5 0;5 0;5
Fs 2:3 3;2 3;2 4.1 4.1 4.1 4.1

5. Conclusions

Attribute weight assignment is an important steilDA. When there are no subjective
judgments available for attribute weight assignmene way of determining the weights is to
use the information or discriminating power con¢ainn performances of alternatives on
each attribute. As presented in Section 2, it fcdit to measure the discriminating power
among the performances represented by belief hligions. The strategy of using
discriminating power among scalars transformed frbatief distributions is infeasible
because the transformed scalars cannot refleaditteesity in performances represented by
belief distributions over a set of grades which éhatfferent utility values. To address this
challenge, we have defined three types of discatimig power contained in the distributed
assessments of alternatives on different attributelsich are the dissimilarity based
discriminating power, the SD based discriminatiogver, and the GMD based discriminating
power. From the three types of discriminating powieree corresponding sets of attribute
weights are determined and then combined usin@ ttwefficients to generate the integrated
weighs of attributes. When there is unknown or inptete information in the assessments, an
optimization model is constructed based on thegatied weights to determine the minimum
and maximum expected utilities of each alternatiMee expected utilities are then used to
compare alternatives with the help of Hurwicz rimevhich the acceptable optimism degree
interval is provided by a decision maker. In paitée, the transitivity of the comparison
outcomes among three alternatives is theoreticaliglyzed to avoid the problem of
comparison cycle and guarantee the validity ofcthraparison outcomes.

What we have investigated in this paper is a neengit to explore the determination of
attribute weights by taking into account the diéfeces in both belief degrees in belief
distributions over a set of grade and the utilibéshe grades simultaneously. This is different
from existing studies on how to determine attribwiights from discriminating power in

scalar values instead of in distributions (Chiralet2015; Deng et al. 2000; Diakoulaki et al.
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1995; Fan et al. 2002; Fu and Wang 2015; Fu an@Xi6; He et al. 2016; Wang and Luo
2010;Sahin and Liu 2016).
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Appendix: Proof of Theorems 3-5

Proof of Theorem 3

Theorem 3. Suppose thatD (g), D*(g)] (i =1, ...,L) is obtained from solving the pair of

optimization problems in Egs. (9)-(11) arid’ (g) is a variable limited toD (g), D*(g)].

Then, w' = _b@ is increasing with respect t®"(g) and decreasing with respect

S YD)
to D'(e) (#i).
Proof. To focus on the monotonicity o' with respect toD’(g), the derivative of w’
regarding D" (g) is calculated by

a\l\ld _ 5*(Q)+2?=1,;¢i 5* (ej)_ﬁ (91) — Z,il,m |:_)*(ej)

wle) (5*(Q)+le-:1,j¢i5*(ej))2 (5*(Q)+ZJL:1J=i5k(ei))2.

BecauseD'(g) >0 and D'(g) >0 ( # i), which can be found from Definitions 1-2 and
ow’ . o :
Egs. (9)-(11), we haveW > 0, which verifies that the value of will become larger

with the increase inD"(g) .
On the other hand, to analyze the monotonicitywf with respect toD’ (&) (#i), we

calculate the derivative ofy’ regarding D’ (g,), which is

ow' -D’(g)

aﬁ@)_(ﬁmwzhmﬁﬁﬁr

This shows that éw'd < 0 becauseD’(g) >0 and D'(g)) >0 ( #i). As a result, we
e.
]
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can draw a conclusion that the value wf will become smaller with the increase i’ (&)
(#1).
As a whole, the conclusion in this theorem is vedif o

Proof of Theorem 4
Theorem 4. Given the optimalJ (), u*(a)] and u(a,), u*(a,)] for two alternatives, and
am, suppose the(a) = y-u'(a)+(1-y)-u'(a) andE(an) = y-u'(an)+(1-y)-u (an) represent the
expected utilities of alternatives and a,, in Hurwicz rule andAE(a,) = E(a) - E(ay)
represents the difference between the expectetiiestiof a and a,,, then we have the
following conclusions.

(1) Whenu'(a) > u'(a,) andu(a) < u(an), AE(a) is monotonously increasing with
respect tg, and it is smaller than, equal to, and larger thavheny is limited to [0,y), [y,
u(a,)-u(a)

y], and ¢, 1], respectively, wherg = @) -t @) - @)@

(2) Whenu'(a) < u'(ay) andu(a) > u(an), AE(a,,) is monotonously decreasing with
respect tg, and it is larger than, equal to, and smaller thavheny is limited to [0,)), [y,
y'], and ¢, 1], respectively.

Proof. We consider the situation wheu§a) > u*(a,) andu’(a) < u(a,) first. Under the

given conditions, one has

AE(am) = E(a) - E(am) (A1)
=yu'(@)+(L-y)u(@) - (-u'(@w+(1-y)-u (@) (A.2)
=y-(U(@)-u(@)) - - U'(an)-u(am) + U (a)-u(an) (A.3)
=y-(U"(a)-U'(am) - - (U (a)-u"(am) + (U'(a)-u (am). (A.4)

Then it is clear thahE(a,,) is monotonously increasing with respectytdieanwhile, it is
easy to know tharE(a;,;) < 0 wheny = 0 andAE(a;,,) > 0 wheny = 1 because’(a) > u*(ay)
and u(a) < u(ay. Also, it can be obtained tharE(a,) = O wheny = y =

u(a,)-u (@)
(U (a)-u(a))-(u'(a,) -u(a,)

. As a wholeAE(a) is smaller than, equal to, and larger

than 0 wheny is limited to [0,y), [y, '], and ¢, 1], respectively.

In the situation where'(a) < u'(a,) andu(a) > u'(a,), from Egs. (A.1)-(A.4) one can
draw a conclusion thatE(a,,) is monotonously decreasing with respect.tbleanwhile, it is
easily found thatE(ay,) > 0 wheny = 0 andAE(a,) < 0 wheny = 1 because’(a) < u*(am)
and u(a) > u(a,). As presented aboveAE(a,) is equal to 0 wheny = y =
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u(a,)-u(a)

— = — - . As a wholeAE(a) is larger than, equal to, and smaller
(U (a)-u(a)-ui(a,) -u(a,)

than 0 whery is limited to [0,y), [y, '], and ¢, 1], respectively.
From the above analyses, the conclusion in thisrém is verified. o

Proof of Theorem 5
Theorem 5. Given the optimal (a), u*(a)], [u(amn), U'(am)], and U (ay), u’(a)] for three
alternatives, a,,, anday, suppose tha, > a, anda, > asin accordance with Definition
5 on the condition thayT, y'] is provided, then we haw > a,.
Proof. Whenu'(a) > u'(a,), U'(am) > u'(a), u(a) > u(a,), andu(a,) > u(a), the
conclusion in this theorem is clear to hold. In fibkowing, we discuss other situations.

(1) u'(a) > u'(am) andu(a) > u'(aw)

In this situationg > a; always holds no matter whatever the optimism degie set as.
Under the conditions, we focus on the relationdlgfween (i’ (a,), u*(a»)] and U (ay), u(aW)]
to guarantee the constraintaf > a,.

1) u"(am) > u'(ay) andu™(am) < u (ay)

In accordance with Definiton 5, wheny [ y] U ( V. , 1] with y, =

— “__(ak)"“_fam) - , we havea, > a. It can be known fromy,, =
(U™ (@) —u™ (@) — (U™ (&) —u(a)
u@)-u (@, that y, = 1 , Which indicates that

(U™ (@) —u™ (@) ~ (U™ (@) —u™(a) u'(an) ~u'(a) 4

u(a)-u (ay,)
Ve is monotonously decreasing with respectit@,,) andu(a,). From this fact, we know

that y, < y,, Whenu'(a) > u'(ay) andu’(a) > u (ay), which results in)[, T U (4, 1]
and furthem, >~ a..

On the other hand, whey, is limited to |, '], ¥, -7 <7 - y., is needed to
guaranteea, > @& in accordance with Definition 5. From the fact tth)z{k < y:nk, as

mentioned above, we can obtain thgt -y <y - ), andthusy > a

2) u'(am) <Uu'(a) andu(am) > u'(ay
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When u'(a,) < u'(a) andu(a,) > u(a), from y,, = 1 it can be

u'(a) -u" (@) |4
u(a,) ~u(a)

deduced thaty,, is monotonously increasing with respect Uta,) and u'(a,), which
results in y, > y., becausei’(a) > u'(ay) andu'(a) > u(a.). From y, > y, we can

know that {7, y'] U [0, y.) or yi U [y, y] with y, -y >y - y. always holds,
which results iy = a, in accordance with Definition 5.

(2) u'(a) > u'(am) andu(a) < u (am)

In this situation, & > a, holds when f, y1 U (y,, 1] with ) =

u(a,)-u(a)
U (a)-u(a) - (u(a,) -u(a,)

F Vi U D5y Twith -9 <y" -y, holds in

accordance with Definition 5. Under the conditionge focus on the following three
relationships betweeni|(a.), u’(a,)] and u (ay), u’(aJ)] to guarantee the given constraint of
an - &
1) u'(am) > u'(a) andu (aw) > u™(ay)
Under the conditions,, = a¢ is clear to hold. Asyl*m = — 1+ when
u'(@)-u'@,) ,,
u(a,)-u(a)

u'(a) > u'(am) andu’(a) <u(ay), it can be easily found thag is monotonously increasing
with respect tas’(a,) andu(a,). From this we havey, < y_ whenu'(a,) > u'(a) and
U (an) > u(a), which indicates thayl, 1 U (¥, 1] or y, U [y, yTwith y, -y <y’

- ¥, holds. Asu’(a) > u"(am) > U'(a), & = & holds whenu'(a) < u'(a) in accordance

with Definition 5. Also it is clear thagy > a, whenu (a) > u(ay).
2) u'(am) > u'(a) andu (ay) < u(ay)

As presented above, under the conditionsy[] U (¥, 1] or y,, U [y, y 1 with y,
-y <y - y.. isneeded to guarantag > a, while,y] U (¥, 1lor y.. U [y, 7]
with y, -9 <y" - ) isneeded to guarantee = an.

Assume that){, y'1 U (¥, andp,y7 U (y,, 1] first, then there are two possible

26



cases wherey,, < y, and y.. > y. . Without loss of generality, suppose thgf <

u(a,)-u (@) _ 1

N ; - = == and y, =
@)-u@)-@)-uE,) u@)-u@),,
u(a,)-u(a)
- “__(ak)‘”_fam) - = — 1+ , from y, < y, it can be
@) -u @) - @E)-u@)  u@)-u(@), 4
u™(a)-u(ay)
1 1
deduced that— — < — " and further
u@)-u'@,),,  U@E)-u@E),,
u(a,)-u(a) u(a)-u (@)

u"(a)-u(a)-u'(@)-u (am)-u'(amn)-u (a) > u'(ay)-u(a)-u'(a)-u(am)-u'(anm-u(a). (A.5)

On the other hand, it can be similarly obtained tthay, =

. lf_(ak)_ul(a‘) _ =1 . On the assumption thag, <
U @)-u@)-U@)-u @)  u@E)-u@),,
u(a)-u(a)
. 1 1
Vi r 1€, — — < — — we have
v@)-u@),,  uE)-u@)
u(a)-u(a) u”(a,) -u(ay,)

u*(a)-u (a)-u'(a)-u (am+u'(ag)-u(am) > U'(am)-u(ad-u'(am)-u(a)+u’(@)-u(a). (A.6)

It is easy to find that Eq. (A.5) is equivalent Eg. (A.6), so ), < .. certainly holds
when . < y., is assumed, which results ifi,[y'] U ()., 1] anda > a. When we
suppose thaty,, > y., , we can similarly conclude thag, < y, anda > a.

Secondly, assume that[y"] U (y,, 1l and y, U [y, yTwith y -y <y - y .
On this assumption, it is clear thaf, < ). As analyzed above, we can knoyj, < i,
from y,. < yvi.-If vi U [y, '], then we clearly havey;, -y <y" - y, anda > a.
When y, O [y, y"], we certainly havey[, y'1 U (), , 1] anda > a

Thirdly, on the assumption thag,, U [y, yTwith y, -y <y" -y, and|,y] U

(V. 1], we havey,, < y, andits equivalenty, < y.,, from which the conclusion that
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a > & can be drawn in accordance with the above analysis.

Fourthly, on the assumption that, U [y, ylwith ¥, -y <y - ¥, and y U
[y, yTwith y. -y <y - ¥ ,asy, <y, isequivalent toy, < ) and y <
V.. isequivalenttoy, < y,.,oneof y, U [y,yTwith y -y <y - y, and}’,y]
U ( yl*k , 1] always holds. As a result, we always have- a.

3) u'(am) <u'(a) andu (ax) > u (aw)

Under the conditions/[, ] LU [0, y,)or v, U [y, yTwith y, -y >y - y. is
needed to guaranteg, > a, while ", '] U (¥, 1] or y, U [y, yTwith y -y <
Y - ¥, isneeded to guarantae > an.

Firstly, assume thayT, y] U [0, y,,)and [, y7 U (4, 1]. On this assumption, it is

needed thaty, < y.. . With the consideration af (a) > u*(am), U'(a) < U(am), U'(am) <

u*(a), andu’(am) > u(ay, it can be obtained frony, < y, that — l+ <
U@,
u(a,) -u(a)
- 1+ , Which further deduces that
THCORIHCHIN
u (a,)-u ()

U"(a)- U (am)-u"(a) U (ad+u'(am)-u'(a) > u'(ay)-u (am)-u'(a)-u(a)+u'(am-u(a). (A7)
Meanwhile, the relationship betweew (g), u'(a)] and U (a), u'(ay)] cannot be obtained
from u*(a) > u'(a,), U (@) < u(ay), u(a, < u'(a), andu(a, > u(a). As such, four
possible relationships need to be analyzed, inefudi(a) > u'(a) andu(a) > u(ay), u'(a)
< u'(a) andu’(a) < u(a), u'(a) > u'(a) andu’(a) < u'(a), andu’(a) < u'(a) andu'(a) >
u(a). To analyze the first two relationshipsg(a,)-u(a,) is added on the two sides of Eq.
(A.7) to transform this equation into

(u'(a)-u"(a)- (U (an)-u (ay) > (U"(am-u'(ay)- (U (@)-u (ay)- (A.8)
For u'(ay)-u'(a) > 0 andu’(a,)-u’(a) < 0 from the given conditions’(a,) < u’(a) and
U (am) > U'(ay), Eq. (A.8) is true when'(a) > u'(a,) andu(a) > u'(ay) but false when'(a)
< u'(a) andu(a) < u'(a). As a result, to make Eq. (A.8) hol, - a is certainly true in

the first relationship. The second relationshim&orrect for Eq. (A.8) and thus omitted.
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In the third relationship afi'(a) > u(a) andu™(a) < u'(a), suppose thaty, < yi., then

we have — 1+ < — 1+ and further
u'@-u'@),, u@-u@),,
u(a)-u(a) u(a,)-u(a)

U" (@) U (am)-u"(ad U (am)+u'(ad-u (@) > u'(a) u (ad-u'(am)-u (@)+u'(am-u(a). (A.9)
As Eq. (A7) is equivalent to Eq. (A.9), < y, is equivalent toy, < y,, which
means thag > a.

Finally, in the fourth relationship af'(a) < u'(a) andu (a) > u'(a), suppose that, <

Vi » then we have 1 < 1 and further

ua)-u(@,),, u(@)-u@),,
u™(a,) ~u™(a,) u(a)-u (a)

U (@)U (a)-u"(am) U (@)+u"(am) U (a) > u'(a)-u (am)-u’(a)-u (an+u’(a)-u'(a). (A.10)
From the equivalence between Egs. (A.7) and (A.4@),derive the equivalence between

Ve < Vi and y <y, whichresults iy > a.

When one of three conditions are satisfied, i)¢,,5[] U [0, y,) and y., U [y, y']
with i =77 <9 = Vs Vo U D70 Twith i =97 >9" =y and |7, 9T U (M,
1], and y,, U [y, yTwith y -y >9" = Vi and i, U [,y with i -y <y"-
Vins Vim < Vo IS always required, which resultsan - a, as analyzed above.

(3) u'(a) < u'(am) andu (a) > u (am)

In this situationg > ay holds whenf, y'1 U [0, ¥.,)or ¥, U [y, y1with ) -

y">y" - . Under the conditions, we focus on the followihgee relationships between

[U (am), U'(aw)] and [u™(ay), u'(a))] to guarantee the constraint@f > a.
1) u'(am) > u'(a) andu (am) > u (a

Under the conditions, a, > a always holds. Because yl*m

- L_r(am)—u;(a1) - = — 1+ , it is easy to know that, is
@)-u@)-u@E)-u(E) uvE)-u@) 4
u(a)-u(a,)

monotonously decreasing with respectit(a,) andu(ay). This can deduce thag,, < y,
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and further {7, y'1 U [0, y.) or ¥, U [y, y T with y, -y >y - y.. Asu'(a) <

U'(am), U(a) > u(amn), u'(an) > u'(ay), andu(a,) > u(a), whenu'(a) < u'(a), & > a
holds in accordance with Definition 5. Alsp > a clearly holds wheni*(a) > u*(ay).

2) u'(am) > u'(a) andu (ax) < u(aw)

Under the conditionsy], ] L [0, y.)or y. U [y,ylwith y_ -y >y - y s
needed to guarant@e > am, while [, 97 U (¥, ,1lor y,, U [y, ylwith y, -y <
Y - Vo isneeded to guarantag - a.

Assume thaty{, y'] U [0, y)and |7, y'] U (V. 1] first. On this assumption, it can

be known thaty,, < y,, which deduces that— 1+ < — ! _
U@)-u(@),, U@ -uU@),,
u (a)-u(ay) u(a)-u(a,)

and further

U (am)-u(a)-u'(ad-u (a)+u'(a)-u(an) > u'(an)-u(a)-u'(a)-u(a)+u’(a)-u(am). (A.11)
Similar to the situation whena'(a) > u'(a,), u(a) < u(ay), u'(ay) < u'(a), andu(a,) >
u'(ay), the relationship between[a), u*(a)] and u'(a), u’(a)] cannot be obtained from
u(a) < u'(am), u(a) > u(an), u(ay > u'(a), andu(a,) < u(a). As such, four possible
relationships need to be analyzed, includif@) > u*(a) andu(a) > u(ay), u'(a) < u'(ay)
andu(ay) < u'(a), u'(a) > u’(a) andu’(a) <u'(ay), andu’(a) < u’(a) andu’(a) > u'(a). To
analyze the first two relationships;(ay)-u’(ay) is added on the two sides of Eq. (A.11) to
transform this equation into

(U (am)-u"(ag)- (U (a)-u(a)) > (u'(a)-u'(ay)- (U (am-u (ay). (A.12)
For u*(a,)-u'(a) > 0 andu(a,)-u(a) < O from the given conditions’(a,) > u'(a,) and
U (am) <u(a), Eq. (A.12) is true when'(a) > u'(a) andu (a) > u (a) but false when'(a)
< u'(a) andu(a) < u'(a,). As a result, to make Eq. (A.12) holl, - a, is certainly true in

the first relationship. The second relationshijmerrect for Eq. (A.12) and thus omitted.

In the third relationship ofi(a) > u'(a) andu'(a) < u'(aJ), suppose that; < y..,

which deduces that— 1+ < — 1+ and further
u@)-u@), ,  u@)-u@),
u(a)-u(a) u (@) -u (@)

u*(a)-u (a)-u'(a)-u (am+u'(a)-u(am) > U'(am)-u(ad-u'(am)-u (a)+u(a)-u(a). (A.13)

The equivalence between Egs. (A.11) and (A.13)ltesu the equivalence betweep, <
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Vin and y, < y..,andthusy > a.

Finally, in the fourth relationship af'(a) < u’(a) andu (a) > u(a), suppose thaty <

Vi » Which deduces that— 1 - < — 1+ and further
uv@)-u@), , u@E)-u@),,
u(a)-u(a,) u(a)-u(a)

U (am)-u (&) -u"(am) U (ad+u'(a)-u'(a) > u'(a)-u (a)-u'(a)-u (am+u’(a)-u (am). (A.14)

Eqg. (A.14) is clearly equivalent to Eq. (A.11), whiresults in the equivalence betwegf),

< y. and y_ < y, ,andfurthem = a.
3) u'(am) <u’(ay) andu’(am) > u (ax)

Under the conditionsyT, '] L [0, y,)or ¥, U [y, ylwith y_ -y >y - y_ s
needed to guarantee = a,, while [y",y] U [0, y,)or y, U [y,yTwith y . -y >
Y - V. isneeded to guarantag > &

Firstly, assume thayT, y'] U [0, y.) and |7,y U [0, y..). There are two possible

situations wherey,, < y., and y. > y., . Without loss of generality, suppose thgt,

< V- Then we have— 1+ < — 1+ and further
@) -u'@),, uw@)-u(@),
u(a)-u(a,) u(a,)-u(a)
U"(@)-u'(a)-u"(am) - u"(ag-u’(a)-u"(am) >
U"(@)-u (&) -u"(aw)-u (am)-u’(am)-u"(a). (A.15)
On the other hand, suppose thgt < ., which deduces thatu+(am)—1u+(a1)+1 )
u(a)-u(a,)
" 1+ and further
u(@)-u(a)
u(a)-u(a)

U"(am)- U (a)-u"(am)-u (a+u'(a)-u (ay) > u'(a)-u (a)-u'(ay-u (am)+u’(a)-u(am). (A.16)

The equivalence between Egs. (A.15) and (A.16)ltes$u the equivalence betweey,, <

Vo and y < y. .From y, < )y, itcan be deduced that = a. When y_ > y_,
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the equivalence betweep,, < ), and ¥, < ), can be similarly found to result m

-

Secondly, assume that [y"] L [0, ¥, )and ¥, U [y, yTwith y. -y >y - y.,
then one hasy,, < y,. and its equivalenty, < .. From y, < y,., it can be

deduced thaty, LI [y, yTwith y, -y >y - ¥ or[y,»] U [0, ¥ ), which results

ina > a.

Thirdly, assume thaty,, U [y, yTwith y, -y >y - y. and [,y U [0, V)
On this assumption, it is required thgt, < y;, . Then the equivalent of; < y.,, i.e.,

Yim < Vi candeduce thay, LI [y, yTwith y -y >y - y orf,»] U [0, K,)
and furthem, >~ a..

Fourthly, assume thay, L [y, yTwith ) -y >y - y_and y, U [y, ] with
Vi =7 >y - Vo . Similar to the situation o[, y] U [0, . )and }’,y7 U [0, ¥,).
when y, < y. is assumed, its equivalent,, < y, resultsiny, U [y, y] with
-y >y -y o or,y] U [0, y) and furthers, = a. When y,, < y, is assumed,
its equivalent y,, < y, can similarly resultimy > a.

From the above analyses, the conclusion in thisrém is verified. o
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