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Abstract

Background Breast cancer management depends on biomarkers including estrogen receptor,

progesterone receptor, and human epidermal growth factor receptor 2 (ER/PR/HER2).

Though existing scoring systems are widely used and well-validated, they can involve costly

preparation and variable interpretation. Additionally, discordances between histology and

expected biomarker findings can prompt repeat testing to address biological, interpretative,

or technical reasons for unexpected results.

Methods We developed three independent deep learning systems (DLS) to directly predict

ER/PR/HER2 status for both focal tissue regions (patches) and slides using hematoxylin-and-

eosin-stained (H&E) images as input. Models were trained and evaluated using pathologist

annotated slides from three data sources. Areas under the receiver operator characteristic

curve (AUCs) were calculated for test sets at both a patch-level (>135 million patches,

181 slides) and slide-level (n= 3274 slides, 1249 cases, 37 sites). Interpretability analyses

were performed using Testing with Concept Activation Vectors (TCAV), saliency analysis,

and pathologist review of clustered patches.

Results The patch-level AUCs are 0.939 (95%CI 0.936–0.941), 0.938 (0.936–0.940), and

0.808 (0.802–0.813) for ER/PR/HER2, respectively. At the slide level, AUCs are 0.86 (95%

CI 0.84–0.87), 0.75 (0.73–0.77), and 0.60 (0.56–0.64) for ER/PR/HER2, respectively.

Interpretability analyses show known biomarker-histomorphology associations including

associations of low-grade and lobular histology with ER/PR positivity, and increased

inflammatory infiltrates with triple-negative staining.

Conclusions This study presents rapid breast cancer biomarker estimation from routine H&E

slides and builds on prior advances by prioritizing interpretability of computationally learned

features in the context of existing pathological knowledge.
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Plain language summary

Breast cancer diagnosis and char-

acterization involves evaluation of

marker proteins found inside or on

the surface of tumor cells. Three of

the most important markers are

estrogen receptor (ER), progesterone

receptor (PR) and a receptor called

HER2. The levels of these markers

can influence how a person with

breast cancer is treated in the clinic.

This study explored the ability of

machine learning – whereby compu-

ter software is trained to recognise

and classify particular image features

- to determine the status of these

markers in digitized images, without

the need for tissue stains. Our results

demonstrate that machine learning

can automatically predict the status

of ER, PR and HER2 in pathology

images and further testing identifies

specific image features which enable

these predictions. This type of

approach may decrease costs and

timelines and enable improved qual-

ity control in marker detection.
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C
linical biomarkers are critically important in the diagnostic
workup and treatment of breast cancer. In breast cancer,
three molecular biomarkers form a cornerstone for opti-

mized clinical decision making by providing prognostic infor-
mation and predicting response to specific therapies. These
biomarkers include estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2)1. In
current clinical practice, biomarker status is typically determined
by histological inspection of immunohistochemistry (IHC)
stained tissue using separate IHC stains for each biomarker.

Biomarker profiles are known to be correlated with histologic
features in breast cancer2–5. This is further recognized in the 2019
American Society of Clinical Oncology (ASCO) and College of
American Pathologists (CAP) guidelines, which recommend fol-
low up for observed discordance between ER status and histologic
findings, such as low grade but ER-negative carcinoma6. Such
follow up includes a second review or repeat IHC staining and is
meant to help ensure that technical issues, tumor heterogeneity,
or interpretation variability are ruled out before the biomarker
status is used for treatment decisions.

With the adoption of digital workflows in histopathology and
recent advancements in machine learning, initial efforts have
explored the possibility of using algorithms to predict biomarker
status from hematoxylin and eosin (H&E)-stained tissue in breast
cancer7–9 and other cancer types10,11. Not only could this
approach provide a more efficient and accessible option than
IHC, but it also provides the intriguing scientific potential to
identify morphological features that correlate with biomarker
status. Explainability efforts have provided some insights into the
features learned via slide-level determination of biomarker
status12, but further investigation of localized feature-prediction
associations as well as comparison of features learned by different
modeling approaches remains an important next step. Such work
may also help pathologists identify morphological findings that
further inform histology-biomarker discordances and reduce
incorrect biomarker status reporting.

In this study, we develop models to predict three clinically
relevant breast cancer biomarkers from H&E images, providing
biomarker predictions for localized tumor regions as well as the
slide-level summarization that has been the focus of prior studies.
We also leverage multiple model-interpretation techniques to
further investigate the associations between morphologic features
and biomarker status predictions learned by the models. Taken
together, our modeling and interpretability results provide both
qualitative and quantitative assessment of morphological features
relevant to biomarker prediction in breast cancer, highlighting
that deep learning approaches in pathology can be accurate,
informative, and interpretable.

Methods
Datasets. De-identified breast cancer data for this study came
from three sources (Table 1): a tertiary teaching hospital, a
medical laboratory, and TCGA13, 14. The teaching hospital con-
tributed both formalin-fixed paraffin-embedded (FFPE) tissue
blocks (from which new IHC-stained slides could be prepared)
and archived H&E-stained slides. The medical laboratory con-
tributed only tissue blocks and TCGA represents only archival
H&E slides. Pathology reports were available for cases from all
three sources. Inclusion criteria for the H&E images required the
presence of invasive carcinoma in primary breast tissue speci-
mens, as determined by pathologist review.

Slides from the teaching hospital and medical laboratory
(whether archival or newly prepared) were scanned by Aperio
AT2 digital scanners, and TCGA whole-slide images were
digitized by Aperio and 3DHistech scanners and obtained via

the Genomic Data Commons Data Portal (https://gdc.cancer.
gov). The study protocol was approved and informed consent was
waived by the Naval Medical Center San Diego (NMCSD)
Institutional Review Board (IRB). This IRB approval covered the
use of de-identified cases for the data from the tertiary hospital,
the medical laboratory, and TCGA as used in this study.

First, to develop the patch-level DLS that predicts the
biomarker status of each region of tissue, we prepared new,
paired H&E and IHC slides from available tissue blocks from the
hospital and laboratory. For each block, three 4 μm serial sections
were prepared (Fig. 1) and each slide was first stained with H&E,
digitized, then de-stained and stained with IHC for ER, PR, and
HER2, respectively. Quality review of these IHC-stained slides
was performed by multiple pathologists for a limited number of
sample specimens prior to adopting this approach and showed
comparable results to serial section staining. Quality assurance
requirements were also employed throughout, including recutting
and re-staining for a small number of sections with poor staining
of the initial H&E or re-stained IHC. After digitization and
alignment (see Supplementary Methods), these adjacent sections
enabled simultaneous review of H&E and corresponding IHC for
precise determination and manual annotation of biomarker
status. The patch-level stage of the DLS was trained using
pathologist-labeled patches from 140 blocks, tuned using 60
blocks, and tested on 64 blocks (see Table 2 for numbers of
labeled patches).

The second stage of the DLS, that provides slide-level
summarization of biomarker status, was trained on biomarker
status extracted from the pathology reports. This slide-level stage
of the DLS was trained on 757 slides, tuned on 1377 slides, and
tested on 3274 slides (see Tables 1 and 2 for breakdown by
source).

Biomarker labels. Labels were provided by a cohort of 16
pathologists (median years of post training experience 8.5 years,
range 3–21). For patch-level labels, pathologists were provided
pairs of aligned H&E and IHC images to enable easy review of
IHC status for specific regions of each H&E slide. Contiguous
regions of invasive carcinoma were identified, without enrich-
ment or selection of specific subtypes, and annotated as positive
or negative for biomarker status using a 1% threshold for ER and
PR, and a 10% threshold of complete circumferential staining for
HER2. For the slide-level review of biomarker status, pathologists
reviewed the IHC slides when available and assigned positive,
negative, or indeterminate for ER and PR and 0, 1+, 2+, or 3+
for HER2 as per CAP guidelines15.

For all archival cases, pathologists also reviewed de-identified
pathology reports and extracted the reported biomarker status.
For ER and PR, each case was categorized as either positive,
negative, or unavailable. For HER2 status, IHC results were
reported as positive, negative, equivocal, or unavailable. For
equivocal cases, HER2 fluorescence in situ hybridization (FISH)
results from pathology reports were also recorded as positive,
negative, or unavailable and used when available.

Deep Learning System (DLS) development. We developed a
separate DLS for each biomarker (ER, PR, and HER2) to enable
exploration of the possibility that different morphological features
might be associated with each biomarker. Each DLS consists of
two stages: the first is a deep convolutional neural network based
on the Inception-V316 architecture, that operates on image pat-
ches cropped from the whole slide image. Each input image patch
was of size 512 × 512 pixels at 5X magnification (1024 µm wide at
2 µm/pixel). The patches used for model development were
randomly sampled across the complete training set without any
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enrichment for morphological features or histologic subtypes.
The model was trained to categorize each patch as one of three
categories: biomarker positive invasive carcinoma, biomarker
negative invasive carcinoma, and “non-tumor” (i.e., not invasive
carcinoma). After the softmax layer, all predictions were in the
range [0,1].

Training labels were collected as described above for each
biomarker (one H&E-stained section labeled for each of the three
biomarkers). To increase the number of labeled patches,
pathologist-annotated H&E regions for each biomarker were
replicated to the two available serial H&E images as a form of
data augmentation that was found empirically to improve
performance on a tuning set. For example, if a region of the
H&E section was labeled as ER-positive (based on the paired IHC
image), that ER-positive region label was propagated to the two
serial H&E sections (even though those specific sections were not
stained or evaluated for ER status). Further training details and
other hyperparameters are provided in Supplementary Table 1.

The second stage utilizes features extracted from the patch-
level output (i.e., heatmaps) to classify each slide as positive or
negative for each biomarker status. For each biomarker, three sets
of features were used: a single feature indicating the ratio of
biomarker-positive vs biomarker-negative areas, and two normal-
ized histograms of patch-level predicted values: one for biomarker
positivity and one for biomarker negativity.

To compute biomarker-positive/negative area from continuous
stage-1 predictions, we defined a single threshold t for both
biomarker-positive (or negative) patches. For example, patches
with predicted probability of ER-positivity >= t were considered
ER-positive, and patches with predicted probability of ER-
negativity >= t were considered ER-negative. Patches not meeting
either threshold were considered “non-tumor” (i.e., not invasive
carcinoma). The ratio of positive versus negative patches was
used as the first feature for the stage 2 model. Next, we
incorporated information about the full spectrum of predictions
so that “borderline” predictions were not discarded and to reduce
dependency on the exact threshold t. Specifically, we considered b
evenly spaced histograms of patch-level predicted probabilities
for both biomarker-positivity and biomarker-negativity. Predic-
tion outputs below 0.1 were discarded because they tended to

indicate non-invasive carcinoma (i.e., neither biomarker positive
nor negative). The histogram values were then normalized by the
sum of biomarker-positive and biomarker-negative patches
(based on the above threshold t). Finally, these features were
used as input to a regularized logistic regression model
(implemented in Python’s sklearn library, v0.23.2).

The threshold t, number of histogram bins b, L1 vs L2
regularization, and regularization strength C for the logistic
regression were all tuned using 10-fold cross validation on the
slide-level train and tune dataset (Table 1). The final hyperpara-
meters used were: t= 0.7, b= 5 for ER and PR, b= 7 for HER2,
L1 regularization with C= 0.077, 0.045, and 0.024 for ER, PR,
and HER2, respectively.

Model interpretability
Testing association of DLS patch-level predictions with specific
histologic concepts. To evaluate the association of specific histo-
morphological features with the biomarker status predictions
made by our models, we performed analysis of concept activation
vectors (CAV analysis)17. Briefly, CAV quantitatively evaluates
the degree to which a DLS associates a user-specified ‘concept’
with a particular predicted classification. This approach is
hypothesis driven and thus requires a proposed set of concepts to
test. Based on discussions with experienced breast subspecialist
pathologists regarding known or likely associations with
biomarker status, we identified six concepts for CAV analysis:
high-grade carcinoma, low-grade carcinoma, invasive lobular
carcinoma, DCIS, tumor-adjacent desmoplastic stromal changes,
and TILs.

CAV analysis requires three categories of patches: patches
representing particular histomorphological concepts (concept
patches), patches known to be specific biomarker classes
(known-class patches), and patches selected randomly from the
entire dataset (random patches) to serve as a control. A minimum
of 100 concept patches were randomly sampled from pathologist-
annotated regions for the six concepts across 45 slides from the
slide-level tuning set. Known-class patches consisted of 500
patches randomly sampled from the annotated positive and
negative regions for ER, PR, and HER2 in the slide-level tuning

Table 1 Dataset summary for slides and cases used in model development and evaluation.

Tertiary

teaching

hospital

Medical

laboratory

Tertiary

teaching

hospital

Tertiary

teaching

hospital

TCGA

(36 sites)

DLS Stage 1 (patch-level): uses

paired H&E and IHC slides from

custom sectioning protocol

NA

No. of cases(train / tune

/ test)

70 / 30/ 64 70 / 30/ 0

No. of H&E slides(Train /

tune / test)

205 / 80/ 181 206 / 85/ 0

No. of patches See Table 2

DLS Stage 2 (slide-level): uses

biomarker status from the

original report

Train Tune Test

No. of cases 164 100 164** 340 909

No. of H&E slides 466 291 1,377 2,313 961

ER status*

(pos / neg)

103 / 47 91 / 7 103 / 47 280 / 58 679 / 191

PR status*

(pos / neg)

93 / 56 85 / 13 93 / 56 251 / 87 573 / 283

Her2 status*

(pos / neg)

16 / 34 4 / 81 16 / 34 11 / 78 131 / 739

Nottingham grade

1 / 2 / 3

46 / 69/ 49 44 / 36/ 20 46 / 69/ 49 135 / 126/ 79 387 /

295 / 227

*The total case counts for each biomarker are different based on availability of biomarker status in original pathology reports.

**Stage 2 tune set includes the same cases as stage 2 train set from Tertiary Teaching Hospital dataset but different tumor-containing slides from those cases.
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Fig. 1 Overview of data annotation, the two-stage deep learning system (DLS), and interpretability techniques. Annotation overview: paired H&E and

IHC images were used to develop regional biomarker annotations (see Supplementary Fig. 4). Case-level biomarker status labels were obtained from

available pathology reports. DLS overview: a model based on the Inception-v3 architecture was developed for each biomarker. Model interpretability:

saliency maps and unsupervised clustering provided an exploratory approach to interpretability, while concept activation vector analysis provided

hypothesis-driven analysis of features associated with biomarker predictions. H&E Hematoxylin and Eosin, ER Estrogen Receptor, PR Progesterone

Receptor, HER2 human epidermal growth factor receptor 2.
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set. Random patches consisted of 10 sets of 500 patches each,
sampled randomly from all tissue areas.

To conduct CAV analysis, we generate activations at the final
concatenation layer between the convolutional blocks and the
fully connected layers for all concept patches and random
patches, train a set of 20 linear support vector machine classifiers
to distinguish between a sampling of random and concept
activations (see Supplementary Methods for more details), and
then measure the directional derivative of the model’s prediction
for a given class along a vector orthogonal to the SVM decision
boundaries (the Concept Activation Vector)13. For each
concept–biomarker pair, we report the TCAV score, which is
defined as the fraction of patches of a known class that have a
positive derivative.

Unsupervised clustering. In this analysis, all patches from the
patch-level training and tuning sets that were labeled as invasive
carcinoma were clustered using a deep-learning based model that
has been previously shown to be able to retrieve visually-similar
histopathology images patches18, 19. This model uses as input
patches of size 299 × 299 pixels; therefore to obtain embeddings
for our model’s input patches (512 × 512 pixels), we concatenated
the image-similarity model’s embeddings for the 2 × 2 over-
lapping patches that constitute each of our patches.

We qualitatively selected the minimal number of clusters (25)
that maintained within-cluster visual consistency. Each cluster
contained 900–3000 patches, representing 30–100 cases. Next, 5
pathologists, blinded to the DLS predictions, reviewed 10 patches
from each cluster. These patches were selected to be those closest
to the cluster center while maintaining that each patch was from a
distinct case. The pathologists provided both free-text character-
ization of morphological features and filled out a structured
survey of histologic features.

To better understand which clusters were most similar in terms
of predicted biomarker statuses, we next computed the patch-
level predictions for ER, PR, and HER2 biomarker-positivity for
every patch from the tune set, obtaining a distribution of
biomarker status predictions for each cluster. We then used
hierarchical clustering based on the average linkage to group
these clusters. The distance metric used was the sum of the earth
mover’s distance across all three biomarker-positivity predictions.
Finally, to define each group resulting from the hierarchical
clustering, we manually examined the mean and median
biomarker-positivity scores of each group.

Saliency maps. Finally, to better understand the predictions at the
pixel level, we leveraged SmoothGrad20. Briefly, SmoothGrad
calculates the gradient of output prediction with respect to the
input pixels, and averages these gradients across multiple copies
of the input image (n= 8 in our work), each with pixel-wise
Gaussian noise added. Saliency maps were generated for a
minimum of 100 patches per biomarker, 50 for each of positive
and negative, a subset was manually chosen for independent
review by two pathologists. The pathologists were presented with
a high magnification version of the model input patch and the
corresponding saliency map overlay, and asked to qualitatively
assess the most salient regions on the patch.

Statistical analysis. Model performance was evaluated for both
patch-level and slide-level predictions by calculating AUC for
each biomarker. Confidence intervals for patch-level and slide-
level AUCs were computed via bootstrapping by sampling with
replacement (1000 iterations) using Python’s sklearn package,
v0.23.2. Reported patch level AUCs are one-vs-all for the bio-
marker positive invasive carcinoma class. Slide-level AUCs
represent binary classification of biomarker positive versus
negative. Confidence intervals for the TCAV analyses were
computed using the same method with 100 iterations.

Results
Our approach involves a 2-stage deep learning system (DLS) for
each biomarker. The first stage predicts the local biomarker status
for individual, cropped image patches representing small regions
of tissue. The output of this prediction is one of three classes:
biomarker positive tumor, biomarker negative tumor, or non-
tumor. The second stage of the DLS predicts the slide-level bio-
marker status using the predictions of the first stage across every
patch in the slide (Fig. 1, Methods).

Patch-level model status prediction. The first stage of the DLS
was developed (trained and tuned) using 1.21 billion patches from
576 slides across 200 cases, and evaluated on a test set of all patches
from 181 slides across 64 cases (Table 1 and Supplementary
Table 2). We next report one versus all classification performance
across all patches (biomarker positive tumor, biomarker negative
tumor, or non-tumor). The patch-level area under the receiver
operating characteristic curves (AUCs) were 0.939 (95%CI
0.936–0.941), 0.938 (95%CI 0.936–0.940), and 0.808 (95%CI
0.802–0.813) for ER, PR, and HER2, respectively (Fig. 2a). Examples
of the patch-level predictions along with the corresponding IHC
images are shown in Fig. 3 and Supplementary Figs. 1 and 2. We
observed that heterogeneous staining was indeed associated with
heterogeneous predictions, and this was in contrast to the uniformly
positive patch-level predictions observed for the homogeneous cases
(Supplementary Figs. 1 and 2).

Slide-level biomarker status prediction. The second stage of the
DLS, which provides slide-level biomarker status predictions, was
developed (trained and tuned) using 2134 slides from 264 cases,
and evaluated on a test set containing a total of 3274 slides from
1249 cases across a tertiary hospital and The Cancer Genome
Atlas (TCGA13, 14, representing 36 unique tissue source sites),
summarized in Table 1. On the combined test set, the AUCs for
binary biomarker status classification were 0.86 (95% CI
0.84–0.87), 0.75 (95% CI 0.73–0.77), and 0.60 (95% CI 0.56–0.64)
for ER, PR, and HER2, respectively (Fig. 2b).

We also evaluated AUC separately for the two test set data
sources, observing AUCs of 0.87 (95% CI 0.85–0.89) for ER, 0.76
(95% CI 0.74–0.78) for PR, and 0.59 (95% CI 0.53–0.66) for
HER2 for the tertiary hospital (Fig. 2c), and 0.83 (95% CI
0.80–0.86) for ER, 0.72 (95% CI 0.69–0.76) for PR, and 0.58 (95%
CI 0.53–0.63) for HER2 for TCGA (Fig. 2d).

Table 2 Data summary for patches used in model development and evaluation.

Biomarker label Train Tune Test

ER positive / negative / other 71.2M / 25.5M / 204.8M 31.7M / 3.6M / 71.2M 24.5M / 18.3M / 101.8M

PR positive / negative / other 79.5M / 16.1 M / 198.2M 31.5M / 2.6M / 72.4M 35.0M / 7.9M / 93.0M

HER2 positive / negative / other 34.7M / 64.3M / 196.8M 10.5M / 28.6M / 66.5M 15.0M / 29.4M / 99.1M
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Model interpretability. To further understand the biomarker
predictions, we leveraged three approaches for model interpret-
ability. First, we quantitatively tested whether the features used by
the trained model corresponded to existing histologic concepts
using an approach called TCAV17 (Testing with Concept Acti-
vation Vectors). Second, we performed histopathologic char-
acterization of features shared by patches clustered by visual
similarity and grouped by predicted biomarker patterns. Finally,
we explored what features in image patches most strongly
impacted biomarker predictions using a pixel-based saliency
approach (SmoothGrad20).

Testing association of DLS patch-level predictions with specific his-
tologic concepts. Based on discussion with breast histo-specialists,
we selected 6 specific histologic features for which we generated
concepts for TCAV analysis: high-grade carcinoma, low-grade
carcinoma, invasive lobular carcinoma, ductal carcinoma in-situ
(DCIS), tumor-adjacent desmoplastic stromal changes, and tumor
infiltrating lymphocytes (TILs) (Fig. 4a). In this analysis, a high
TCAV score for a given concept (e.g., high-grade carcinoma)
indicates that the specific DLS biomarker prediction is associated

with that concept (see Methods for additional details). Figure 4b
and Supplementary Table 3 shows each concept’s TCAV score for
both positive and negative status predictions for each biomarker.
ER-positive predictions were found to be associated with the low-
grade concept and ER-negative predictions with TILs. For PR,
positive predictions were more strongly associated with low grade,
lobular, DCIS, and desmoplasia concepts, while PR-negative pre-
dictions were more strongly associated with the high grade con-
cept. For HER2, negative predictions were more strongly associated
with low-grade carcinoma and lobular carcinoma concepts.

Unsupervised clustering. Next, to further evaluate associations of
histologic features with biomarker predictions in an open-ended
manner, we generated 25 clusters of visually similar patches using
a deep-learning based clustering approach (Methods). These
clusters were then presented to pathologists for histologic char-
acterization (without knowledge of predicted biomarker status).
Then, to evaluate the predicted biomarker status for these 25
clusters, we performed hierarchical grouping of the clusters based
on the three biomarker prediction scores across each cluster
(Methods). This identified four groups of clusters with

Fig. 2 Deep learning system performance. ROC curves for model performance are shown for a patch-level predictions across all tissue patches of WSIs,

b slide-level predictions of the stage 2 model output on the full test set, c–d subanalysis for slide-level performance on the independent data sources of the

slide level test set. Patch-level analysis represents 3-class performance (biomarker positive invasive carcinoma, biomarker negative invasive carcinoma, or

non-tumor) and slide-level performance represents positive versus negative classification for biomarker status (all slides in the final datasets contain

tumor). Binary patch-level performance for biomarker status across tumor regions only are shown in Supplementary Fig. 5. The number of slides, cases,

and patches used for this analysis are indicated in Tables 1 and 2. ER Estrogen Receptor, PR Progesterone Receptor, HER2 human epidermal growth factor

receptor 2.
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characteristic biomarker scores: high ER/PR and low HER2 (10
clusters), low ER/PR/HER2 “triple negative” (6 clusters), high ER/
PR/HER2 “triple positive” (2 clusters), and “intermediate/mixed”
ER/PR/HER2 (7 clusters). These groupings represent the patch-
level prediction scores across the cluster and not the final
slide-level classification status, for which even small regions of
positivity may correspond to positive status. These clusters are
further described and shown in Fig. 5, Supplementary Fig. 3a–d,
and Supplementary Data 1.

In the first group (high ER/PR and low HER2; Supplementary
Fig. 3a), we observed clusters exhibiting largely low and
intermediate grade tumor along with high stromal content
(clusters 10 and 1), high fat content (clusters 24, 7, 8, and 5),
and inflammatory cell infiltrates (clusters 14 and 5). The “triple
negative” group (low ER/PR/HER2; Supplementary Fig. 3d)
exhibited several clusters with high-intermediate grade tumor and

high tumor content as well as inflammatory cell infiltrates
(clusters 11, 12, and 13). Additional clusters in this group were
notable for low tumor content and presence of extracellular
mucin (clusters 2 and 19) or predominant adipose tissue (cluster
3). The third group (high ER/PR/HER2; Supplementary Fig. 3c)
consisted of only two clusters, with high-tumor-content patches
exhibiting desmoplasia/sclerosis (clusters 22 and 23) and
inflammatory cell infiltrates (cluster 22). The last group
(Supplementary Fig. 3b) was characterized by substantial
variability in model-predicted biomarker status (i.e., the predicted
biomarker status was intermediate or mixed, with some patches
predicted to be biomarker positive and others negative within a
given cluster). This group exhibited largely intermediate grade
tumor with variable tumor architecture and stroma. Four of the
clusters in this group were noted by pathologists as containing
tumor with cribriform morphology (clusters 18, 20, 17, 9).

Fig. 3 Visualization of predictions and annotations. a Sample cases for which DLS predictions are concordant with region-level pathologist annotations.

b Sample cases for which DLS predictions are discordant with region-level pathologist annotations. Predictions are represented by heatmaps with colors

ranging from blue (low predicted probability) to red (high predicted probability), and with black indicating non-tissue. In the annotation masks (black and

white), annotations are represented by white regions, and corresponding labels indicated in the column header. H&E Hematoxylin and Eosin, IHC

Immunohistochemistry, DLS Deep Learning System, ER Estrogen Receptor, PR Progesterone Receptor, HER2 human epidermal growth factor receptor 2.
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Saliency maps. Finally, we utilized SmoothGrad20 to examine the
pixels within each patch that most influenced the patch-level
biomarker predictions (Fig. 6). Pathologists reviewed saliency
maps for 30 patches randomly selected from each of the positive
and negative classes for each biomarker model. For all three
biomarkers, saliency maps consistently highlighted tumor cells.
Low-grade tumor and linear arrangements of invasive carcinoma
cells (consistent with lobular carcinoma) were identified as highly

salient elements for ER- and PR-positive predictions. Saliency
maps for HER2 positive patches highlighted small clusters of
tumor cells as one consistent feature.

Discussion
Our results demonstrate deep learning-based prediction of ER,
PR, and HER2 status directly from histologic features on H&E-
stained breast cancer resection specimens. The deep learning

Fig. 4 Testing with Concept Activation Vector (TCAV) analysis. a Representative concept patches for each of the six concepts used for TCAV analysis.

b TCAV scores for positive (blue) and negative (red) biomarker status for each of the three biomarkers. Error bars are 95% confidence intervals over 20

trials using 500 class-of-interest patches, 500 random patches, and 100 concept patches per trial. Higher scores indicate stronger association of the

concept with the model’s representation of that biomarker status. Detailed TCAV scores are provided in Supplementary Table 3 and Supplementary

Data 2. TIL tumor infiltrating lymphocytes, ER Estrogen Receptor, PR Progesterone Receptor, HER2 human epidermal growth factor receptor 2, DCIS Ductal

Carcinoma In Situ.
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models were validated across multiple datasets representing
variability in staining and slide preparation. In addition to slide-
level predictions, our models provide interpretable, precise pre-
dictions of biomarker status for individual tissue regions on H&E
slides. These “patch-level” models further enabled multiple

interpretability approaches to probe the features associated with
the model’s predictions.

Prior reports have described promising results for predicting
slide-level biomarker status in breast cancer from H&E images.
These works have largely focused on ER prediction, including

Fig. 5 Visualizing similar patches grouped by predicted biomarker status. Sample patches from clusters belonging to each biomarker status prediction

grouping are shown. First, patches were clustered based on visual similarity (Cluster 0–24), and then clusters were grouped by applying a second

clustering step (hierarchical clustering) using the predicted biomarker status distributions for each cluster (as visualized in the dendrogram). Distributions

of biomarker status predictions within each cluster and additional patches for each cluster are shown in Supplementary Fig. 2a–d. Pathologist-provided

descriptions of tumor and stromal features for each cluster are summarized in Supplementary Data 1 with additional biomarker prediction and cluster data

provided as Supplementary Data 3. For the sample clusters with representative patches in this figure, brief descriptions are as follows: clusters 10 and 1:

largely low and intermediate grade tumor with high stromal content; clusters 24 and 8: intermediate grade tumor with diffuse pattern of invasion resulting

in a predominant adipose tissue component; cluster 14: intermediate grade tumor with inflammatory cell infiltrates; cluster 15: intermediate grade tumor

forming sheets and occasional cribriform morphology; cluster 4: intermediate grade tumor forming cords; clusters 20, 17, and 9: low (17), intermediate (9),

and high-grade (20) tumor with variable architecture, occasionally cribriform morphology, and stroma with moderate sclerosis; cluster 23 and 22:

intermediate grade, high-tumor-content patches with moderate sclerosis; cluster 19 and 2: low tumor content and presence of extracellular mucin; clusters

11 and 13: high-intermediate grade tumor and high tumor content as well as inflammatory cell infiltrates. Images patches all represent 1024 μM× 1024 μM

ER Estrogen Receptor, PR Progesterone Receptor.
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work on tissue microarray (TMA) datasets7, 8 and more recently
on whole-slide images utilizing weakly supervised12 and unsu-
pervised approaches9 for model development. Our findings with a
strongly supervised approach further validate the feasibility of
slide-level predictions of biomarker status in breast cancer.

In contrast to prior work, however, we adopted a strongly
supervised approach for patch-level model training that was
enabled by H&E images with paired IHC slides for all three
biomarkers. This enables a direct interpretation of models’
regional prediction and demonstrates that it is possible to identify
a link between regional histology and the biomarker status. Even
if the model prediction for specific regions does not always map
perfectly to the IHC stain itself, the observation that hetero-
geneous predictions corresponds to heterogeneous IHC staining
suggests that the models could be used to help identify and
evaluate cases with biomarker heterogeneity (Supplementary
Fig. 1). Because even a small amount of biomarker positivity can
influence the clinical status interpretation (e.g., >1% for ER is
considered positive), region-level precision could also be useful to
facilitate improved quality control review of IHC by highlighting
regions likely to be biomarker positive or negative. Additionally,
our patch-level approach enables useful tumor vs. non-tumor

segmentation and the potential to distinguish slides containing
varying amounts of invasive carcinoma. By contrast, prior weakly
supervised approaches do not provide information about the
quantity of tumor. As only a single slide is typically selected for
IHC, the ability of our model to provide information on both
tumor quantity and biomarker status could also improve and
potentially help automate the slide selection process for IHC and/
or pathologist review. Lastly, while we focused on binary classi-
fication as a clinically relevant task, a similar patch-level approach
could also be used to develop semi-quantitative models to predict
staining intensity and the proportion of positive cells in specific
regions. Such models could provide additional utility for flagging
equivocal or “low positive” cases and highlighting relevant
regions within those slides.

Another important contribution of this work is the utilization
of multiple interpretability methods to understand how the
models associate morphological features with biomarker status.
These specific approaches were enabled by the development of a
patch-level model and the results demonstrate human-
interpretable associations between morphological features and
biomarker status learned by the deep learning model. This work
also represents one of the first applications of CAV analysis to

Fig. 6 Saliency analysis for patch-level biomarker status prediction. Examples of saliency maps for patches representing each biomarker status

prediction; ER (a), PR (b), and HER2 (c). Inset regions highlight higher magnification on both H&E and IHC for the most relevant regions of saliency

analysis. Warm colors on the overlay indicate that the underlying pixels from the H&E slide were salient to the model’s predicted probability for the

indicated biomarker status. ER Estrogen Receptor, PR Progesterone Receptor, HER2 human epidermal growth factor receptor 2.
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histopathology, and demonstrates the opportunity to apply this
type of hypothesis-driven feature exploration to other concepts in
breast cancer and other deep learning efforts in pathology. The
clustering-based analyses utilize semi-quantitative review from
multiple pathologists to characterize tumor and stromal features
in an unbiased manner, thus expanding on initial qualitative
efforts to use clustered visual features12, 21.

Specific interpretability findings that models learned known
histology-biomarker associations (involving tumor grade, lobular
versus ductal type, and TILs) demonstrate that these approaches can
highlight relevant features, representing an important step towards
building pathologist trust in deep learning approaches. Interestingly,
many of these features overlap with those highlighted recently by Naik
et al. utilizing a weakly supervised modeling approach and attention-
based explainability approach, providing a unique example of the
ability to compare features learned via different approaches for a
related histopathology task. Other observed associations, such as the
enrichment of adipose-predominant patch clusters with ER+ /PR
+ /HER2- predictions or cribriform tumor morphology for clusters
with mixed biomarker prediction scores, form a basis for future efforts
to explore potentially novel feature-biomarker associations. Also,
although the three biomarker models were trained independently, the
aggregate predictions provided cluster-groupings that are at least in
part consistent with the known subtypes of breast cancer. For
example, the cluster-groupings include an “ER-Positive/HER2-nega-
tive” group and a “Triple-negative” group, consistent with luminal
and basal-like subtypes, respectively. Utilizing deep learning and
interpretability techniques to further explore morphological associa-
tions with combinations of biomarkers, rather than individual bio-
markers, represents another potential application of this type of work.

Nonetheless, not all associations found were consistent with
known histologic-biomarker relationships. For example, the
finding that patches from mucinous tumors (e.g., cluster 19) were
predominately classified as ER/PR negative does not align with
studies which find these tumors to be mostly ER/PR positive22.
This may be due in part to limited training data for mucinous
tumors as well as the fact that IHC staining itself may be variable
in mucinous patches. Relatedly, as the cases used for this study
were not selected or enriched for any particular invasive breast
carcinoma subtype, the training dataset will inherently consist of
the most common histologic subtypes and morphologic features.
Developing and evaluating biomarker models for specific histo-
logic subtypes of breast cancer may also be useful and may result
in different or additional insights and learned features.

While our models appear to have primarily learned known
feature-biomarker associations, we envision hypothesis-driven
TCAV analysis along with hypothesis-generating cluster analysis
can form a useful interpretability framework for identifying both
known and unknown features learned by AI models in pathology.
This raises interesting questions of both feasibility and trust in
regard to identification of known versus unknown features
learned by a model. A key challenge for any efforts aimed at
discovering novel features is avoiding the inherent bias of humans
towards “seeing” and describing only the known features. Uti-
lizing complementary approaches and obtaining “blinded” input
from multiple experts may represent an initial step in addressing
this challenge, but creative approaches to incorporate machine
learning feature extraction and pathologist expertise will be
required given that some learned features may not be identified
by visual review alone. Any novel features or associations that are
identified will also require validation and proven reliability, just as
for the known biomarker-feature associations that have been
established over time.

Our work does have some limitations. In regards to slide level
evaluation, the historical biomarker statuses (sampled and tested
between 1988 and 2016) are only provided at the case-level

(without reference to the specific slide or block used for IHC
evaluation). By applying case labels to every slide within a given
case, we may be training or evaluating using noisy slide-level
biomarker labels in instances of heterogeneous biomarker
expression across slides in a case. While we expect such within-
case heterogeneity to affect only a small portion of cases, this
issue does not impact the IHC-based patch-level training and
evaluation, further highlighting the value of this aspect of model
development as an important contribution of the present work.
Additionally, technical and interpathologist variability impacting
interpretation of IHC may also impact annotations and histori-
cally reported biomarker status, particularly for the TCGA dataset
because it includes data from multiple institutions. Of note,
interobserver variability is likely to be a more substantial issue for
HER2 than for ER and PR23–25, and as such, the lower model
performance for HER2 may in part reflect a less reliable ground
truth for this particular biomarker, especially those based on
historical clinical reports. IHC protocols and interpretation
guidelines have also changed over time, further contributing to
potential variability across historical clinical labels. Still, the
relatively lower performance for the HER2 models warrant future
exploration to understand if associated feature diversity, relative
proportion of positive and equivocal cases, or other factors con-
tribute, and if potentially larger training data sets can overcome
these challenges. Future work using IHC-based labels for both
slides and cases, complete clinical slide sets, and prospective
studies all represent valuable steps towards clinical validation and
implementation. Lastly, demographic data like race, ethnicity, or
age were not consistently available in our datasets, limiting sub-
group analysis of the model’s performance. Further validation
across demographically diverse cohorts is required.

In summary, this study demonstrates generalizable deep
learning models for predicting ER, PR, and HER2 status in breast
cancer from H&E images and expands upon the growing body of
literature for rapid biomarker estimation from routine histology
slides. While further performance improvement and validation is
still needed before automated breast cancer biomarker prediction
models find their way to clinical workflows, initial utility may also
be realized via research and quality control applications. Speci-
fically, biomarker-based selection or triage of patients within
large clinical trials could create substantial efficiency gains for
therapy development pipelines. Automated biomarker inter-
pretations could also supplement IHC workflows by identifying
equivocal cases for appropriate follow-up evaluation or flagging
potential technical issues based on discordant IHC and model
predictions. Furthermore, this approach could help identify het-
erogeneous tumors or to select the most informative tissue blocks
for biomarker evaluation. Lastly, interpretability methods for
identifying histologic features associated with biomarker status
could guide researchers to investigate new biological mechanisms
and molecular targets related to the underlying morphologic
findings.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Data availability
Source Data for the main figures in the manuscript with statistical analyses are provided

in Supplementary Data files 1–4. TCGA data utilized in this study corresponds to the

Breast Invasive Carcinoma (BRCA) study from TCGA and is publicly available via the

Genomic Data Commons Data Portal (gdc.cancer.gov). The tertiary hospital dataset was

used under a Defense Health Agency data sharing agreement. Requests regarding data

can be directed to the Defense Health Agency Privacy Office at DHA.

PrivacyOfficeMail@mail.mil. The medical laboratory dataset is not publicly available at

this time due to data privacy considerations but may be available from the corresponding

author on reasonable request.
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Code availability
The deep learning framework (TensorFlow v1.14) used in this study is available at

https://github.com/tensorflow/tensorflow/tree/r1.14. The convolutional neural network

Inception-V316 is available at https://github.com/tensorflow/models/blob/master/

research/slim/nets/inception_v3.py. The stage 2 model was implemented with scikit-

learn (v0.24.0) and available at https://github.com/scikit-learn/scikit-learn/tree/0.24.X.

The saliency analysis library (v0.0.6) is available at https://github.com/PAIR-code/

saliency. The TCAV analysis library (v0.2.1) is available at https://github.com/tensorflow/

tcav/tree/0.2. The final, trained models have not yet undergone regulatory review and

cannot be made available at this time. Interested researchers can contact P.-H.C.C. for

questions on its status and access.
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