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Abstract

Background: The histologic grade (HG) of breast cancer is an established prognostic factor. The grade is usually

reported on a scale ranging from 1 to 3, where grade 3 tumours are the most aggressive. However, grade 2 is

associated with an intermediate risk of recurrence, and carries limited information for clinical decision-making.

Patients classified as grade 2 are at risk of both under- and over-treatment.

Methods: RNA-sequencing analysis was conducted in a cohort of 275 women diagnosed with invasive breast cancer.

Multivariate prediction models were developed to classify tumours into high and low transcriptomic grade (TG) based

on gene- and isoform-level expression data from RNA-sequencing. HG2 tumours were reclassified according to the

prediction model and a recurrence-free survival analysis was performed by the multivariate Cox proportional hazards

regression model to assess to what extent the TG model could be used to stratify patients. The prediction model was

validated in N = 487 breast cancer cases from the The Cancer Genome Atlas (TCGA) data set. Differentially expressed

genes and isoforms associated with HGs were analysed using linear models.

Results: The classification of grade 1 and grade 3 tumours based on RNA-sequencing data achieved high accuracy

(area under the receiver operating characteristic curve = 0.97). The association between recurrence-free survival rate

and HGs was confirmed in the study population (hazard ratio of grade 3 versus 1 was 2.62 with 95 % confidence

interval = 1.04–6.61). The TG model enabled us to reclassify grade 2 tumours as high TG and low TG gene or isoform

grade. The risk of recurrence in the high TG group of grade 2 tumours was higher than in low TG group (hazard ratio =

2.43, 95 % confidence interval = 1.13–5.20). We found 8200 genes and 13,809 isoforms that were differentially

expressed between HG1 and HG3 breast cancer tumours.

Conclusions: Gene- and isoform-level expression data from RNA-sequencing could be utilised to differentiate HG1

and HG3 tumours with high accuracy. We identified a large number of novel genes and isoforms associated with HG.

Grade 2 tumours could be reclassified as high and low TG, which has the potential to reduce over- and

under-treatment if implemented clinically.
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Background
Histologic grade (HG) is considered as one of the best

established prognostic factors in breast cancer diagnos-

tics [1]. According to the Nottingham grading system,

breast cancer is categorised to three HGs depending on

the degree of tumour cell differentiation: well differen-

tiated (grade 1), moderately differentiated (grade 2) and

poorly differentiated (grade 3) [2, 3]. The grading system

assesses three dimensions: tubule formation (tubularity),
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nuclear pleomorphism (nuclearity) and mitotic count.

Each component is categorised as a score from 1 to 3. The

overall grade is determined by the sum of the scores from

the three components. Tumours with a higher grade are

associated with a lower survival rate [4].

A morphological assessment of biological characteris-

tics provides important information related to the clinical

behaviour of breast cancer. Patients with grade 3 tumours

are recommended for adjuvant chemotherapy, whereas

patients with grade 1 tumours are often oestrogen recep-

tor (ER) positive, and thus amenable for a less toxic

endocrine therapy [1]. In general, half of the cases are
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assigned to grade 1 or 3. Grade 2 tumours account for

the other half and they are associated with an intermedi-

ate risk of recurrence, which is not informative for clinical

decision-making [5]. Furthermore, inter-pathologist vari-

ability in the morphological assessment contributes to a

degree of uncertainty in tumour grade classification [6, 7].

In the last decade, genome-wide gene expression pro-

filing methods have introduced new ways for tumour

classification using molecular signatures. The genomic

grade index (GGI) was previously proposed as a method

to stratify ER-positive grade 2 tumours into two groups

[5], which could be potentially integrated to the current

HG system. GGI is based on a 97-gene signature with gene

expression abundances quantified by microarray technol-

ogy. A large cohort study revealed that GGI provides

significant prognostic information beyond clinical char-

acteristics including tumour size, lymph node status and

HG [8] in ER-positive tumours. The study indicated that

combining molecular signatures with HG may improve

the prognostic power.

The 97-gene biomarker panel used for GGI was

developed based on microarray data at the gene level.

Recently next-generation sequencing of RNA (RNA-seq)

has emerged as the de facto standard for gene-expression

profiling, also enabling quantification of gene expression

at both gene and isoform level. Isoform-level gene expres-

sion data has the potential to provide further insight

and prognostic information beyond gene-level expres-

sion data. For example, it has been found that different

isoforms may have different molecular functions [9]. In

prostate cancer, it has been reported that two isoforms of

KLF6 lead to increased cell growth and an increased risk

of prostate cancer [10].

To improve patient stratification and to enable better

personalised care for breast cancer patients, we devel-

oped methods based on RNA-seq data to determine the

transcriptomic grade (TG) of tumours. The TG model

we propose dichotomises tumours into a high grade and

low grade, thus providing improved stratification of the

intermediate HG2 patients. The proposed method has the

potential to reduce both over- and under-treatment of

HG2 patients. We also characterise the molecular basis of

HG by investigating to what extent RNA-seq gene- and

isoform-level expression are associated with HG.

Methods

Data sets and subjects

Clinseq

Study participants were 275 females diagnosed with pri-

mary invasive breast cancer from the Clinseq study (Clin-

ical Sequencing of Cancer in Sweden; http://clinseq.org/)

[11]. The Clinseq breast cancer study comprises two

Swedish cohorts, Libro-1 [12] and Karma [13]. Study

participants from Karma were recruited perspectively

from 2012 in Stockholm South General Hospital (in

Swedish: Södersjukhuset). Study participants from Libro-

1 were recruited retrospectively among patients who

underwent surgery between 2001 and 2008 at the

Karolinska University Hospital (in Swedish: Karolinska

Universitetssjukhuset) and were alive in 2009. The study

is approved by the Ethical Committee of the Karolin-

ska Institute (reference number 2013/1833-31/2) and all

participants provided written informed consent.

Primary tumour tissues were collected from the partici-

pants and stored in the Karolinska Institute Biobank. The

HGs of cancer were evaluated by pathologists based on

the Nottingham grading system [2, 3]. Grade information

was extracted from the patient pathology records. Clinical

and follow-up information was retrieved through a link to

the Swedish national breast cancer register, the Informa-

tion Network for Cancer Care [14] and the regional can-

cer centres [15]. Clinical biomarkers – ER, progesterone

receptor (PR), human epidermal growth factor receptor

2 (HER2) and KI67 – were measured by an immunohis-

tochemistry assay. ER and PR status were determined as

positive if comprising more than 10 % of the correspond-

ing nuclear staining. The cut-off for KI67 was 20 % posi-

tively stained tumour cells. HER2 status was classified as

positive if a fluorescent in situ hybridisation (FISH) result

indicated amplification or, in the absence of a FISH result,

if the sample was graded 3+ by the immunohistochemistry

assay.

The Cancer Genome Atlas

We also used RNA-seq data from The Cancer Genome

Atlas (TCGA) (http://cancergenome.nih.gov/). Unaligned

RNA-seq data (FASTQ format) of 1126 invasive breast

carcinoma samples were downloaded in June 2014 after

approval from the TCGA data access committee (dbGAP

project ID 5621). The grade information was manu-

ally extracted from copies of patient pathology reports

provided by TCGA. The HGs of TCGA breast cancer

patients were diagnosed with multiple grading systems.

To ensure the consistency with our study population, only

487 female breast cancer patients from TCGA whose HG

was diagnosed by the Nottingham grading system and

for which all three subcomponent scores were available

were included in this study. We acknowledge that because

scoring was by multiple pathologists across multiple insti-

tutions, that there may still be some variation in grades.

Bioinformatic preprocessing of the RNA-seq data used

identical methods as for the CLINSEQ data set (described

below).

RNA-sequencing

RNA from breast tissue was extracted from fresh frozen

breast tumour tissues that were removed during surgery.

RNA was extracted using an AllPrep DNA/RNA/Protein

http://clinseq.org/
http://cancergenome.nih.gov/
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mini kit (Qiagen, Germany). RNA was assessed using

Bioanalyzer (Agilent, US) to ensure high quality (RNA

integrity number >8). Then, 1 µg of total RNA was

used for rRNA depletion using RiboZero (Illumina, US)

and stranded RNA-seq libraries were constructed using

a TruSeq Stranded Total RNA Library Prep Kit (Illu-

mina, US). Then 2 × 100 paired-end sequencing was

performed on an Illumina HiSeq 2500 (Illumina, US)

at the Science for Life Laboratory (Stockholm, Swe-

den). The insert sized ranged from approximately 50

to 300 bp. The resulting RNA-seq reads were aligned

to the reference genome (GRCh37.73) using STAR

[16] version-2.4.0e39 with the following parameters:

-outSAMmapqUnique 50, to set the maximum align-

ment quality score to 50; -outSAMunmapped Within,

to include unmapped reads in the resulting SAM file;

-chimSegmentMin 20 to require that a minimum of

20 bases map to each end of a chimeric transcript (out-

put in a separate file) and -outSAMattributes NH

HI AS nM NM MD XS to include additional attributes

in the SAM file. Gene-level expression was quantified

using HTSeq-count [17] version-0.6.040 with the fol-

lowing parameters: -stranded = no and -mode =

intersection-nonempty for counting reads using

the default alignment quality filter threshold of 10.

There are 20,477 genes in the reference genome and

144,027 isoforms in the reference transcriptome. There

were 18,795 genes with non-zero read counts. Isoform-

level expression was quantified using Sailfish version 0.6.3

[18] and ENSEMBL version 75 with the following param-

eters: -p 16 -k 20 to use 16 threads and a k-mer size

of 20. For each sample, Sailfish version 0.6.3 was run

with default parameters except for library type, which was

set to --libtype”T=PE:S=AS:O=><” for paired-end

second-read mapping to the antisense strand and inwards

orientation. The default bias correction was applied. Iso-

forms were filtered if they failed to achieve counts per

million of 1 in 75 % of the samples. After filtering, there

were 42,718 isoforms left for downstream analysis.

RNA-seq read counts were scaled logarithmically by

the variance stabilising transformation implemented in

DESeq2 for prediction modelling [19]. For differen-

tial expression (DE) analysis, read counts were nor-

malised by the TTM method implemented in R package

edgeR [20, 21].

Prediction models

Transcriptomic grade

We applied the multivariate elastic-net penalised logistic

regression model [22] for prediction of tumour grade with

either transcriptome-wide gene- or isoform-level nor-

malised expression values as predictors. The elastic-net

method is implemented in the R package glmnet [23].

The tumour grade model was trained on HG1 and HG3

tumours and we estimated separate models for gene- and

isoform-level transcriptomic data. The two models are

referred to as TG at gene level (TG-Gene) and at isoform

level (TG-Iso).

A nested cross-validation (CV) procedure was used

to estimate prediction performance while also optimis-

ing model parameters (alpha and lambda). For outer

CV, class-balanced Monte-Carlo CV was performed (100

rounds). The training/test set ratio was 90 %/10 %.

Patients with grade 3 or grade 1 were balance strati-

fied into the training and test sets. The CV samples

were identical across the evaluation of different models

to ensure accurate model comparison. The parameters

were optimised empirically based on the outer CV loop

training set in the inner CV (10 × tenfold CV). The

alpha parameter was evaluated on a grid at the follow-

ing points: 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7

and 0.9. The best alpha and lambda were chosen based on

minimising the average misclassification error. The prob-

ability of being HG3 was calculated for outer CV test

set observations from the optimised model in each CV

round.

Receiver operating characteristic (ROC) curves of TG

against true HGs were constructed. The area under the

ROC curve (AUC) and 95 % confidence interval (CI) were

generated to compare model performance. The AUCs of

ROC curves were compared by the DeLong test [24]. The

decision boundary was determined at the point closest

to the top-left part of the ROC curve using the pROC

package for R [25]. HG2 patients were classified as high

risk (HG2-High) if their predicted probability was larger

than or equal to the cut-off point; otherwise, patients were

classified as HG2-Low.

TG based on subcomponents of HG

We also developed prediction models based on separate

modelling of the subcomponents of HG at gene- and

isoform-level (SC-Gene and SC-Iso). The procedures for

parameter optimisation and CV were the same as for

the TG-Gene and TG-Iso models; however, they were

conducted for each component separately. The three sub-

components of HG (tubularity T, nuclearityN andmitotic

countM) were predicted by an elastic-net penalised linear

regression model. For each outer CV, 90 % of the sample

were selected in the training set. The proportions of HG1

and HG3 were kept as in the whole sample set. The linear

multivariate model was built guided by sub-scores 1, 2 and

3. The final score was defined as the sum of the predicted

subcomponent scores.

Genomic Grade Index

For comparison, we also implemented the previously

reported GGI method [5]. According to Sotiriou’s study,

the top 128 DE probes of 97 unique genes were selected
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to calculate GGI, and out of these we could match 96 gene

symbols to genes in our data set.We applied the GGI algo-

rithm as described in the original article [5].We applied an

identicalMonte Carlo CV procedure for the GGImodel as

described in the previous section. Standardisation param-

eters (scale and offset) were generated for each training

set. Then the GGI of samples in the test set were standard-

ised using parameters from the training set, ranging from

−1 to 1. AUC and 95 % CI were calculated using the ROC

curve on the GGI against the true HG.

Validation in the secondary data set

The prediction models (TG-Gene, TG-Iso, SC-Gene and

SC-Iso) were validated with the TCGA breast cancer data

set [26]. The prediction models were estimated based on

the Clinseq data set where model parameters (alpha and

lambda) were optimised by tenfold CV for 100 times. The

parameters alpha and lambda were chosen so that the

mean of deviance residuals was minimised. To reduce any

potential batch differences between them, the data sets

were mean-centred before analysis. According to the GGI

method, the index was standardised within each data set.

Hence, cross data set validation does not apply to the GGI

method.

Survival analysis on HG and TG

The recurrence-free survival (RFS) rate was compared

among patients with different HGs to investigate whether

grade is an indicator of prognosis in this study population.

The predicted high TG and low TG groups within grade 2

tumours (HG2-High and HG2-Low) were also compared.

A recurrence event is considered to be a local or regional

tumour relapse, distant metastasis, contralateral tumour

or death by any cause. Patients who died before experienc-

ing a tumour metastasis were assumed to have had unde-

tected metastasis before death [27]. The time to event is

measured from the diagnostic date to the date of the first

documented local or regional relapse, distant metastasis,

contralateral tumour, death or last follow-up.

A Kaplan–Meier curve was used to estimate the sur-

vival outcomes and groups were compared with the non-

parametric log-rank statistic. Data from the two data sets

(Clinseq and TCGA) were pooled together. Univariate and

multivariate Cox proportional hazards regression mod-

els were fitted at time-on scale. Unadjusted and adjusted

hazard ratios (HRs) and 95 % CI were calculated. In the

multivariate Cox regression model, we adjusted for age,

tumour size, lymph node status and ER status, and strati-

fied by data set. Age was treated as a continuous variable.

Tumour size was dichotomised based on the diameter of

the tumour as ≥20 mm or <20 mm. Lymph node sta-

tus was dichotomised as with or without lymph node

metastases. Proportional hazards assumptions were con-

firmed using Schoenfeld residuals. The survival analysis

was conducted using standard functions implemented in

R [28, 29].

DE analysis on HGs and subcomponents of grades

RNA-seq data were compared among patients with dif-

ferent HGs and subcomponents of grades to determine

DE genes and isoforms. Read counts were transformed

to log-counts with a precision weight by estimating the

mean-variance relationship (voom) [30]. Empirical Bayes

moderated t-statistics was applied to analyse DE isoforms.

The Benjamini and Hochberg false discovery rate (FDR)

was used to adjust for multiple testing [31]. The DE of

genes or isoforms was defined as those with FDR-adjusted

p < 0.05. The DE analysis was performed by functions in

the R package limma [32].

Pathway analysis

A pathway enrichment analysis of DE genes based on

the Reactome database (http://www.reactome.org/) [33]

was conducted with R package ReactomePA [34]. Path-

way overrepresentation was tested by a hypergeometric

model [35].

PAM50 subtyping

PAM50 intrinsic subtypes [36] were assigned using the

nearest shrunken centroid classifier [37] in the Clinseq

data set. The R package pamr was utilised to train the

classifier. Optimisation (amount of shrinkage) was deter-

mined by tenfold CV selecting the parameter value based

on theminimal classification error. The subtypes in TCGA

were referred to their original breast cancer publication

[26]. The normal-like subtype was not included as the

clinical relevance for this subtype has been questioned

[38]. The distributions of subtypes between HGs and pre-

dicted groups were compared by a chi-squares test or

a Fisher exact test if the expected value in any cell was

smaller than 5.

Results
Adescription of the clinical characteristics andHGof sub-

jects in both the Clinseq and TCGA data sets is listed in

Table 1. The distributions of HGs in the two data sets

were similar (p > 0.05, chi-squares test). The mean of the

patients’ ages was not statistically different across the two

data sets (p > 0.05, Student’s t-test). There were more

tumours with a larger size and positive lymph node in the

TCGA data set (p < 0.05, chi-squares test). The distribu-

tions of ER, PR and HER2 between the two data sets were

not different.

HG can be predicted from RNA-seq gene expression

profiles

We developed prediction models based on HG3 and HG1

individuals, using RNA-seq data at both gene and isoform

http://www.reactome.org/
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Table 1 Clinical characteristics of subjects in the Clinseq and

TCGA data sets

Clinseq TCGA

N 275 487

Median age (range) 61 (28–94) 57 (26–90)

Histologic grade

Grade 1 (%) 39 (14.2 %) 64 (13.1 %)

Grade 2 (%) 121 (44.0 %) 228 (46.8 %)

Grade 3 (%) 115 (41.8 %) 195 (40.0 %)

Tumour size

≥20 mm (%) 150 (54.6 %) 317 (65.1 %)

<20 mm (%) 125 (45.5 %) 170 (34.9 %)

Lymph node status

Positive (%) 39 (14.2 %) 260 (53.4 %)

Negative (%) 136 (85.8 %) 227 (46.6 %)

ER status

Positive (%) 231 (84.0 %) 384 (78.9 %)

Negative (%) 42 (15.3 %) 102 (20.9 %)

NA (%) 2 (0.7 %) 1 (0.2 %)

PR status

Positive (%) 175 (63.6 %) 334 (68.6 %)

Negative (%) 98 (35.6 %) 151 (31.0 %)

NA (%) 2 (0.7 %) 2 (0.4 %)

HER2 status

Positive (%) 44 (16.0 %) 60 (12.3 %)

Negative (%) 225(81.8 %) 274 (56.3 %)

Equivocal (%) – 108 (22.2 %)

NA (%) 6 (2.2 %) 45 (9.2 %)

KI67 statusa

Positive (%) 131 (47.6 %) –

Negative (%) 121 (44.0 %) –

NA (%) 23 (8.4 %) –

ER oestrogen receptor, NA not applicable, PR progesterone receptor, TCGA The

Cancer Genome Atlas
aMeasurement of KI67 is not available for the TCGA data set

level (TG-Gene, TG-Iso, SC-Gene and SC-Iso). The num-

bers of predictors selected in each final model (TG-Gene

in Clinseq, TG-Gene in TCGA, TG-Iso in Clinseq and

TG-Iso in TCGA) were 427, 96, 112 and 255, respec-

tively listed in Additional file 2. The GGI method was also

implemented for comparison. Prediction performance, as

assessed by ROC curves, was found to be similar for all

five models within each data set (Fig. 1a, b). In the Clinseq

data set, the AUC of the GGI method was higher than for

the SC-Iso model (p < 0.05, DeLong test). The AUC of

the ROC curve for the SC-Gene, SC-Iso, TG-Gene and

TG-Iso models showed no statistical difference (p > 0.05,

DeLong test). For the TCGA data set, the AUCs of the SC-

Gene and the SC-Iso models were higher than for any of

the TG-Gene, GGI and TG-Iso models (p < 0.05, DeLong

test).

Next, we assessed the concordance of the five different

models in the classification of HG1 andHG3 by predicting

all observations by the fittedmodels. The results indicated

a relatively high degree of concordance across all methods

(Additional file 1: Figure S1).

To validate the prediction models further, they were

estimated based on the Clinseq data set, and the grade

in the TCGA data set was predicted. The ROC curves of

the models are in Fig. 1c. All of the models achieved high

accuracy (AUC = 0.97), and vice versa, when models were

trained in TCGA and predicted in Clinseq (Additional

file 1: Figure S8).

We then investigated if patients with a grade 2 tumour

were classified consistently into high and low TG groups

by the prediction models. The concordance of the mod-

els is displayed in Fig. 1d. Among the five models, 76.4 %

(252 of 330 individuals) of the HG2 patients were classi-

fied consistently (HG2 patients from both the Clinseq and

TCGA data sets). Given that patients clinically classified

as HG2 are considered as intermediate in current clinical

practice, with little or no impact on clinical decision-

making due to their intermediate status, 76 % consistency

across multiple different models is to be considered as a

relatively high degree of concordance.

Modelling of HG subcomponents

To investigate if the different subcomponents of histo-

logical grade were different on a gene expression level,

we developed prediction models for subcomponents of

grade (see ‘Methods’) and evaluated the prediction perfor-

mance. The distribution of subcomponent scores of HG

are summarised in Table 2. The ROC curves of three com-

ponents from the SC-Gene and SC-Iso models for the

Clinseq and TCGA data sets are illustrated in Additional

file 1: Figure S4. We found that the molecular informa-

tion in the RNA-seq data (gene or isoform level) enabled

a good ability to classify score 1 and score 3 individuals in

terms of mitotic count (AUC = 0.92, SC-Gene model for

the Clinseq data set), while the classification of score 1 and

score 3 for the tubularity and nuclearity components was

substantially lower (AUC= 0.68 andAUC= 0.76, SC-Gene

model for the Clinseq data set), suggesting that the molec-

ular difference between score 1 and score 3 individuals for

these components is limited.

RFS is different among HGs and TGs

To evaluate if the RFS rate was associated with HGs, we

compared RFS between HG groups (Fig. 2a). The sur-

vival analysis was carried out on the Clinseq and TCGA

data sets combined. Forest plots from the univariate and

multivariate Cox regression models for each data set are

displayed in Additional file 1: Figures S10 and S11. No
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Fig. 1 Prediction models comparison. ROC curves of CV on five models: GGI, TG-Gene, TG-Iso, SC-Gene and SC-Iso for a the Clinseq data set and

b the TCGA data set. AUC estimates and 95 % CI of ROC curves are listed for each model. c Cross-data set validation of multivariate prediction

models (TG-Gene, TG-Iso, SC-Gene and SC-Iso). Models were estimated based on the Clinseq data set, and grade in the TCGA data set was predicted.

d Predictions of HG2 tumours by five models for all observations in the Clinseq and TCGA data sets. AUC area under the ROC curve, CI confidence

interval, CV cross-validation, GGI genomic grade index, ROC receiver operating characteristic, TCGA The Cancer Genome Atlas

obvious bias was found between the two cohorts. The

median follow-up time was 3.6 years. The RFS rate was

found to be different between HG groups (p = 0.017, log-

rank test). In the Cox regression model, the unadjusted

HR of grade 3 against 1 was 2.62 (95 % CI = 1.04–6.61).

The adjusted HR comparing grade 3 with grade 1 was not

statistically significant (Table 3).

Table 2 Summary of HG and subcomponents of subjects

Grade Tubularity Nuclearity Mitotic counts

Clinseq

1 39 18 4 119

2 121 55 136 73

3 115 198 131 79

Missing 0 4 4 4

TCGA

1 64 12 24 197

2 228 91 224 119

3 195 337 195 123

Missing 0 47 44 48

HG histologic grade, TCGA The Cancer Genome Atlas

Next, we compared RFS rates between TGs of HG2

patients to determine if there were any evidence that the

TG models provided prognostic information. RFS curves

of HG2-High and HG2-Low groups for all five TGmodels

were compared (Additional file 1: Figure S2). Groups pre-

dicted by the GGI, TG-Gene and TG-Isomodels indicated

statistically significant differences in RFS rate (Table 3,

p < 0.05, log-rank test).

Figure 2b shows the corresponding Kaplan–Meir curves

of HG2-High and HG2-Low predicted by the TG-Gene

model. The unadjusted HR of HG2-High versus HG2-

Low was 2.43 (95 % CI = 1.13–5.20). When adjusted for

age, tumour size, lymph node status and ER status, HR

increased to 2.50 (95 % CI = 1.14–5.50).

Association between HGs and PAM50 subtypes

We then investigated the association between HGs and

the PAM50 intrinsic gene signature to determine if the

subtype distribution was similar when stratified by HG

and TG, focusing on reclassified HG2 tumours. Subtype

proportions for patients stratified by grade predicted by

the TG-Gene model are displayed in Fig. 2c. The other

prediction models provided highly similar results (see
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Fig. 2 TG-Gene model predictions in HG2 tumours (Clinseq and TCGA data sets combined). a Kaplan–Meir curves of RFS by HGs. b Kaplan–Meir

curves of RFS between groups predicted by the TG-Gene model (HG2-High and HG2-Low). c PAM50 subtype distribution of HGs and predicted

groups in HG2. d KI67 distribution. HG histologic grade, RFS recurrence-free survival

Additional file 1: Figure S2). Samples from the Clinseq and

TCGA data sets were combined. The distributions of sub-

types between HGs were different (chi-squares = 323.3,

p < 0.001). We found the distribution of subtypes in the

HG2-Low group were similar to HG1 (p > 0.05, Fisher’s

exact test). However, the subtype distributions for HG2-

High were found to be different to HG3 (chi-squares =

67.3, p < 0.001).

The distribution of PAM50 subtypes in the TG-High

and TG-Low groups of all the samples was compared to

HG3 and HG1, respectively. In the TG-Gene model, the

distribution of subtypes in TG-Low was similar to HG1

(p > 0.05, Fisher’s exact test). The subtype distribution

in TG-High was found to be different to HG3 (p = 0.02,

chi-squares test). See Additional file 1: Figure S3 for the

subtype distribution across all five prediction models.

Within subtype luminal A, the RFS rates of TG-High

and TG-Low stratified by the TG-Iso model were differ-

ent (p = 0.028, log-rank test, Additional file 1: Figure S9).

Suffering from the limited number of recurrent events

observed, the results were not consistent among differ-

ent models. A survival analysis could not be conducted in

other subtypes due to the limited sample size and limited

number of events.
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Table 3 p value of log-rank test and HRs of Cox regression on RFS comparing breast cancer patients with different HGs and predicted

groups in HG2 tumours

N Events Log-rank test HR unadjusteda HR adjustedb

(p value) (95 % CI) (95 % CI)

Histologic grades

HG1 98 6 0.017∗ 1.00 (Reference) 1.00 (Reference)

HG3 294 44 2.62 (1.04–6.61)∗ 2.02 (0.76–5.40)

GGI

Low risk 223 12 0.010∗ 1.00 (Reference) 1.00 (Reference)

High risk 110 15 2.64 (1.23–5.70)∗ 3.04 (1.35–6.81)∗

TG-Gene

Low risk 228 13 0.018∗ 1.00 (Reference) 1.00 (Reference)

High risk 105 14 2.43 (1.13–5.20)∗ 2.50 (1.14–5.50)∗

TG-Iso

Low risk 216 11 0.014∗ 1.00 (Reference) 1.00 (Reference)

High risk 117 16 2.53 (1.17–5.47)∗ 2.64 (1.20–5.79)∗

SC-Gene

Low risk 198 14 0.584 1.00 (Reference) 1.00 (Reference)

High risk 117 11 1.25 (0.56–2.78) 1.23 (0.54–2.77)

SC-Iso

Low risk 208 14 0.393 1.00 (Reference) 1.00 (Reference)

High risk 107 11 1.41 (0.64–3.14) 1.45 (0.65–3.24)

GGI genomic grade index, sHR hazard ratio, RFS recurrence-free survival
aHR unadjusted, only stratified by data set
bHR adjusted for age, tumour size, lymph node status and ER status, stratified by data set
∗p < 0.05

TG-High patients had higher proliferation levels

We further analysed the relationship between KI67, a pro-

liferation marker, and HGs and TGs (Fig. 2d). The KI67

level was associated with HGs (p < 0.001, ANOVA

test). Comparing the KI67 of predicted groups within

HG2, the mean of HG2-High is higher than HG2-Low

(p < 0.001, t-test). Comparing the KI67 level between

the TG-High and TG-Low groups predicted from all of

the patients, the mean of KI67 was higher in TG-High

than TG-Low (p < 0.001, t-test). The results were consis-

tent among the five models (Additional file 1: Figures S2

and S3).

DE genes and isoforms among HGs are associated with cell

cycle

In the Clinseq data set, 8200 genes and 13,809 isoforms

were found to be DE (FDR< 0.05) between HG1 and HG3

tumours, while there were fewDE genes detected between

HG1 and HG2 patients (Fig. 3a, b). If tumour size and

lymph node status were adjusted, there were 7928 genes

and 13,059 DE isoforms. In 3919 DE genes, the average

expression level in HG3 was higher than that for HG1. In

contrast, the average expression level in HG1 was higher

than for HG3 in the other 4009 genes.

The numbers of DE genes between the HG2-High and

HG2-Low groups for the fivemodels (GGI, TG-Gene, TG-

Iso, SC-Gene, and SC-Iso) were found to be 4091, 3750,

2935, 3750 and 3821, respectively. Between these sets,

there were 1864 genes in common. Comparing the DE

genes between HG2-High and HG2-Low to the 8200 DE

genes between HG1 versus HG3, there were 2893, 2728,

2274, 2945 and 3001 genes in common. The large num-

ber of DE genes indicate that HG2-High and HG2-Low

stratified by the TG models are biologically distinct.

The 13,809 DE isoforms between HG1 and HG3 were

mapped to 9020 unique genes. Of these, 6052 already

showed DE at the gene level (and were included in the

8200 DE genes). Hence, 2968 isoforms (of 2215 genes)

were found to be DE and were not identified in the gene-

level analysis (Fig. 3c). Pathway analysis revealed that

most DE genes between HG1 and HG3 were enriched in

cell-cycle pathways (Fig. 3d).

For 444 genes, DE isoforms of the same gene were asso-

ciated with HG in opposite directions. This phenomenon

was observed in 783 genes in the TCGA data set. Of

these, 188 were common across the two data sets. For

instance, there were six DE isoforms of gene CD44 iden-

tified in both data sets. The average expression level in
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Fig. 3 DE analysis. a Venn diagram of DE genes between HGs. b Venn diagram of DE isoforms. c Overlaps of DE genes and isoforms between HG1

and HG3. d Top ten enriched pathways of DE genes. Count is the number of genes found in each pathway. DE differential expression or differentially

expressed, FDR false discovery rate, HG histologic grade, p.adjust Benjamini and Hochberg FDR corrected p value of the overrepresentation test.

grade 1 tumours was lower than for grade 3 tumours

in one isoform [Ensemble: ENST00000279452]. However,

the average expression level of the other five isoforms

was higher in HG1 than HG3. The expression levels of

the CD44 isoforms are illustrated in Additional file 1:

Figure S6. Transcripts for this gene are determined by

a complex alternative splicing mechanism that results in

many functionally distinct isoforms. An association with

CD44 variant isoforms in the progression of head and

neck squamous cell carcinoma has been reported [39].

For the three subcomponents of HG—tubularity, nucle-

arity and mitotic count—the numbers of DE genes

between 1 and 3 were 1613, 165 and 10,617, respectively

(see Additional file 1: Figure S5). The top overrepresented

pathways for each component are listed in Additional

file 1: Table S1. We found that cell-cycle pathways were

also enriched among genes that were DE in tubularity

and mitotic count. DE genes associated with nuclearity

were found to be associated with the neurone system. This

unlikely association might be a reflection of the modest

number of DE genes. Interestingly, the scores of the three

subcomponents of grade did not contribute equally to HG

(see previous section), and they were also associated with

different molecular mechanisms.

Frequently selected predictors in prediction model are DE

between HGs

To investigate if a smaller biomarker panel for prediction

of TG could be defined, we tested whether the most fre-

quently selected predictors (genes) over CV rounds could

be utilised in a model and provide equally good predic-

tions as the full model. The Clinseq TG-Gene model was

cross-validated for 100 CV rounds. In each CV round,

a regularised (elastic-net) regression model was fitted.

Like the lasso regression model [40], the elastic-net model

shrinks some of the coefficients to exactly zero, effec-

tively performing variable selection. Here we utilised the

property of variable selection in this model, but as we

were concerned with robustness of the variable selection,

we relied on the subsampling of the data that occurred
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during CV and ranked variables by how frequently they

were selected over the CV rounds. We found that 10,454

genes were selected at least once. Ten gene sets with genes

that were selected ≥99 to ≥90 (out of 100) CV rounds

were fitted in ridge-penalised logistic regression and reg-

ular logistic regression models using the Clinseq data set,

with the TCGA data set as an external test set to evaluate

prediction performance (Additional file 1: Figure S7). A

biomarker panel based on the 34 most frequently selected

genes (the grade 34 panel) was the smallest panel that

also provided maximal prediction performance when pre-

dicting TCGA individuals (AUC = 0.963, 95 % CI =

0.943–0.983; see also Additional file 1: Figure S7).

All of the 34 genes were DE between HG1 and HG3

(FDR adjusted p < 0.05), and this gene set was mainly

associated with cell-cycle-related pathways. The expres-

sion levels of the grade 34 panel plotted together with HG

and TG also revealed visually distinct patterns of expres-

sion between TG groups (Fig. 4). The grade 34 panel

provides a candidate set of genes that could be used to

determine the TG in situations when transcriptome-wide

data are not available. A list of the 34 genes is provided in

Additional file 1: Table S2.

Discussion
Sequencing-based cancer diagnostics may become rou-

tine in the clinic in the near future. This will enable more

precise and accurate diagnosis of patients, and is likely

to lead to a reduction of both over- and under-treatment

of patients while also improving outcomes. Results from

this study indicate that HG could be replaced by TG

based on RNA-seq profiling. TG would also provide addi-

tional benefits through improved patient stratification by

dichotomising the patients into low and high TG, and

eliminating the intermediate group of HG2 patients. To

our knowledge, this is the first comprehensive transcrip-

tomic analysis of HG based on RNA-seq data where both

gene- and isoform-level expression were considered.

Morphological and histologic classifications of breast

cancer have been implemented in clinical settings for

decades. The well-established association between dis-

ease progression and HGs [4] was confirmed in this study

population. Our finding supports that HG is a prognos-

tic indicator of breast cancer. In this study, we further

provided molecular insight into HG. We confirmed pre-

vious findings that HG1 and HG3 tumours had distinct

gene expression profiles [5]. Thousands of additional DE

genes between HG1 and HG3 were identified compared

to what was previously reported. We found the differ-

ence between HG1 and HG2 was ambiguous (Fig. 3a).

This indicates that some HG2 patients have a similar

expression profile as HG1 patients, suggesting that they

may in fact be misclassified in the clinic, which could lead

to over-treatment.

We demonstrated that multivariate prediction models

using gene- or isoform-level RNA-seq data can be applied

to discriminate betweenHG1 andHG3 tumours with high

accuracy, and for further stratification of HG2 tumours

into high and low TGs. Classification accuracy of the

prediction models assessed by CV is high, with AUC

= 0.975 (95 % CI = 0.968–0.983) in the SC-Iso model

(Fig. 1a). The prediction model was also validated in a sec-

ondary data set (Fig. 1c) with equally good predictions

(AUC = 0.970, 95 % CI = 0.951–0.990). Predictions for

HG2 show a high degree of concordance across the five

methods, while GGI has the most distinct profile com-

pared to the other four predictionmodels. The differences

in RFS rates between HG2-High and HG2-Low stratified

by the TG-Genemodel were statistically significant (Fig. 2,

adjusted HR = 2.61, 95 % CI = 1.20–5.65). The distribu-

tions of PAM50 subtypes between TG and HG groups

were found to be similar, providing further evidence that

the TG model provides results that are concordant with

HG (Fig. 2c and Additional file 1: Figure S3). Usually,

luminal A is associated with lower grade and luminal B

with higher grade [38]. The TG model classified HG2

patients so that the great majority of luminal A patients

were labelled as TG-Low, while the great majority of lumi-

nal B cases were classified as TG-High. Moreover, the

TG-Iso model was able to stratify luminal A patients into

two groups with different recurrence rates (p = 0.028,

log-rank test). The proliferation indicator KI67 was also

assessed in the two TG groups, and we found that it was

higher in the predicted HG2-High group compared with

the HG2-Low group. Our results suggest that our models

are robust and consistent for prediction of TG and highly

concordant in classification of HG1 and HG3.

In this study, we validated the GGI method proposed by

Sotiriou et al. [5] for prediction of HG. We found that the

GGI 97-gene signature had accuracy similar to the RNA-

seq-based models developed in this study. However, GGI

was indeed developed based on microarray technology

and based on a relatively small amount of study material

consisting of only ER-positive samples. The limitation of

both the microarray technology and sample size was also

reflected in the modest number of DE genes (97) detected

in that study. In contrast, based on our RNA-seq data, we

found 8200 DE genes. Applying the GGI algorithm to all of

the 8200 DE genes would most likely introduce noise into

the model and degrade the prediction accuracy of GGI. In

developing the TG model, we applied a statistical learn-

ing approach based on regularised regression to select the

most predictive genes, a strategy that is expected to out-

perform variable selection by filtering on p values fromDE

analysis. Moreover, RNA-seq data are expected to be less

noisy compared to microarray-based expression profiling

[41, 42], and therefore, they also have the potential to pro-

vide improved diagnostic models and biomarker panels.
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Fig. 4 Heat map of 34 frequently selected genes in the TG-Gene model. In the Clinseq data set, the TG-Gene model was cross-validated 100 times to

optimise parameters. In 100 rounds of CV, 34 genes were selected in the models in more than 92 out of the 100 CV rounds. Value of colour key is

log2 (normalised RNA-seq count). ER oestrogen receptor, PR progesterone receptor, RNA-seq RNA sequencing

In this study, we found that the various methods (GGI

versus TG) performed highly similarly, which is a positive

result for those interested in translational applications as

it indicates that grade can be predicted based on data from

different technologies (microarray or RNA-seq) and using

different models (GGI or TG) with high concordance.

We also proposed a biomarker panel consisting of 34

genes for prediction of TG. Compared with other signa-

tures developed to predict grade, 15 of these 34 genes are

common with the 96 genes used in the calculation of the

GGI score [5]; none of them overlap with Ivshina’s five

genes [43]. A recently published paper [44] using TCGA

breast cancer RNA-seq data from 111 patients, developed

a nine-gene panel to differentiate HG1 andHG2, and a 19-

gene panel to classify HG2 and HG3. There is one gene

from the grade 34 panel in the set of nine genes, and

another one in the set of 19 genes. However, in this case it

is not surprising that there are few common genes with the

grade 34 panel since the models serve different purposes.

Our TG model and the 34-gene set were developed for

further stratifying HG2 tumours into poorly differentiated

and well-differentiated tumours.

RNA-seq also enables isoform-level expression , while

microarray quantification generally does not. In this study,

we found 2115 DE isoforms between HG1 and HG3 that

cannot be detected at the gene level. We also found that
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in 444 genes, isoforms of the same gene were associated

with HG in opposite directions. This phenomenon was

also observed in the TCGA data set. This indicates that

isoforms of the same gene might be involved in different

pathways conducting different functions. However, pre-

diction models based on isoform-level data did not pro-

vide improved classification accuracy, although we note

that classification between HG1 and HG3 groups is close

to being perfect based on gene-level data.

Our study also provided some insights into subcompo-

nents of HGs. There were significant differences between

the three components. There were 10,617 genes DE

between mitotic count scores 1 and 3. In contrast, there

were only 165 DE genes identified between nuclear pleo-

morphism scores 1 and 3. The three components also

contributed differently to the final prediction model. The

AUC of mitotic count is higher than tubularity or nuclear-

ity (0.92 versus 0.68 or 0.76), indicating that in the conven-

tional histologic grading system, the mitotic count score

has a stronger molecular signature at the RNA expression

level compared with the tubularity and nuclearity scores.

Conclusions
HG is an important indicator in routine breast cancer

diagnostics. However, it is imperfect for patient stratifica-

tion, particularly for patients with HG2 tumours. Here we

demonstrated that RNA-seq expression profiling at gene

and isoform level can be used to stratify HG2 tumours

into two distinct groups with different prognostic out-

comes, which has the potential to reduce both under- and

over-treatment of breast cancer patients.
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