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An efficient way to compute Hamiltonian ground-states on a quantum computer stands to impact many prob-

lems in the physical and computer sciences, from quantum simulation to machine learning. Existing techniques,

such as phase estimation and variational algorithms, display potential disadvantages, including requirements for

deep circuits with ancillae and high-dimensional optimization. Here we describe the quantum imaginary time

evolution and quantum Lanczos algorithms, analogs of classical algorithms for ground (and excited) states, but

with exponentially reduced space and time requirements per iteration, and avoiding deep circuits with ancillae

and high-dimensional optimization. We discuss quantum imaginary time evolution as a natural subroutine to

generate Gibbs averages through an analog of minimally entangled typical thermal states. We implement these

algorithms with exact classical emulation and prototype circuits on the Rigetti quantum virtual machine and

Aspen-1 quantum processing unit, demonstrating the power of quantum elevations of classical algorithms.

An important application for a quantum computer is to

compute the ground-state Ψ of a Hamiltonian Ĥ [1, 2]. This

arises in simulations, for example, of the electronic structure

of molecules and materials, [3–6] as well as in more general

optimization problems. While efficient ground-state determi-

nation cannot be guaranteed for all Hamiltonians, as this is a

QMA-hard problem [7], several heuristic quantum algorithms

have been proposed, including adiabatic state preparation with

quantum phase estimation [8, 9] (QPE) and quantum-classical

variational algorithms, such as the quantum approximate op-

timization algorithm [10–12] and variational quantum eigen-

solver [13–15]. Despite many advances, these algorithms also

have potential disadvantages, especially in the context of near-

term quantum computing architectures with limited quantum

resources. For example, phase estimation produces a nearly

exact eigenstate, but appears impractical without error cor-

rection, while variational algorithms, although somewhat ro-

bust to coherent errors, are limited in accuracy for a fixed

Ansatz, and involve a high-dimensional noisy classical opti-

mization [16].

In classical simulations, different strategies are employed to

numerically determine nearly exact ground-states. One pop-

ular approach is imaginary-time evolution, which expresses

the ground-state as the long-time limit of the imaginary-

time Schrödinger equation −∂β|Φ(β)〉 = Ĥ |Φ(β)〉, |Ψ〉 =

limβ→∞
|Φ(β)〉
‖Φ(β)‖ (for 〈Φ(0)|Ψ〉 6= 0). Unlike variational al-

gorithms with a fixed Ansatz, imaginary-time evolution al-

ways converges to the ground-state, as distinguished from

imaginary-time Ansatz optimization [17]. Another common

algorithm is the iterative Lanczos algorithm [18] and its vari-

ants. The Lanczos iteration constructs the Hamiltonian ma-

trix H in a Krylov subspace {|Φ〉, Ĥ |Φ〉, Ĥ2|Φ〉 . . .}; diag-

onalizing H yields a variational estimate of the ground-state

which tends to |Ψ〉 for a large number of iterations. For anN -

qubit Hamiltonian, the classical complexity of imaginary time

evolution and Lanczos algorithm scales as ∼ exp (O(N)) in

space and time. Exponential space comes from storing Φ(β)

or the Lanczos vector, while exponential time comes from the

cost of Hamiltonian multiplication Ĥ|Φ〉, as well as, in princi-

ple, though not in practice, the N -dependence of the number

of propagation steps or Lanczos iterations. Thus it is natu-

ral to consider quantum versions of these algorithms that can

overcome the exponential bottlenecks.

Here we describe the quantum imaginary time evolution

(QITE) and the quantum Lanczos (QLanczos) algorithms to

determine ground-states (and excited states in the case of

QLanczos) on a quantum computer. As we show, under well

defined assumptions, these use exponentially reduced space

and time per propagation step or iteration compared to their

direct classical counterparts. They also offer advantages over

existing ground-state quantum algorithms as they do not use

deep circuits and are guaranteed to converge to the ground-

state without non-linear optimization. We further describe

inexact QITE and QLanczos algorithms that present a hierar-

chy of approximations to apply within a limited computational

budget. A crucial common component is the efficient imple-

mentation of the non-Hermitian operation of an imaginary-

time step e−∆τĤ (for small ∆τ ) assuming a finite correlation

length in the state. Non-Hermitian operations are not natural

on a quantum computer and are usually achieved using an-

cillae and postselection, but we describe how to implement

imaginary time evolution on a given state without these re-

sources. The lack of ancillae and complex circuits make QITE

and QLanczos potentially suitable for near-term quantum ar-

chitectures. Using the QITE algorithm, we show how to sam-

ple from thermal (Gibbs) states, also without deep circuits or

ancillae as is usually the case, via a quantum analog of the

minimally entangled typical thermal states (QMETTS) algo-

rithm [19, 20]. We demonstrate the algorithms on spin and

fermionic Hamiltonians (short- and long-range spin and Hub-

bard models, MAXCUT optimization, and dihydrogen min-

imal molecular model) using exact classical emulation, and

demonstrate proof-of-concept implementations on the Rigetti

quantum virtual machine (QVM) and Aspen-1 quantum pro-
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cessing units (QPUs).

Quantum Imaginary-Time Evolution. Define a geometric

k-local Hamiltonian Ĥ =
∑

m ĥm (where each term ĥm acts

on at most k neighbouring qubits on an underlying graph) and

a Trotter decomposition of the corresponding imaginary-time

evolution,

e−βĤ = (e−∆τĥ1e−∆τĥ2 . . .)n +O (∆τ ) ; n =
β

∆τ
(1)

applied to a state |Ψ〉. After a single Trotter step, we have

|Ψ′〉 = e−∆τĥm |Ψ〉. (2)

The basic idea is that the normalized state |Ψ̄′〉 = |Ψ′〉/‖Ψ′‖
is generated from |Ψ〉 by a unitary operator e−i∆τÂ[m] acting

on a neighbourhood of the qubits acted on by ĥm, where Â[m]
can be determined from tomography of |Ψ〉 in this neighbour-

hood up to controllable errors. This is illustrated by the sim-

ple example where |Ψ〉 is a product state. The squared norm

c = ‖Ψ′‖2 can be calculated from the expectation value of

ĥm, requiring measurements over k qubits,

c = 〈Ψ|e−2∆τĥ[m]|Ψ〉 = 1− 2∆τ〈Ψ|ĥm|Ψ〉+O(∆τ2)
(3)

Because |Ψ〉 is a product state, |Ψ′〉 is obtained applying the

unitary operator e−i∆τÂ[m] also on k qubits. Â[m] can be

expanded in terms of an operator basis, e.g. the Pauli basis

{σi} on k qubits,

Â[m] =
∑

i1i2...ik

a[m]i1i2...ikσi1σi2 . . . σik . (4)

Up to O(∆τ ), the coefficients a[m]i1i2...ik are defined by the

linear system Sa[m] = b where the elements of S and b are

expectation values over k qubits,

Si1i2...ik,i′1i
′

2
...i′k

= 〈Ψ|σ†
i1
σ†
i2
. . . σ†

ik
σi′

1
σi′

2
. . . σi′k |Ψ〉

bi1i2...ik = −i c− 1
2 〈Ψ|σ†

i1
σ†
i2
. . . σ†

ik
ĥ[m]|Ψ〉 (5)

In general, S has a null space; to ensure a[m] is real, we min-

imize ‖c−1/2Ψ′ − (1 − i∆τÂ[m])Ψ‖2 w.r.t. real variations

in a[m] (see SI). Because the solution is determined from a

linear problem, there are no local minima.

In this simple case, the normalized result of the imaginary

time evolution step could be represented by a unitary update

over k qubits, because |Ψ〉 had correlation length zero. After

the initial step, this is no longer the case. However, for a more

general |Ψ〉 with finite correlations over at most C qubits (i.e.

correlations between observables separated by distance L are

bounded by exp(−L/C)), |Ψ′〉 can be generated by a unitary

acting on a domain of width at mostO(C) qubits surrounding

the qubits acted on by ĥm (this follows from Uhlmann’s the-

orem [21]; see SI). The unitary e−i∆τA[m] can then be deter-

mined by measurements and solving the least squares problem

in this domain (Fig. 1). For example, for a nearest-neighbor

local Hamiltonian on a d-dimension cubic lattice, the domain

size D is bounded by O(Cd). In many physical systems, we

expect the maximum correlation length throughout the Trot-

ter steps to increase with β and saturate for Cmax ≪ N [22].

Fig. 1 shows the mutual information between qubits i and j
as a function of imaginary time in the 1D and 2D ferromag-

netic transverse field Ising models computed by tensor net-

work simulation (see SI), demonstrating a monotonic increase

and clear saturation.

The above replacement of imaginary time evolution steps

by unitary updates can be extended to more general Hamilto-

nians, such as ones with long-range interactions and fermionic

Hamiltonians. For example, for a Hamiltonian with long-

range pairwise terms, the action of e−∆τĥ[m] (if ĥ[m] acts on

qubits i and j) can be emulated by a unitary constructed in the

neighborhoods of i and j, over a domain of (2C log(1/δ))k

sites (see SI). The assumption of finite correlation length,

however, is less natural for such Hamiltonians. For fermions,

the locality of the corresponding qubit Hamiltonian depends

on the spin mapping. In principle, a geometric k-local

fermionic Hamiltonian can be mapped to a geometric local

qubit Hamiltonian [23], allowing the above techniques to be

directly applied. Alternatively, we conjecture that by using a

fermionic unitary, where the Pauli basis in Eq. (4) is replaced

by the fermionic operator basis {1, â, â†, â†â}, the unitary up-

date can be constructed over a domain sizeD ∼ O(Cd) where

C is the fermionic correlation length.

Cost of QITE. The number of measurements and classical

storage at a given time step (starting propagation from a prod-

uct state) is bounded by exp(O(Cd)) (with C the correlation

length at that time step), since each unitary at that step acts

on at most O(Cd) sites; classical solution of the least squares

problem has a similar scaling exp(O(Cd)), as does the syn-

thesis and application as a quantum circuit (composed of two-

qubit gates) of the unitary e−i∆τA[m]. Thus, space and time

requirements are bounded by exponentials inCd, but are poly-

nomial in N when one is interested in a local approximation

of the state (or quasi-polynomial for a global approximation);

the polynomial in N comes from the number of terms in H ;

see SI for details).

The exponential dependence on Cd can be greatly reduced

in many cases. Suppose the Hamiltonian A[m] of the unitary

update has a locality structure, i.e. it is (approximately) a p-

local Hamiltonian (i.e. in Eq. (4), all a[m]i1...ik coefficients

are zero except for those where at most p of the σi operators

are different from the identity). Then the cost of tomography

becomes only CO(dp), while the cost of finding and imple-

menting the unitary is O(pCdTe), with Te the cost to com-

pute one entry of A[m] [24]. If we assume further that A[m]
is geometric local, the cost of tomography is reduced further

to O(pCd). However, even if C is too large to construct the

unitaries exactly, we can still run the algorithm as a heuris-

tic, truncating the unitary updates to domain sizes that fit the

computational budget. This gives the inexact QITE algorithm,

described further below.

Comparison to classical implementations. Compared to a di-
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FIG. 1: (color online) (a) Schematic of the QITE algorithm. Top: imaginary-time evolution under a geometric k-local operator ĥ[m] can be

reproduced by a unitary operation acting on D > k qubits. Bottom: exact imaginary-time evolution starting from a product state requires

unitaries acting on a domain D that grows with correlations. (b,c) Left: mutual information I(i, j) between qubits i, j as a function of distance

d(i, j) and imaginary time β, for a 1D (b) and a 2D (c) FM transverse-field Ising model, with h = 1.25 (1D) and h = 3.5 (2D). I(i, j) saturates

at longer times. Right: relative error in the energy ∆E and fidelity F = |〈Φ(β)|Ψ〉|2 between the finite-time state Φ(β) and infinite-time state

Ψ as a function of β. The noise in the 2D fidelity error at large β arises from the approximate nature of the algorithm used. See SI for details.

rect classical implementation of imaginary time evolution, the

cost of a QITE time-step (for bounded correlation lengthC) is

linear in N in space and polynomial in N in time, thus giving

an exponential reduction in space and time. We can also com-

pare to other classical algorithms. As QITE defines a quantum

circuit for the imaginary time evolution, we could attempt to

use it for a faster classical simulation. If we are only interested

in local observables, we can apply the circuit in the Heisen-

berg picture in a classical emulation. However, this gives an

extra exponential dependence on the number of previous time-

steps: After the unitaries associated to (e−∆τĥ1e−∆τĥ2 . . .)l

have been applied, the cost of applying the next unitary scales

as exp(O(lD)), with D the domain size of the unitaries, in-

stead of exp(O(D)) in QITE. Alternatively, if |Ψ〉 is rep-

resented by a tensor network in a classical simulation, then

e−∆τĥ[m]|Ψ〉 can be represented as a classical tensor network

with increased bond dimension [25, 26]. However, the bond

dimension will scale as exp(O(lD)). Apart from the extra

exponential dependence on l, a further potential drawback in

this approach is that we cannot guarantee contracting the re-

sulting classical tensor network for an observable is efficient;

it is a #P-hard problem in the worst case in 2D (and even in

the average case for Gaussian distributed tensors) [27, 28].

Finally, we can compare QITE with boundedC with the clas-

sical heuristic of truncating the problem size at the correlation

length C0 of the ground-state and solving by exact diagonal-

ization, which can be done in time exp(O(Cd
0 )) in d spatial di-

mensions. While this is a competitive strategy in many cases,

it may not converge to the correct ground-state when there is

frustration in the Hamiltonian, for example in glassy models.

Inexact QITE. Given limited resources, for example on near-

term devices, we can choose to measure and construct the uni-

tary over a domainD smaller than induced by correlations, to

fit the computational budget. For example, if D = 1, this

gives a mean-field approximation of the imaginary time evo-

lution. While the unitary is no longer an exact representation

of the imaginary time evolution, there is no issue of a local

minimum in its construction, although the energy is no longer

guaranteed to decrease at every step. In this case, one can

apply inexact imaginary time evolution until the energy stops

decreasing; the energy will still be a variational upper bound.

One can also use the quantum Lanczos algorithm, described

later.

QITE experiments. To illustrate the QITE algorithm, we

have carried out exact classical emulations (assuming per-

fect expectation values and perfect gates) for several Hamil-

tonians: short-range 1D Heisenberg; 1D AFM transverse-

field Ising; long-range 1D Heisenberg with spin-spin coupling

Jij = (|i − j| + 1)−1; i 6= j; 1D Hubbard at half-filling

(mapped by Jordan-Wigner transformation to a spin model);

a 6-qubit MAXCUT [10–12] instance, and a minimal basis 2-

qubit dihydrogen molecular Hamiltonian [29]. To assess the

feasibility of implementation on near-term quantum devices,

we have also carried out noisy classical emulation (sampling

expectation values and with an error model) using the Rigetti

quantum virtual machine (QVM) and a physical simulation

using the Rigetti Aspen-1 QPUs, for a single qubit field model

(2−1/2(X + Z))[30] and a 1D AFM transverse-field Ising

model. We carry out QITE using different fixed domain sizes

D for the unitary or fermionic unitary (see SI for descriptions

of simulations and models).

Figs. 2 and 3 show the energy obtained by QITE as a func-

tion of β andD for the various models. As we increaseD, the

asymptotic (β → ∞) energies rapidly converge to the exact
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FIG. 2: Left: QITE energy E(β) (a) and fidelity F (b) between finite-time state Φ(β) and exact ground state Ψ as function of imaginary time

β, for a 1D 10-site Heisenberg model, showing the convergence with increasing unitary domains of D = 2− 8 qubits. Middle: QITE (dashed

red, dot-dashed green lines) and QLanczos (solid red, solid green lines) energies as function of imaginary time β, for a 1D Heisenberg model

with N = 20 qubits, using domains of D = 2 (c) and 4 qubits (d), showing improved convergence of QLanczos over QITE. Black line is the

exact ground-state energy/fidelity. Right: QITE and QLanczos energy E(β) as a function of imaginary time β for (e) 1-qubit field model using

the QVM and QPU (qubit 14 on Aspen-1), (f) 2-qubit AFM transverse field Ising model using the QVM and QPU (qubit 14, 15 on Aspen-1).

Black line is the exact ground-state energy (see SI for details).

ground-state. For small D, the inexact QITE tracks the exact

QITE for a time until the correlation length exceeds D. Af-

terwards, it may go down or up. The non-monotonic behavior

is strongest for small domains; in the MAXCUT example, the

smallest domain D = 2 gives an oscillating energy; the first

point at which the energy stops decreasing is a reasonable es-

timate of the ground-state energy. In all models, increasing

D past a maximum value (less than N ) no longer affects the

asymptotic energy, showing that the correlations have satu-

rated (this is true even in the MAXCUT instance).

Figs. 2e and 2f show the results of running the QITE al-

gorithm on Rigetti’s QVM and Aspen-1 QPUs for 1- and 2-

qubits, respectively. The error bars are due to gate, readout,

incoherent and cross-talk errors. Sufficient samples were used

to ensure that sampling error is negligible. Encouragingly for

near-term simulations, despite these errors it is possible to

converge to a ground-state energy close to the exact energy for

the 1-qubit case. This result reflects a robustness that is some-

times informally observed in imaginary time evolution algo-

rithms in which the ground state energy is approached even

if the imaginary time step is not perfectly implemented. In

the 2-qubit case, although the QITE energy converges, there

is a systematic shift which is reproduced on the QVM using

available noise parameters for readout, decoherence and de-

polarizing noise [31]. Remaining discrepancies between the

emulator and hardware are likely attributable to cross-talk be-

tween parallel gates not included in the noise model (see SI).

However, reducing decoherence and depolarizing errors in the

QVM or using different sets of qubits with improved noise

characteristics (see SI) all lead to improved convergence to

the exact ground-state energy.

Quantum Lanczos algorithm. Given the QITE subroutine,
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FIG. 3: (a) QITE energy E(β) as a function of imaginary time β
for a 6-site 1D long-range Heisenberg model, for unitary domains

D = 2 − 6; (b) a 4-site 1D Hubbard model with U/t = 1, for

unitary domains D = 2, 4. (c) Probability of MAXCUT detection,

P (C = Cmax) as a function of imaginary time β, for the 6-site

graph in the panel. (d) QITE energy for the H2 molecule in the STO-

6G basis as a function of bond-length R and β. Black line is the

exact ground-state energy/probability of detection.

we now consider how to formulate a quantum Lanczos al-

gorithm, which is an especially economical realization of a

quantum subspace method [32, 33]. An important practical

motivation is that the Lanczos algorithm typically converges

much more quickly than imaginary time evolution, and often

in physical simulations only tens of iterations are needed to

converge to good precision. In addition, Lanczos provides a
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FIG. 4: Left: Thermal (Gibbs) average 〈Ĥ〉 at temperature β from QMETTS for a 1D 6-site Heisenberg model (exact emulation). Black line

is the exact thermal average without sampling error. Middle, Right: Thermal average 〈Ĥ〉 at temperature β from QMETTS for (b) a 1 qubit

field model using QVMs and QPUs, and (c) 2 qubit AFM transverse field Ising model using QVM.

natural way to compute excited states. Consider the sequence

of imaginary time vectors |Φl〉 = e−l∆τĤ |Φ〉, l = 0, 1, . . . n,

where cl = ‖Φl‖. In QLanczos, we consider the vectors af-

ter even numbers of time steps |Φ0〉, |Φ2〉 . . . to form a ba-

sis for the ground-state. (SI describes the equivalent treat-

ment in terms of normalized imaginary time vectors). These

vectors define an overlap matrix whose elements can be com-

puted entirely from norms, Sll′ = 〈Φl|Φl′〉 = c2(l+l′)/2, where

c(l+l′)/2 is the norm of another integer time step vector, and

the overlap matrix elements for n/2 vectors can be accumu-

lated for free after n steps of time evolution. The Hamilto-

nian matrix elements satisfy the identityHll′ = 〈Φl|Ĥ|Φl′〉 =
〈Φ(l+l′)/2|Ĥ |Φ(l+l′)/2〉. Although the Hamiltonian has ∼ n2

matrix elements, there are only ∼ n unique elements, and im-

portantly, each is a simple expectation value of the energy

during the imaginary time evolution. This economy of ma-

trix elements is a property shared with the classical Lanczos

algorithm. Whereas the classical Lanczos iteration builds a

Krylov space in powers of Ĥ , QLanczos builds a Krylov space

in powers of e−2∆τĤ ; in the limit of small ∆τ these Krylov

spaces are identical. Diagonalization of the QLanczos Hamil-

tonian matrix is guaranteed to give a ground-state energy that

is lower than that of the last imaginary time vector Φn (while

higher roots approximate excited states). Thus, as long as one

is willing to take measurements of the energy during the imag-

inary time evolution process, one can use QLanczos to gener-

ate an improved ground state (or excited states).

With a limited computational budget, we can use inexact

QITE to generate Φl, Φ
′
l. However, in this case the above

expressions for Sll′ andHll′ in terms of expectation values are

no longer exactly satisfied which can create numerical issues

(e.g. the overlap may no longer be positive). To handle this as

well as errors due to noise and sampling in real experiments,

the QLanczos algorithm needs to be stabilized by ensuring

that successive vectors are not nearly linearly dependent (see

SI).

We demonstrate the QLanczos algorithm using classical

emulation on the 1D Heisenberg Hamiltonian, as used for

the QITE algorithm in Fig. 2 (see SI). Using exact QITE

(large domains) to generate matrix elements, quantum Lanc-

zos converges much more rapidly than imaginary time evo-

lution. Using inexact QITE (small domains), convergence is

usually faster and also reaches a lower energy. We also as-

sess the feasibility of QLanczos in presence of noise, using

emulated noise on the Rigetti QVM as well as on the Rigetti

Aspen-1 QPUs. In Fig. 2, we see that QLanczos also provides

more rapid convergence than QITE with both noisy classical

emulation as well as on the physical device for 1 and 2 qubits.

Quantum thermal averages. The QITE subroutine can be

used in a range of other algorithms. For example, we discuss

how to compute thermal averages Tr
[

Ôe−βĤ
]

/Tr
[

e−βĤ
]

us-

ing imaginary time evolution. Several procedures have been

proposed for quantum thermal averaging, ranging from gen-

erating the finite-temperature state explicitly by equilibration

with a bath [34], to a quantum analog of Metropolis sam-

pling [35] that relies on phase estimation, as well as meth-

ods based on ancilla based Hamiltonian simulation with post-

selection [36] and approaches based on recovery maps [37].

However, given a method for imaginary time evolution, one

can generate thermal averages of observables without any

ancillae or deep circuits. This can be done by adapting to

the quantum setting the classical minimally entangled typical

thermal state (METTS) algorithm [19, 20], which generates

a Markov chain from which the thermal average can be sam-

pled. The QMETTS algorithm can be carried out as follows (i)

start from a product state, carry out imaginary-time evolution

(using QITE) up to time β (ii) measure the expectation value

of the observable that one wants to produce a thermal aver-

age for (iii) measure a product operator such as Ẑ1Ẑ2 . . . ẐN ,

to collapse back onto a random product state (iv) repeat (i).

Note that in step (iii) one can measure in any product basis,

and randomizing the product basis can be used to reduce the

autocorrelation time and avoid ergodicity problems in sam-

pling.

In Fig. 4 we show the results of quantum METTS (using

exact classical emulation) for the thermal average 〈Ĥ〉 as a

function of temperature β, for the 6-site Heisenberg model

for several temperatures and domain sizes; sufficiently large

D converges to the exact thermal average at each β; error bars

reflect only finite QMETTS samples. We also show an im-

plementation of quantum METTS on the Aspen-1 QPU and

QVM with a 1-qubit field model (Fig. 4b), and using the QVM

for a 2-qubit AFM transverse field Ising model (Fig. 4c).

Conclusions. We have introduced quantum analogs of
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imaginary time evolution (QITE) and the Lanczos algorithm

(QLanczos), that can be carried out without ancillae or deep

circuits, and which, for bounded correlation length, achieve

exponential reductions in space and time per iteration rela-

tive to their classical counterparts. They provide new quan-

tum routes to approximate ground-states of Hamiltonians in

both physical simulations and in optimization that avoid some

of the current disadvantages of phase estimation based ap-

proaches and variational algorithms. The QLanczos itera-

tion appears especially powerful if sufficient sampling can be

done, as in practice it obtains accurate estimates of ground-

states from only a few iterations, and also provides an estimate

of excited states. Additionally, further algorithms that use

QITE and QLanczos as subroutines can be formulated, such as

the quantum minimally entangled thermal states algorithm to

compute thermal averages. Encouragingly, these algorithms

appear useful in conjunction with near-term quantum archi-

tectures, and serve to demonstrate the power of quantum el-

evations of classical simulation techniques, in the continuing

search for quantum supremacy.
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SUPPLEMENTAL INFORMATION

Representing imaginary-time evolution by unitary maps

As discussed in the main text, we map the scaled non-

unitary action of e−∆τĥm on a state Ψ to that of a unitary

e−i∆τÂ[m], i.e.

|Ψ′〉 ≡ c−1/2 e−∆τĥm |Ψ〉 = e−i∆τÂ[m]|Ψ〉 . (6)

where c = 〈Ψ|e−2∆τĥm |Ψ〉. ĥm acts on k qubits; Â is Her-

mitian and acts on a domain of D qubits around the support

of ĥm, and is expanded as a sum of Pauli strings acting on the

D qubits,

Â[m] =
∑

i1i2...iD

a[m]i1i2...iDσi1σi2 . . . σiD

=
∑

I

a[m]IσI (7)

where I denotes the index i1i2 . . . iD. Define |∆0〉 =
|Ψ′〉−|Ψ〉

∆τ and |∆〉 = −iÂ[m]|Ψ〉. Our goal is to minimize

the difference ||∆0 −∆||. If the unitary e−i∆τÂ[m] is defined

over a sufficiently large domain D (related to the correlation

length of |Ψ〉, see Section ) then this error minimizes at ∼ 0,

for small ∆τ . Minimizing for real a[m] corresponds to mini-

mizing the quadratic function f(a[m])

f(a[m]) = f0 +
∑

I

bIa[m]I +
∑

IJ

a[m]ISIJa[m]J (8)

where

f0 = 〈∆0|∆0〉 , (9)

SIJ = 〈Ψ|σ†
IσJ |Ψ〉 , (10)

bI = i 〈Ψ|σ†
I |∆0〉 − i 〈∆0|σI |Ψ〉 , (11)

whose minimum obtains at the solution of the linear equation

(

S+ S
T
)

a[m] = −b (12)

In general, S+S
T may have a non-zero null-space. Thus, we

solve Eq. (12) either by applying the generalized inverse of

S+S
T or by an iterative algorithm such as conjugate gradient.

For fermionic Hamiltonians, we replace the Pauli operators

in Eq. (7) by fermionic field operators. For a number conserv-

ing Hamiltonian, such as the fermionic Hubbard Hamiltonian

treated in Fig. 3 in the main text, we write

Â[m] =
∑

i1i2...iD

a[m]i1i2...iD f̂
†
i1
. . . f̂ †

iD/2
f̂iD/2+1

. . . f̂iD

(13)

where f̂ †, f̂ are fermionic creation, annihilation operators re-

spectively.

Rigorous Run Time Bounds

Here we present a more detailed analysis of the running

time of the algorithm. Consider a k-local Hamiltonian

H =
m
∑

l=1

hl (14)

acting on a d-dimensional lattice with ‖hi‖ ≤ 1, where ‖∗‖ is

the operator norm. In imaginary time evolution one typically

applies Trotter formulae to approximate

e−βH |Ψ0〉
‖e−βH|Ψ0〉‖

(15)
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for an initial state |Ψ0〉 (which we assume to be a product

state) by

(

e−βh1/n . . . e−βhm/n
)n |Ψ0〉

‖
(

e−βh1/n . . . e−βhm/n
)n |Ψ0〉‖

. (16)

This approximation leads to an error which can be made as

small as one wishes by increasing the number of time steps n.

Let |Ψs〉 be the state (after renormalization) obtained by

applying s terms e−thi/n from
(

e−th1/n . . . e−thm/n
)n

; with

this notation |Ψmn〉 is the state given by Eq. (16). In the QITE

algorithm, instead of applying each of the operators e−thi/n

to |Ψ0〉 (and renormalizing the state), one applies local uni-

taries Us which should approximate the action of the original

operator. Let |Φs〉 be the state after s unitaries have been ap-

plied.

Let C be an upper bound on the correlation length of |Ψs〉
for every s: we assume that for every s, and every pair of

observables A and B separated by dist(A,B) sites,

Cs(A,B) = 〈Ψs|A⊗B|Ψs〉 − 〈Ψs|A|Ψs〉〈Ψs|B|Ψs〉
≤ ‖A‖‖B‖e−dist(A,B)/C .

(17)

Theorem 1. For every ε > 0, there are unitaries Us each

acting on

k(2C)d lnd(2
√
2nmε−1) (18)

qubits such that

‖|Ψmn〉 − |Φmn〉‖ ≤ ε (19)

Proof. We have

‖|Ψs〉 − |Φs〉‖ = ‖|Ψs〉 − Us|Φs−1〉‖
≤ ‖|Ψs〉 − Us|Ψs−1〉‖ + ‖|Ψs−1〉 − |Φs−1〉‖ . (20)

To bound the first term we use our assumption that the corre-

lation length of |Ψs−1〉 is smaller than C. Consider a region

Rv of all sites that are a distance at most v (in the Manhat-

tan distance on the lattice) of the sites in which his acts. Let

tr\Rv
(|Ψs〉〈Ψs|) be the reduced state on Rv, obtained by par-

tial tracing over the complement of Rv in the lattice. Since

|Ψs〉 =
e−βhis/n|Ψs−1〉

‖e−βhis/n|Ψs−1〉‖
, (21)

it follows from Eq. (17) and Lemma 9 of [38] that

∥

∥tr\Rv
(|Ψs〉〈Ψs|)− tr\Rv

(|Ψs−1〉〈Ψs−1|)
∥

∥

1

≤ ‖ehis/n‖−1e−
v
C ≤ 2e−

v
C ,

(22)

where we used that for n ≥ 2β, ‖e−βhis/n‖ ≥ ‖I −
βhis/n‖ ≥ 1− β/n ≥ 1/2. Above ‖ ∗ ‖1 is the trace norm.

The key result in our analysis is Uhlmann’s theorem (see

e.g. Lemmas 11 and 12 of [38]). It says that two pure states

with nearby marginals must be related by a unitary on the pu-

rifying system. In more detail, if |η〉AB and |ν〉AB are two

states s.t. ‖ηA − νA‖1 ≤ δ, then there exists a unitary V
acting on B s.t.

‖|η〉AB − (I ⊗ V )|ν〉AB‖ ≤ 2
√
δ. (23)

Applying Uhlmann’s theorem to |Ψs〉 and |Ψs−1〉, with

B = Rv, and using Eq. (22), we find that there exists a unitary

Us acting on Rv s.t.

‖|Ψs〉 − Us|Ψs−1〉‖ ≤ 2
√
2e−

v
2C , (24)

which by Eq. (20) implies

‖|Ψnm〉 − |Φnm〉‖ ≤ 2
√
2mne−

v
2C , (25)

Choosing ν = 2C ln(2
√
2nmε−1) as the width of the sup-

port of the approximating unitaries, the error term above is ε.
The support of the local unitaries is kνd qubits (as this is an

upper bound on the number of qubits in Rν). Therefore each

unitary Us acts on at most

k(2C)d lnd(2
√
2nmε−1) (26)

qubits.

Finding Us: In the algorithm we claim that we can find the

unitaries Us by solving a least-square problem. This is in-

deed the case if we can write them as Us = eiA[s]/n with

A[s] a Hamiltonian of constant norm. Then for sufficiently

large n, Us = I + iA[s]/n+O((1/n)2) and we can find A[s]
by performing tomography of the reduced state over the re-

gion whereUs acts and solving the linear problem given in the

main text. Because we apply Uhlmann’s Theorem to |Ψs−1〉
and

e−βhis/n|Ψs−1〉
‖e−βhis/n|Ψs−1〉‖

, (27)

using e−βhis/n = I − βhis/n + O((1/n)2) and following

the proof of the Uhlmann’s Theorem, we find that the unitary

can indeed be taken to be close to the identity, i.e. Us can be

written as eiA[s]/n.

Total Run Time: Theorem 1 gives an upper bound on the

maximum support of the unitaries needed for a Trotter up-

date, while tomography of local reduced density matrices

gives a way to find the unitaries. The cost for tomography

is quadratic in the dimension of the region, so it scales as

exp(O(k(2C)d lnd(2
√
2nmε−1))). This is also the cost to

solve classically the linear system which gives the associated

Hamiltonian A[s] and of finding a circuit decomposition of

Us = eiA[s]/n in terms of two qubit gates. As this is repeated

mn times, for each of the mn terms of the Trotter decompo-

sition, the total running time (of both quantum and classical

parts) is

mn exp(O(k(2C)d lnd(2
√
2nmε−1))). (28)
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This is exponential in Cd, with C the correlation length, and

quasi-polynomial in n (the number of Trotter steps) and m
(the number of local terms in the Hamiltonian. Note that typ-

ically m = O(N), with N the number of sites). While this an

exponential improvement over the exp(O(N)) scaling clas-

sically, the quasi-polynomial dependence on m can still be

prohibitive in practice. Below we show how to improve on

that.

Local Approximation: If one is only interested in a local ap-

proximation of the state (meaning that all the local marginals

of |Φnm〉 are close to the ones of e−βH |Ψ0〉, but not neces-

sarily the global states), then the support of the unitaries be-

comes independent of the number of terms of the Hamiltonian

m (while for global approximation we have a polylogarithmic

dependence on m):

Theorem 2. For every ε > 0, there are unitaries Us each

acting on

k(2C)d lnd
(

2
√
2n(|S|+ C ln(8nC(2C)d+1ε−1)d

)

(29)

qubits such that for every connected region S of size at most

|S|,
∥

∥tr\S(|Ψmn〉〈Ψmn|)− tr\S(|Φmn〉〈Φmn|)
∥

∥

1
≤ ε

Proof. Consider the unitaries Us obtained in the proof of The-

orem 1 satisfying Eq. (24).

Consider the replacement of the local term of the Trotter

expansion by the unitary Us for all local terms which are

more than 2C log(1/δ) sites away from the region S. Be-

cause the correlation length is always smaller than C, we find

by Lemma 9 of [38] that the total error on the reduced density

matrix in region S can be bounded as

n

∫ ∞

2C ln(1/δ)

e−l/2C lddl ≤ 4nC(2C)d+1δ. (30)

For the local terms which are at most a distance

2C log(1/δ) from the region S, in turn, the total error is

bounded by the sum of each individual term, giving:

(|S|+ C log(1/δ))dn2
√
2e−

ν
2C (31)

Choosing δ = ε/(8nC(2C)d+1) and ν =
2C ln(2

√
2n(|S| + C ln(8nC(2C)d+1ε−1)d) gives the

result.

Non-Local Terms: Suppose the Hamiltonian has a term hq
acting on qubits which are not nearby, e.g. on two sites i and

j. Then e−βhq/n can still be replaced by a unitary, which only

acts on sites i and j and qubits in the neighborhoods of the

two sites. This is the case if we assume that the state has a fi-

nite correlation length and the proof is again an application of

Uhlmann’s theorem (we follow the same argument from the

proof of Theorem 1 but define Rv in that case as the union

of the neighborhoods of i and j). Note however that the as-

sumption of a finite correlation length might be less natural

for models with long range interactions.

Scaling with temperature and increase of correlation length:

Our discussion has been based on the assumption that the cor-

relation length C is small on all intermediate states. Here we

discuss the range of validity of the assumption.

Let us begin with an example where the correlation length

can increase very quickly with number of local terms applied

(this was communicated to us by Guang Hao Low). Con-

sider a projection on two qubits Pi,i+1 = |0, 0〉〈0, 0|i,i+1 +
|1, 1〉〈1, 1|i,i+1. Then

P1,2P2,3 . . . Pn−1,n|+〉⊗n, (32)

with |+〉 = (|0〉 + |1〉)/
√

(2), is the GHZ state (|0 . . . 0〉 +
|1 . . . 1〉)/

√
2, which has correlation length C = n. While

the projector Pi,i+1 cannot appear as a local term e−βh1/n in

the Trotter decomposition, this example show that we cannot

expect a speed-of-sound bound on the spread of correlations

for a circuit with non-unitary gates; indeed the example shows

a depth two circuit can already create long range correlations.

However, we expect that generically the correlations do

grow ballistically. Consider the state

|ψn〉 :=
(

e−βh1/n . . . e−βhm/n
)n |Ψ0〉

‖
(

e−βh1/n . . . e−βhm/n
)n |Ψ0〉‖

. (33)

after n rounds have been applied. Let us assume the Hamil-

tonian acts on a line, is translation invariant and has nearest-

neighbor interactions. Then the state is a matrix product state

of bond dimension at most 2n. For matrix product states we

can bound the correlations as follows (see e.g. Lemma 22 of

[38])

Cs(A,B) = 〈Ψs|A⊗B|Ψs〉 − 〈Ψs|A|Ψs〉〈Ψs|B|Ψs〉
≤ ‖A‖‖B‖22ne−∆dist(A,B).

(34)

where we define the gap of the matrix-product-state as ∆ :=
1−λ, with λ the second largest eigenvalue of the transfer ma-

trix of the matrix product state (normalized so that the largest

eigenvalue is one). In the GHZ example above, the gap ∆ = 0
and that is the reason for the fast build up of correlations. Typ-

ically we expect the gap to be independent of n or decrease

mildly as 1/poly(n).
From the above, we can replace a non-unitary local Trotter

term applied to |ψn〉 by an unitary acting on O(n/∆) qubits.

Taking n = O(β) to reach temperature β in the imaginary

time evolution, the support of the unitaries would scale as

O(β/∆). Assuming ∆ is a constant, we find a linear increase

in temperature.

We also expect the linear growth of correlations/unitary

support with inverse temperature also to hold generically in

two dimensions, although there the analysis is more subtle as
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rigorous results for the expected behaviour of the transfer op-

erator (which becomes a one-dimensional tensor product op-

erator) and its gap are not available.

Spreading of correlations

In the main text, we argued that the correlation volume V of

the state e−βH |Ψ〉 is bounded for many physical Hamiltonians

and saturates at the ground-state with V ≪ N where N is the

system size. To numerically measure correlations, we use the

mutual information between two sites, defined as

I(i, j) = S(i) + S(j)− S(i, j) (35)

where S(i) is the von Neumann entropy of the density matrix

of site i (ρ(i)) and similarly for S(j), and S(i, j) is the von

Neumann entropy of the two-site density matrix for sites i and

j (ρ(i, j)).

To compute the mutual information in Fig. 1 in the main

text, we used matrix product state (MPS) and finite projected

entangled pair state (PEPS) imaginary time evolution for the

spin-1/2 1D and 2D FM transverse field Ising model (TFI)

HTFI = −
∑

〈ij〉
σz
i σ

z
j − h

∑

i

σx
i (36)

where the sum over 〈i, j〉 pairs are over nearest neighbors.

We use the parameter h = 1.25 for the 1-D calculation and

h = 3.5 for the 2-D calculations as the ground-state is gapped

in both cases. It is known that the ground-state correlation

length is finite.

MPS. We performed MPS imaginary time evolution (ITE) on

a 1-D spin chin with L = 50 sites with open boundary condi-

tions. We start from an initial state that is a random product

state, and perform ITE using time evolution block decimation

(TEBD) [39, 40] with a first order Trotter decomposition. In

this algorithm, the Hamiltonian is separated into terms oper-

ating on even and odd bonds. The operators acting on a single

bond are exponentiated exactly. One time step is given by

time evolution of odd and even bonds sequentially, giving rise

to a Trotter error on the order of the time step ∆τ . In our

calculation, a time step of ∆τ = 0.001 was used.

We carry out ITE simulations with maximum bond dimen-

sion of D = 80, but truncate singular values less than 1.0e-8

of the maximum singular value. In the main text, the ITE re-

sults are compared against the ground state obtained via the

density matrix renormalization group (DMRG)). This should

be equivalent to comparing to a long-time ITE ground state.

The long-time ITE (β = 38.352) ground state reached an en-

ergy per site of -1.455071, while the DMRG ground-state en-

ergy per site is −1.455076. The relative error of the nearest

neighbor correlations is on the order of 10−4 to 10−3, and

about 10−2 for correlations between the middle site and the

end sites (a distance of 25 sites). The error in fidelity between

the two ground states was about 5× 10−4.

PEPS. We carried out finite PEPS [41–44] imaginary time

evolution for the two-dimensional transverse field Ising model

on a lattice size of 21 × 31. The size was chosen to be large

enough to see the spread of mutual information in the bulk

without significant effects from the boundary. The mutual in-

formation was calculated along the long (horizontal) axis in

the center of the lattice. The standard Trotterized imaginary

time evolution scheme for PEPS [45] was used with a time

step ∆τ = 0.001, up to imaginary time β = 6.0, starting

from a random product state. To reduce computational cost

from the large lattice size, the PEPS was defined in a transla-

tionally invariant manner with only 2 independent tensors [46]

updated via the so-called “simple update” procedure [47]. The

simple update has been shown to be sufficiently accurate for

capturing correlation functions (and thus I(i, j)) for ground

states with relatively short correlation lengths (compared to

criticality) [48, 49]. We chose a magnetic field value h = 3.5
which is detuned from the critical field (h ≈ 3.044) but still

maintains a correlation length long enough to see interesting

behaviour.

Accuracy: Even though the simple update procedure was used

for the tensor update, we still needed to contract the 21 × 31
PEPS at at every imaginary time step β for a range of corre-

lation functions, amounting to a large number of contractions.

To control the computational cost, we limited our bond di-

mension to D = 5 and used an optimized contraction scheme

[50], with maximum allowed bond dimension of χ = 60 dur-

ing the contraction. Based on converged PEPS ground state

correlation functions with a larger bond dimension of D = 8,

our D = 5 PEPS yields I(i, i + r) (where r denotes hori-

zontal separation) at large β with a relative error of ≈ 1% for

r = 1 − 4, 5% or less for r = 5 − 8, and 10% or greater for

r > 8. At smaller values of β (< 0.5) the errors up to r = 8
are much smaller because the bond dimension of 5 is able to

completely support the smaller correlations (see Fig. 1, main

text). While error analysis on the 2D Heisenberg model [48]

suggests that errors with respect to D = ∞ may be larger,

such analysis also confirms that a D = 5 PEPS captures the

qualitative behaviour of correlation in the range r = 5 − 10
(and beyond). Aside from the bond dimension error, the pre-

cision of the calculations is governed by χ and the lattice size.

Using the 21 × 31 lattice and χ = 60, we were able to con-

verge entries of single-site density matrices ρ(i) to a precision

of ±10−6 (two site density matrices ρ(i, j) had higher pre-

cision). For β = 0.001 − 0.012, the smallest eigenvalue of

ρ(i) fell below this precision threshold, leading to significant

noise in I(i, j). Thus, these values of β are omitted from Fig.

1 (main text) and the smallest reported values of I are 10−6,

although with more precision we expect I → 0 as r → ∞.

Finally, the energy and fidelity errors were computed with

respect to the PEPS ground state of the same bond dimension

at β = 10.0 (10000 time steps). The convergence of the quan-

tities shown in Fig. 1 (main text) thus isolates the convergence

of the imaginary time evolution, and does not include effects

of other errors that may result from deficiencies in the wave-

function ansatz.
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Simulation models

We here define, and give some background on, the models

used in the QITE and QLanczos simulations.

1 qubit field model

Ĥ = αX̂ + βẐ (37)

This Hamiltonian has previously been used as a model for

quantum simulations on physical devices in Ref. [30].We used

α = 1√
2

and β = 1√
2

. In simulations with this Hamiltonian,

the qubit is assumed to be initialized in the Z basis.

1D Heisenberg and transverse field Ising model

The 1D short-range Heisenberg Hamiltonian is defined as

Ĥ =
∑

〈ij〉
Ŝi · Ŝj , (38)

the 1D long-range Heisenberg Hamiltonian as

Ĥ =
∑

i6=j

1

|i− j|+ 1
Ŝi · Ŝj , (39)

and the AFM transverse-field Ising Hamiltonian as

Ĥ =
∑

〈ij〉
Ŝz
i Ŝ

z
j +

∑

i

hŜx
i . (40)

1D Hubbard model

The 1D Hubbard Hamiltonian is defined as

Ĥ = −
∑

〈ij〉σ
a†iσajσ + U

∑

i

n̂i↑n̂i↓ (41)

where n̂iσ = a†iσaiσ , σ ∈ {↑, ↓}, and 〈·〉 denotes summation

over nearest-neighbors, here with open-boundary conditions.

We label the n lattice sites with an index i = 0 . . . n − 1,

and the 2n − 1 basis functions as |ϕ0〉 = |0 ↑〉, |ϕ1〉 = |0 ↓
〉, |ϕ2〉 = |1 ↑〉, |ϕ3〉 = |1 ↓〉 . . . . Under Jordan-Wigner

transformation, recalling that

n̂p =
1− Zp

2
,

â†pâq + â†q âp =
XpXq

∏p−1
k=q+1 Zk (1− ZpZq)

2
,

(42)

with p = 0 . . . 2n − 2 and q < p, the Hamiltonian takes the

form

Ĥ = −
∑

p

XpXp+2Zp+1 (1− ZpZp+2)

2

+ U
∑

p even

(1 − Z2i)(1 − Z2i+1)

4
+ µ

∑

p

(1 − Zp)

2

(43)

H2 molecule minimal basis model

We use the hydrogen molecule minimal basis model at the

STO-6G level of theory. This is a common minimal model

of hydrogen chains [51, 52] and has previously been stud-

ied in quantum simulations, for example in [29]. Given a

molecular geometry (H-H distanceR) we perform a restricted

Hartree-Fock calculation and express the second-quantized

Hamiltonian in the orthonormal basis of RHF molecular or-

bitals as [53]

Ĥ = H0 +
∑

pq

hpq â
†
pâq +

1

2

∑

prqs

vprqsâ
†
pâ

†
qâsâr (44)

where a†, a are fermionic creation and annihilation operators

for the molecular orbitals.

The Hamiltonian (44) is then encoded by a Bravyi-Kitaev

transformation into the 2-qubit operator

Ĥ = g0I⊗I+g1Z⊗I+g2I⊗Z+g3Z⊗Z+g4X⊗X+g5Y⊗Y ,
(45)

with coefficients gi given in Table I of [29].

MAXCUT Hamiltonian

The MAXCUT Hamiltonian encodes the solution of the

MAXCUT problem. Given a graph Γ = (V,E), where V
is a set of vertices and E ⊆ V × V is a set of links between

vertices in V , a cut of Γ is a subset S ⊆ V of V . The MAX-

CUT problem consists in finding a cut S that maximizes the

number of edges between S and Sc (the complement of S).

We denote the number of links in a given cut S as C(S).

In Figure 3 of the main text, we consider a graph

Γ with vertices V = {0, 1, 2, 3, 4, 5} and links E =
{(0, 3), (1, 4), (2, 3), (2, 4), (2, 5), (4, 5)}. It is easy to ver-

ify that S = {0, 2, 4}, {0, 1, 2}, {3, 4} and their comple-

ments Sc are solutions of the MAXCUT problem, with weight

Cmax = 5.

The MAXCUT problem can be formulated as a Hamilto-

nian ground-state problem, by (i) associating a qubit to every

vertex in V , (ii) associating to every partition S = an element

of the computational basis (here assumed to be in the z direc-

tion) of the form |z0 . . . zn−1〉, where zi = 1 if i ∈ S and

zi = 0 if i ∈ Sc, and finding the minimal (most negative)
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eigenvalue of the 2-local Hamiltonian

Ĉ = −
∑

(ij)∈E

1− Ŝz
i Ŝ

z
j

2
. (46)

The spectrum of Ĉ is a subset of numbers C ∈ {0, 1 . . . |E|}.

In the present work, we initialize the qubits in the state

|Φ〉 = |+〉⊗n, where |+〉 = |0〉+|1〉√
2

, and evolve Φ in imag-

inary time. Measuring the evolved state at time β |Φ(β)〉 will

collapse it onto an element |z0 . . . zn−1〉 of the computational

basis, which is also an eigenfunction of Ĉ with eigenvalue

C. In Figure 3 in the main text, we illustrate the probabil-

ity P (|C| = Cmax) that such measurements yield a MAX-

CUT solution. Note that, even in the presence of oscillations

(with the smallest domain size D = 2) this probability re-

mains above 60%.

Numerical simulation details

QITE stabilization

Sampling noise in the expectation values of the Pauli oper-

ators can affect the solution to Eq. (12) that sometimes lead

to numerical instabilities. We regularize S+ S
T against such

statistical errors by adding a small δ to its diagonal. To gener-

ate the data presented in Figures 2 and 4 of the main text, we

used δ = 0.01 for 1-qubit calculations and δ = 0.1 for 2-qubit

calculations.

QLanczos stabilization

In quantum Lanczos, we generate a set of wavefunctions

for different imaginary-time projections of an initial state |Ψ〉,
using QITE as a subroutine. The normalized states are

|Φl〉 =
e−l∆τĤ |ΨT 〉
‖e−l∆τĤΨT ‖

≡ nl e
−l∆τĤ |ΨT 〉 0 ≤ l < Lmax .

(47)

where nl is the normalization constant. For the exact

imaginary-time evolution and l, l′ both even (or odd) the ma-

trix elements

Sl,l′ = 〈Φl|Φl′〉 , Hl,l′ = 〈Φl|Ĥ|Φl′〉 (48)

can be computed in terms of expectation values (i.e. exper-

imentally accessible quantities) only. Indeed, defining 2r =
l + l′, we have

Sl,l′ = nlnl′ 〈ΨT |e−l∆τĤe−l′∆τĤ |ΨT 〉 =
nlnl′

n2
r

, (49)

and similarly

Hl,l′ = nlnl′ 〈ΨT |e−l∆τĤĤe−l′∆τĤ |ΨT 〉 =
=
nlnl′

n2
r

〈Φr|Ĥ|Φr〉 = Sl,l′ 〈Φr|Ĥ |Φr〉 .
(50)

The quantities nr can be evaluated recursively, since

1

n2
r+1

= 〈ΨT |e−(r+1)∆τĤe−(r+1)∆τĤ|ΨT 〉 =

=
〈Φr|e−2∆τĤ |Φr〉

n2
r

,

(51)

For inexact time evolution, the quantities nr and 〈Φr|Ĥ |Φr〉
can still be used to approximate Sl,l′ , Hl,l′ .

Given these matrices, we then solve the generalized eigen-

value equation Hx = ESx to find an approximation to the

ground-state |Φ′〉 = ∑

l xl|Φl〉 for the ground state of Ĥ . This

eigenvalue equation can be numerically ill-conditioned, as S
can contain small and negative eigenvalues for several reasons

(i) asm increases the vectors |Φl〉 become linearly dependent;

(ii) simulations have finite precision and noise; (iii) S, H are

computed approximately when inexact time evolution is per-

formed.

To regularize the problem, out of the set of time-evolved

states we extract a better-behaved sequence as follows (i) start

from |Φlast〉 = |Φ0〉 (ii) add the next |Φl〉 in the set of time-

evolved states s.t. |〈Φl|Φlast〉| < s, where s is a regularization

parameter 0 < s < 1 (iii) repeat, setting the |Φlast〉 = Φl

(obtained from (ii)), until the desired number of vectors is

reached. We then solve the generalized eigenvalue equation

H̃x = ES̃x spanned by this regularized sequence, remov-

ing any eigenvalues of S̃ less than a threshold ǫ. The ex-

act emulated QLanczos calculations reported in the main text

were stabilized with this algorithm (the source of error here

is primarily (iii)) using stabilization parameter s = 0.95 and

ǫ = 10−14. The stabilization parameters used in the QVM

and QPU QLanczos calculations were s = 0.75 and ǫ = 10−2

(the main source of error in the simulations was (ii)). Note

that the stabilization procedure is unlikely to fix all possible

numerical instabilities, but was sufficient for all models and

calculations performed in this work.

METTS algorithm

The METTS (minimally entangled typical thermal state) al-

gorithm [54, 55] is a sampling method to calculate thermal

properties based on imaginary time evolution. Consider the

thermal average of an observable Ô

〈Ô〉 = 1

Z
Tr[e−βĤÔ] =

1

Z

∑

i

〈i|e−βĤ/2Ôe−βĤ/2|i〉 (52)

where {|i〉} is an orthonormal basis set, and Z is the partition

function. Defining |φi〉 = P
−1/2
i e−βĤ/2|i〉, we obtain

〈Ô〉 = 1

Z

∑

i

Pi〈φi|Ô|φi〉 (53)

where Pi = 〈i|e−βH |i〉. The summation in Eq.(53) can be es-

timated by sampling |φi〉 with probabilityPi/Z , and summing

the sampled 〈φi|Ô|φi〉.
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In standard Metropolis sampling for thermal states, one

starts from |φi〉 and obtains the next state |φj〉 from ran-

domly proposing and accepting based an acceptance proba-

bility. However, rejecting and resetting in the quantum analog

of Metropolis [56] is complicated to implement on a quantum

computer, requiring deep circuits. The METTS algorithm pro-

vides an alternative way to sample |φi〉 distributed with prob-

ability Pi/Z without this complicated procedure. The algo-

rithm is as follows

1. Choose a classical product state (PS) |i〉.

2. Compute |φi〉 = P
−1/2
i e−βH/2|i〉 and calculate ob-

servables of interest.

3. Collapse |φi〉 to a new PS |i′〉 with probability p(i →
i′) = |〈i′|φi〉|2 and repeat Step 2.

In the above algorithm, |φi〉 is named a minimally entan-

gled typical thermal state (METTS). One can easily show that

the set of METTS sampled following the above procedure has

the correct Gibbs distribution [54]. Generally, {|i〉} can be

any orthonormal basis. For convenience when implementing

METTS on a quantum computer, {|i〉} are chosen to be prod-

uct states.

On a quantum emulator or a quantum computer, the

METTS algorithm is carried out as following

1. Prepare a product state |i〉.

2. Imaginary time evolve |i〉 with the QITE algorithm to

|φi〉 = P
−1/2
i e−βH/2|i〉, and measure the desired ob-

servables.

3. Collapse |φi〉 to another product state by measurement.

In practice, to avoid long statistical correlations between

samples, we used the strategy of collapsing METTS onto al-

ternating basis sets [54]. For instance, for the odd METTS

steps, |φi〉 is collapsed onto the X-basis (assuming a Z com-

putational basis, tensor products of |+〉 and |−〉), and for the

even METTS steps, |φi〉 is collapsed onto the Z-basis (tensor

products of |0〉 and |1〉). The statistical error is then estimated

by block analysis [57].

Implementation on emulator and quantum processor

We used pyQuil, an open source Python library, to express

quantum circuits that interface with both Rigetti’s quantum

virtual machine (QVM) and the Aspen-1 quantum processing

units (QPUs).

pyQuil provides a way to include noise models in the QVM

simulations. Readout error can be included in a high-level

API provided in the package and is characterized by p00 (the

probability of reading |0〉 given that the qubit is in state |0〉)
and p11 (the probability of reading |1〉 given that the qubit is

in state |1〉). Readout errors can be mitigated by estimating

the relevant probabilities and correcting the estimated expec-

tation values. We do so by using a high level API present in

pyQuil. A general noise model can also be applied to a gate in

the circuit by applying the appropriate Kraus maps. Included

in the package is a high level API that applies the same deco-

herence error attributed to energy relaxation and dephasing to

every gate in the circuit. This error channel is characterized

by the relaxation time T1 and coherence time T2. We also

include in our emulation our own high-level API that applies

the same depolarizing noise channel to every single gate by

using the appropriate Kraus maps. The depolarizing noise is

characterized by p1, the depolarizing probability for single-

qubit gates and p2, the depolarizing probability for two-qubit

gates. We do not include all sources of error in our emula-

tion. We applied the same depolarizing and dephasing chan-

nels to each gate operation for all qubits, when in reality, they

can vary from qubit to qubit. In addition, noise due to cross-

talk between qubits cannot be modeled using the QVM and

is another source of discrepancy between the QVM and QPU

results.

We investigate the influence of noise on the 2-qubit results

obtained via the QVM using different noise parameters; Noise

model 1: p00 = 0.95, p11 = 0.95, T1 = 10.5µs, T2 = 14.0µs, p1
= 0.001, p2=0.01, Noise model 2: p00 = 0.99, p11 = 0.99, T1 =

10.5µs, T2 =14.0µs, p1 = 0.001, p2 = 0.01 and, Noise model

3: p00 = 0.99, p11 = 0.99, T1 = 20.0µs, T2 =40.0µs, p1 =

0.0001, p2=0.001. Noise model 1 reflects realistic parameters

that characterize the Aspen-1 QPUs we run our calculations

on; p00, p11, T1, and T2 are reported values whereas p1 and

p2 are values typically used to benchmark error mitigation al-

gorithms [58]. We repeated 10 calculations for each noise

model and note there is practically no variation from run to

run. Fig. 5(a) shows that reducing the readout error does not

greatly affect the converged ground state energy after read-

out error mitigation has been performed. However, reducing

the other sources of error does improve the converged energy.

Note that sufficient measurement samples are used such that

the sampling variance is smaller than that due to noise.

We also ran 2-qubit simulations on different pairs of qubits

on Aspen-1, with Q1 consisting of qubits 14, 15 and Q2 con-

sisting of qubits 0, 1. These two pairs are reported to have

different noise characteristics; Q1: p00 = 0.95, p11 = 0.95, T1
= 10.5µs, T2 =14.0µs, and, Q2: p00 = 0.90, p11 = 0.90, T1
= 6.5µs, T2 =8.0µs. Based on this, we expect simulations on

Q2 to be worse. Note that in contrast to our QVM calcula-

tions, the results from the actual devices varied from run to

run. Thus, we present the mean and standard deviation for 10

different runs on each pair. (Similarly, sufficient samples are

taken when running the QVM such that the sampling variance

is smaller than that due to noise). Fig. 5(b) indeed demon-

strates that Q2 provides a less faithful implementation of the

quantum algorithm.
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Parameters used in QVM and QPUs simulations

In this section, we include the parameters used in our QPU

and QVM simulations. Note that all noisy QVM simulations

(unless stated otherwise in the text) were performed with noise

parameters from noise model 1. We also indicate the number

of samples used during measurements for each Pauli operator.

TABLE I: QPUs: 1-qubit QITE and QLanczos.

Trotter stepsize nSamples δ s ǫ

0.2 100000 0.01 0.75 10−2

TABLE II: QPUs: 2-qubit QITE and QLanczos.

Trotter stepsize nSamples δ s ǫ

0.5 100000 0.1 0.75 10−2

TABLE III: QPUs: 1-qubit METTS.

β Trotter stepsize nSamples nMETTs δ
1.5 0.15 1500 70 0.01

2.0 0.20 1500 70 0.01

3.0 0.30 1500 70 0.01

4.0 0.40 1500 70 0.01

TABLE IV: QVM: 2-qubit QITE and QLanczos.

Trotter stepsize nSamples δ s ǫ

0.5 100000 0.1 0.75 10−2

TABLE V: QVM: 1-qubit METTS.

β Trotter stepsize nSamples nMETTs δ
1.0 0.10 1500 70 0.01

1.5 0.15 1500 70 0.01

2.0 0.20 1500 70 0.01

3.0 0.30 1500 70 0.01

4.0 0.40 1500 70 0.01

TABLE VI: QVM: 2-qubit METTS.

β Trotter stepsize nSamples nMETTs δ
1.0 0.10 30000 100 0.1

1.5 0.15 30000 100 0.1

2.0 0.20 30000 100 0.1

3.0 0.30 30000 100 0.1

4.0 0.40 30000 100 0.1
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