
Determining Essential Statistics for Cost Based
Optimization of an ETL Workflow

Ramanujam Halasipuram
IBM Research

India
ramanujam.s@in.ibm.com

Prasad M Deshpande
IBM Research

India
prasdesh@in.ibm.com

Sriram Padmanabhan
IBM Software Group

US
srp@us.ibm.com

ABSTRACT
Many of the ETL products in the market today provide tools for

design of ETL workflows, with very little or no support for opti-

mization of such workflows. Optimization of ETL workflows pose

several new challenges compared to traditional query optimization

in database systems. There have been many attempts both in the

industry and the research community to support cost-based opti-

mization techniques for ETL Workflows, but with limited success.

Non-availability of source statistics in ETL is one of the major chal-

lenges that precludes the use of a cost based optimization strategy.

However, the basic philosophy of ETL workflows of design once

and execute repeatedly allows interesting possibilities for determin-

ing the statistics of the input. In this paper, we propose a frame-

work to determine various sets of statistics to collect for a given

workflow, using which the optimizer can estimate the cost of any

alternative plan for the workflow. The initial few runs of the work-

flow are used to collect the statistics and future runs are optimized

based on the learned statistics. Since there can be several alterna-

tive sets of statistics that are sufficient, we propose an optimization

framework to choose a set of statistics that can be measured with

the least overhead. We experimentally demonstrate the effective-

ness and efficiency of the proposed algorithms.

1. INTRODUCTION
Extract - Transform - Load (ETL) tools are special purpose soft-

ware artifacts used to populate a data warehouse with up-to-date,

clean records from one or more sources. To perform this task, a

set of operations should be applied on the source data. The major-

ity of current ETL tools organize such operations as a workflow.

At the logical level, an ETL workflow can be considered as a di-

rected acyclic graph (DAG) used to capture the flow of data from

the sources to the data warehouse. The input nodes of the graph

represent the source record-sets, whereas the output nodes repre-

sent the target record-sets that need to be populated. The interme-

diate nodes represent transformation, cleansing and join activities

that reject problematic records and reconcile data to the target ware-

house schema. The edges of the graph represent input and output

relationships between the nodes.

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Unlike SQL, which is declarative in nature, ETL workflows are pro-

cedural and specify the sequence of steps to transform the source

tables into the target warehouse. Many of the ETL tools in the mar-

ket today provide support for design of ETL workflows, with very

little or no support for optimization of such workflows. The effi-

ciency of the ETL workflow depends to a large extent on the skill

and domain knowledge of the workflow designer. This may work

well in some situations. However, an ETL workflow is typically

designed once and executed periodically to load new data. An ETL

workflow that was efficient to start with can easily degrade over

time due to the changing nature of the data.

It would be useful to add support for optimization of ETL work-

flows to ETL engines. Optimization techniques developed for tra-

ditional DB systems could potentially be reused. However, there

are several challenges specific to ETL that need to be addressed to

make this possible. These are summarized below:

• Variety/Multiplicity of data sources like DBMS, flat files,

etc: A ETL workflow can integrate data from multiple sources.

This makes it impossible to push the query into the source

systems, since it may need joins of tables across sources. Be-

sides, some of the sources could be flat files or other sources

that do not support SQL.

• Transformation operators: Many of the operators in an

ETL workflow transform data from one form to another, ei-

ther for cleansing or standardizing into a normal form. These

transformation operators are often custom code, the seman-

tics of which may not be known to the optimizer. These op-

erators are essentially black box operations for the optimizer,

which makes the optimization extremely challenging.

• Constraints due to intermediate results: In an ETL work-

flow, other than the target table, some intermediate results

can also be collected. For example, a common pattern in a

join operator is to collect all tuples that do not join with the

other table (these are called as reject links) into a separate

table to aid in diagnostics. Such intermediate results pose

additional constraints while reordering a workflow, since the

reordering may make it impossible to generate the same set

of intermediate results.

• Non-availability of statistics for cost-based optimization:

Since the source systems are different from the ETL engine,

the ETL engine does not have access to the statistics in the

source databases. Even if the statistics could be made avail-

able, they may be insufficient. The extreme case is when the

sources are flat files, since there will be no statistics available

307 10.5441/002/edbt.2014.29

at all. This makes it impossible to do any kind of cost based

optimization.

There have been many attempts both in the industry and the re-

search community to address these challenges and develop opti-

mization techniques for ETL Workflows. However, they have had a

limited impact on the ETL tools in the market. We revisit this prob-

lem to identify the missing links in the solution. The challenges due

to the transformation operators have been largely addressed. How-

ever, all the existing techniques assume that statistics are available

for cost-based optimization, which is clearly not the case. We ad-

dress this important gap in this paper, and describe techniques for

learning the required set of statistics needed for optimizing the ETL

workflow. We exploit the pattern of design once and execute re-

peatedly of ETL workflows to develop an approach for learning the

statistics in the initial executions so that future executions can be

optimized.

Traditional database systems maintain a set of statistics, often by

using histograms, so that it can estimate the cardinalities for various

sub-expressions of queries that can be run on the data. Since the set

of queries is not known beforehand, the database cannot target the

statistics for any specific query. The set of possible statistics for

a given table can be quite large. For example, for a table with n

columns, there could be 2
n possible multi-attribute distributions,

one for each subset of attributes. A multi-attribute distribution on

all the attributes is sufficient to compute all the other distributions.

However, such a distribution will be very large (likely equal to the

database size itself) thus making it very expensive to create and

maintain. A common strategy to avoid this is to store only single

column distributions and use attribute independence assumption to

estimate the multi-attribute distributions needed by the query. This

may introduce errors in the estimation, since the attributes may not

be independent in practice.

In the design once execute repeatedly scenario of ETL, the work-

flow that is going to run on the data is precisely known. Thus,

rather than maintaining the multi-attribute distribution on all at-

tributes, it is possible to figure out a much smaller set of statis-

tics needed to optimize the workflow. These targeted statistics

will enable the optimizer to estimate the cardinalities of all pos-

sible sub-expressions and to cost all alternative plans. Our pro-

posed system analyzes the workflow to determine a set of statistics

that are sufficient to cost any reordering of the flow. For exam-

ple, consider 3 possible plans for an ETL workflow as shown in

Figure 1. In order to be able to cost these alternative plans, one

would need to estimate the cardinalities of the sub-expressions:

Orders, Product, Customer, Orders ✶ Product, Orders ✶

Customer and Product ✶ Customer. It can be seen that to

estimate these, the set of statistics needed are the distribution of

(Product_id, Customer_id) on Orders, (Product_id) on Product

and (Customer_id) on Customer.

Since the ETL engine does not have control on the source databases,

these statistics need to be observed by the ETL engine itself. The

ETL engine measures these statistics in the initial one or multiple

runs and uses them to optimize subsequent runs of the workflow.

There could be different sets of statistics that are sufficient to cost

any reordering of the flow and the overhead of measuring these

statistics could vary widely. In the above example, if the plan 1(a)

is executed, the cardinality of Order ✶ Product can be directly

observed. Thus, the only other statistics needed are the distribution

of (Customer_id) on Customer and Orders and the cardinality

Figure 1: Plans for an ETL workflow

of Product. This is likely to be much cheaper in terms of memory

overhead since there is no multi-attribute distribution to be mea-

sured. We model this as an optimization problem and determine

an optimal set of statistics to be measured for any given workflow,

such that the overhead of measuring is minimal. In summary, our

contributions are as follows:

• A framework for optimization of ETL workflows that are re-

peatedly executed, when the statistics on the source tables

are either unavailable or incomplete.

• An algorithm for selecting an optimal set of statistics to be

measured given an ETL workflow, such that any reordering

of the workflow can be costed accurately by the optimizer.

• An experimental evaluation to validate the effectiveness of

the proposed algorithm.

There is a caveat that the underlying data may change even though

the same flow is executed repeatedly. Thus, the statistics gathered

in one execution may not be valid future executions. In practice

the data changes gradually and thus we assume that the statistics

from one execution are valid for the next execution. The whole

cycle is repeated in each execution so that the statistics are kept up-

dated with the changing data. Further, it can be noted that though

the techniques are explained in the context of ETL workflows, they

apply equally to SQL queries which are repeatedly executed and

warrant the extra effort of gathering accurate statistics to enable

perfect optimization. The rest of the paper is organized as follows.

In Section 2, we survey the related work in this area. In Sections 3

and 4, we lay the framework and describe how to determine the

statistics required to cost any plan. We further extend this into an

optimization framework for determining the optimal set of statis-

tics in Section 5. In Section 6, we describe how to exploit metadata

about functional dependencies to reduce the statistics needed. We

describe the experimental results in Section 7, discuss possible fu-

ture work in Section 8 and finally conclude in Section 9.

2. RELATED WORK
There have been many techniques proposed by the research com-

munity in the past for cost-based optimization of ETL workflows.

Most of the papers [17, 23, 16, 14, 21] focused on conceptual

modeling of ETL optimization. [17] models the problem as an

state-space search problem and defines operators for generating

the search space. [23] delves into the conceptual modeling of the

ETL process, while [16] details the mapping of them into logical

308

ETL processes. [14] touches upon efficient heuristics for logical

optimization of the ETL workflows. [21] extended the ETL opti-

mization to physical implementation for the logical counterparts.

Recently metrics other than cost have also been considered for op-

timization. [18] introduces the idea of optimizing ETL workflows

for quality metrics such as reliability and scalability. [19] consid-

ers optimizing ETL workflows for external interruptions like faults

etc. All these ETL optimization strategies assume the availability

of statistics necessary in determining the cost of the operator and

focus on the process of cost-based optimization using the operator’s

cost. In contrast, the primary contribution of our work is to address

the issue of estimating the operator cost when the input statistics

are either missing or incomplete.

Some of the commercial ETL engines support static rule-based op-

timizations. For example, IBM DataStage has introduced this no-

tion under its Balanced Optimization feature [9], while Informat-

ica [11] also has similar features built into its product. While these

techniques do support workflow optimization, the static nature of

the rules doesn’t take any cost metrics into consideration.

Though the current work is primarily motivated by ETL workflows,

there is a lot of work in SQL query optimization area that is some-

what related to this work. Most of the published work regarding

SQL query re-optimization can be classified into one of the follow-

ing two categories:

a) re-optimizations of the current (or ongoing) query; and

b) optimization of future queries

Techniques such as mid-query re-optimization [12], eddies [2], proac-

tive re-optimization [15], query scrambling [22], etc. belong to the

first category. Work related to statistics tuning and learning [7, 1,

5, 20, 3, 4, 6, 8] fall into the second category. IBM Learning Opti-

mizer(LEO) [20] explores the idea of using actual cardinalities for

adjusting the optimizer estimates. [3, 4] extend the notion of car-

dinality observation to intermediate sub expressions and introduce

a framework for observing the cardinalities of SEs and using them

as part of query optimization. The work most relevant to this paper

is the pay-as-you-go framework [6], which recognizes that just ob-

serving the cardinalities may not help in finding the optimal plan for

the current query. The actual cardinalities of many sub-expressions

not covered in the current plan are not observed, since the plan is

not being altered. They introduce the idea of plan modification to

ensure that all the sub-expressions are covered over the different

plans. This enables observation of the cardinalities of all the sub-

expressions, thus enabling the selection of the optimal plan. Of

course, exploring the cardinalities of all the sub-expressions might

be an overkill and to strike a balance, XPLUS [8] introduces ex-

perts which control the trade-off between exploration of the search

space (to determine cardinalities of different sub-expressions) and

exploitation of cardinalities of the known sub-expressions. How-

ever, in both of these techniques, the only way to determine the

cardinality of a sub-expression is to observe it directly. They do

not consider observing other statistics that could be used to com-

pute the cardinalities. Thus, to be able to measure all cardinalities

of all possible sub-expressions, they would require to run a large

number of plans. To address this limitation, our framework gener-

alizes this to observe different kinds of statistics, including cardi-

nalities and attribute distributions. A smaller number of attribute

distributions are sufficient to compute the cardinalities of all possi-

ble sub-expressions.

Our proposed technique falls into the second category of optimiza-

tion of future queries, based on observations made in the current

run. To the best of our knowledge, this is the first effort to develop

a systematic framework that considers alternative sets of statistics

for a given query to choose the option with the minimal overhead

of observation.

3. STATISTICS COLLECTION FRAMEWORK

3.1 Preliminaries
In this section, we introduce the concepts and terminology used in

the rest of the paper. The notations used in the following discussion

are listed in Table 1.

Symbol Description

E
The set of all possible sub-expressions over all

the plans for an ETL flow

Ti
The relation Ti corresponding to sub-

expression ei

Ti1,i2,...im Ti1 ✶ Ti2 ✶ . . . Tim

|T | The cardinality of relation T

Ha
T Histogram on attribute a of relation T

|Ha
T |

The sum of the values in the histogram, this will

be equal to |T |

|aT |
The number of distinct values of attribute a in

relation T

|a| The domain size of a over all relations

Jij Join key between Ti and Tj

Jij

✶ Join of relations Ti and Tj using Jij

T
Jij

i

The rows from Ti that satisfy the join predicate

Jij

T
Jij

i

The rows from Ti that were rejected by join

predicate Jij

〈

Ha
T1
|Ha

T2

〉

For each bucket of the histogram Ha
T1

, multi-

ply the frequency value with its corresponding

frequency value in Ha
T2

Ha
T1

Ha
T2

For each bucket of the histogram Ha
T1

, divide

the frequency value with its corresponding fre-

quency value in Ha
T2

G(T, a) Group by of T on attribute a

U(T, a)
A ETL transform operator (UDF) applied to at-

tribute a of T

Table 1: Symbol descriptions

Sub-expressions: Given a ETL workflow, determining an optimal

plan based on a cost metric involves identifying different possible

re-orderings of the given flow and cost them. Cost-based optimiz-

ers use different transformation rules defined by the semantics of

the operators to determine alternative orderings of the given flow.

These transformation rules define all valid re-orderings of the oper-

ators and thus enable the optimizer in generating a search space of

candidate plans. Once the candidate plans are identified, operator

cost models help the optimizer in determining the cost of the plan.

The cost model estimates the cost of each operator based on inputs

like the cardinalities of the input relations, CPU and disk-access

speeds, memory availability, etc. The most important factors de-

termining the cost of any operator (including the standard select,

project, join and group-by operators) are the cardinalities of the in-

puts. Thus, for a given plan, if the cardinalities of the outputs at

all intermediate stages of the plan are determined, the cost of any

operator in the plan and therefore the total cost of the plan could

309

be computed. A sub-plan denotes a subset of the plan till some

intermediate stage and a sub-expression (SE) logically denotes the

result at an intermediate stage of the plan.

For example, consider the sample plans shown in Figure 1 again.

The SEs for the plan 1(a) are Orders, Product, Customer, Orders

✶ Product. A different plan for the same query may produce addi-

tional SEs. For example, plan 1(b) will produce the SE Orders ✶

Customers. Thus, in order to be able to cost all possible plans, we

need to look at all possible SEs that can be produced in any of the

plans. We will denote the set of all possible SEs over all possible

plans as E . For simplicity of explanation, the expression corre-

sponding to the complete flow is also included in E . Note that a SE

is a logical entity and different plans may produce the same SE in

different ways. For example, all the three plans in Figure 1 produce

the same SE Product ✶ Orders ✶ Customer. In general, for a

join of n tables T1, T2, . . . Tn, considering all possible join orders,

the set E will contain all possible joins, i.e. joins corresponding to

each of the 2
n subsets of {T1, T2, . . . Tn}.

Candidate Statistics Set: To determine some statistics of a SE,

other statistics on the composing SEs can be used. A set of statis-

tics that is sufficient for computing a statistic of a SE is defined as a

sufficient statistics set for that statistic. Further, such a set is mini-

mal if any subset of it is not sufficient. We denote such a minimally

sufficient set of statistics as a candidate statistics set (CSS) for the

statistic. There could be multiple CSSs for a statistic. Note that a

possible CSS for a statistic is a set containing that statistic itself.

This set is referred to as the the trivial CSS for that statistic.

For example, for the statistic |Orders ✶ Customer|, a CSS is

{HCustomer_id
Orders , HCustomer_id

Customer }, since Customer_id is the join

column and join cardinality can be estimated if the distributions on

the join attributes of both the relations are known. The trivial CSS

in this case is {|Orders ✶ Customer|}. Similarly, for the statis-

tic, HCustomer_id
Orders , a possible CSS is {HCustomer_id,Product_id

Orders }

and the trivial CSS is {HCustomer_id
Orders }.

We further define a notion of an observable statistic. A statistic is

observable in a given plan if it can be observed by instrumenting the

plan to collect statistics at the appropriate points. For example, con-

sider the plan shown in Figure 1(a). Both the statistics in the CSS

{HCustomer_id
Orders , HCustomer_id

Customer } are observable in this plan, since

the plan can be instrumented to build the histograms on Orders

and Customer, just after the corresponding nodes in the plan. On

the other hand, the trivial statistic |Orders ✶ Customer| is not

observable, since Product is joined with Orders, before joining

with Customer.

The estimates will be exact only if the histogram stores a frequency

count for each value in the domain. In reality, the estimates will

be approximate since histograms bucketize the values and store the

average frequency count for each bucket. Currently, we consider

only histograms that can accurately estimate the cardinalities. Esti-

mation errors introduced because of approximate statistics are left

as part of a future exercise (Section 8).

Problem Statement: Any framework that identifies sufficient statis-

tics to enable cost-based optimization should guarantee that the

statistics identified are enough to compute the cost of any SE in

the set E for the given flow. If at least one CSS for each SE in

the set E is available, the cost of any plan for the given flow can

be computed, thus enabling the cost-based optimizer to select the

best plan. Thus, the goal of the framework can be stated as follows:

given an ETL flow, identify a set of statistics to observe such that it

covers at least one CSS for each SE in the set E corresponding to

the flow.

3.2 The Framework
The overall flow of the ETL optimization process is shown in Fig-

ure 2. The process starts with the initial plan, i.e. the workflow

defined by the user. The system analyzes the workflow to deter-

mine optimizable blocks. For each optimizable block, the set of all

possible SEs is determined. The next step is to determine the pos-

sible CSS for each SE. A set of statistics is determined such that

it contains at least one CSS for each SE. The plan is then instru-

mented with code to collect these statistics and then run to actually

gather the statistics. Based on the collected statistics, the optimizer

can now cost alternative plans and the best plan is chosen for future

runs of the flow. The entire cycle is repeated periodically, since

the underlying data characteristics may be changing. If the data

changes sufficiently, a plan that was optimal at one time may no

longer be optimal. So it becomes necessary to collect the statistics

and re-optimize again. The process can either repeat at each run of

the workflow or at some other user defined interval.

Steps 1, 2 and 7 are standard steps for any optimizer. Since they

have been covered by prior work on ETL optimization, we just pro-

vide a brief description, pointing out some considerations specific

to ETL flows. Steps 3 to 6 pertain to identifying and gathering

the required statistics and form the focus of this paper. If an ETL

engine already has an optimizer module, we can integrate these ad-

ditional steps into the optimizer flow. We elaborate on the steps in

the following sections.

Figure 2: Overview of the Optimization Process

3.2.1 Identifying Optimizable Blocks
Due to some constructs in the ETL, it may not be possible to op-

timize the entire workflow as one unit. The workflow needs to be

broken up into smaller units, each of which can be independently

optimized. In this step, the system analyzes the workflow to iden-

tify the boundaries in the flow across which the the operators cannot

be moved for optimization. Specifically, the following conditions

need to be checked:

310

• Materialized Intermediate Results: ETL flows often mate-

rialize some intermediate results, typically to aid diagnostics

or to be used in some other flow. A common example is a

reject link that collects the tuples in a relation that do not

join with the other relation. Blocking operators such as sort

may also need the preceding results to be explicitly material-

ized. Any point at which an intermediate result is explicitly

materialized identifies a block boundary.

• Transformation Operators: Another common pattern is the

use of operators that transform attribute values from one form

to another. Often, the transformation operators do not affect

the join re-orderings. However, in some cases, when the op-

erator is applied on an attribute derived from the join of mul-

tiple relations T1, T2, . . . Tn, and when its result is used in a

further join, it forces the relations T1, T2, . . . Tn to be always

joined before they join with the rest of the relations. This, in

effect, creates a block boundary.

• Aggregate UDF operators: UDFs and custom operators are

also frequently used in ETL workflows. A custom operator

that aggregates its input tuples to produce a smaller number

of output tuples is blocking in nature. Since the semantics

of the operators is a black box to the optimizer, the safest

strategy is to consider it as a block boundary.

Consider the example workflow shown in Figure 3. This work-

flow will be divided into three optimizable blocks. The first block

boundary B1 is due to the fact that reject link T1 is materialized.

The second boundary B2 is due to the UDF transformation that

creates a derived attribute c that is a join attribute of the subsequent

join with T4. These boundaries imply that any reordering of joins

should respect the block boundaries, for example, T3 cannot be

moved across B1. The block boundaries reduce the search space

for the optimizer since each block can be optimized independently.

Figure 3: Optimizable Blocks

3.2.2 Generating Sub-expressions
The next step is to identify all possible SEs for each optimizable

block. The set of possible SEs depends on the semantics of the

operators, which determines where the operator can be placed in

the flow. For a join on multiple relations, there are many different

join orders possible and each join order would generate a set of

SEs. For example, for a join on 3 relations, the set E consists of

{T1, T2, T2, T12, T13, T23, T123}. As a case in point, T13 occurs in

the join order (T1 ✶ T3) ✶ T2.

The optimizer may not have support for a few valid transforma-

tions. For example, for the initial plan shown in fig 4(a), the re-

ordered plan shown in fig 4(b) is a valid transformation. However,

the optimizer may not support such a transformation. The opti-

mizer may also exploit some metadata to avoid generating some

plans and reduce the search space. For example, a foreign key

join is essentially a look-up and the cardinality of the join-result

is same as the cardinality of the foreign-key table. In case of a

cross product, the cardinality of the join-result is the product of the

input cardinalities. Thus, the optimizer may only consider plans

that have foreign key joins and no cross products. In general, there

is no need to consider SEs from any plan that the optimizer is not

going to generate in its search process, since the optimizer does not

need to estimate the cost of such plans. To avoid this mis-match, a

close integration is required in which only the plans generated by

the optimizer are considered for generating the set E .

Figure 4: Sample ETL with aggregation

3.2.3 Generating Candidate Statistics Set
Once the SEs are determined, the system computes possible CSSs

for each of the SE. Each CSS for an SE provides an alternative for

estimating the cardinality of that SE. We elaborate on the process

of generating CSSs in Section 4.

3.2.4 Determine Minimal Set of Statistics
There is a cost associated with observing a CSS in a given flow,

which could include the cpu cost and the memory cost for observ-

ing the distributions. In this step, a set of statistics is chosen, such

that at least one CSS for each SE is covered, and at the same time

the cost of observing the statistics is minimal. The details of this

process are described in Section 5.

3.2.5 Instrument Plan to Get Statistics
The plan has to be instrumented to observe the set of statistics that

is chosen by the previous step. Many commercial ETL engines

provide a mechanism to plug in user defined handlers at any point

in the flow. These handlers are invoked for every tuple that passes

through that point. This makes it very easy to plug in code that

can observe the required statistics. We consider two main types of

statistics:

1. Cardinality: The cardinality of any observable SE can be

observed by maintaining a simple counter at the correspond-

ing point in the flow. The counter is incremented for each

tuple passing through that point. The memory cost of this is

the overhead of maintaining one integer (4 bytes) in memory.

2. Distributions: The distribution (histograms) of any observ-

able SE can be observed by maintaining a histogram at the

corresponding point. For each tuple passing through the point,

the attribute corresponding to the histogram is observed and

the corresponding histogram bucket is incremented. The mem-

ory cost of this is equal to the domain size of the attribute on

which the histogram is being built.

3.2.6 Run Instrumented Plan and Observe Statistics
In this step, the instrumented plan is executed and the required

statistics are gathered. The previous steps ensure that sufficient

311

statistics are now available for the optimizer to cost any possible

plan for the given ETL flow.

3.2.7 Optimize ETL
This step uses traditional cost based optimization techniques to de-

termine the plan with the least cost. Since all the required statistics

are already computed, the cost of each alternative plan can be accu-

rately determined. We will not elaborate on this step further, since

any existing cost based optimization technique can be used.

4. GENERATING CANDIDATE STATISTICS

SET
As mentioned in the previous section, the step of generating CSSs

should be closely integrated with the optimizer, since only the plans

considered by the optimizer in its search process need to be consid-

ered. Optimizers typically use dynamic programming, in which the

SEs are incrementally built into larger SEs. For each SE, the opti-

mizer considers alternative plans to compose it from smaller SEs.

DEFINITION 1. Plan: A plan specifies a method of evaluating a

SE based on smaller SEs, i.e. pe : op(e1, . . . ek), where pe denotes

a plan for SE e, op is an operator and e1, . . . , ek are other SEs. For

example, two plans for T1,2,3 are ✶ (T1,2, T3) and ✶ (T1, T2,3).
Let Pe denote the set of all plans for e.

We assume that we can get the set of all SEs and the plans con-

sidered for them from the optimizer, i.e. we can get the set P =
{(e, Pe) : e ∈ E}. The next step is to generate the CSSs for com-

puting the cardinality of each SE, using the rules described next.

Figure 5: Sample ETL plan

4.1 Rules for generating CSS
Let us consider the problem of determining some statistics of a SE.

The types of statistics we consider include cardinality (|T |), distinct

values for an attribute (|aT |), and distributions (Ha
T). The statistic

on a SE may be directly observable if that SE occurs in the plan

being executed. In other cases, it could be computed from other

statistics, depending on the plan being considered. The semantics

of the operator in the plan determines how the output statistics can

be computed. In general, to enable estimation over composition of

operators, we need to define rules for each type of operator.

DEFINITION 2. Rule: A rule specifies a method of computing

a statistic on a SE, based on the statistics of other SEs and the

operator being applied. Let se = (s, e) denote a statistic for SE e,

Se be the set of all statistics for e and S be the set of all statistics

over all the SEs. A rule is a function Pe × Se → 2S , i.e. a rule

r applied to a statistic se and plan pe determines the set of other

statistics {se1 , . . . sek} that can be used to compute se, under plan

pe. For example, for the SE T1,2,3 and the plan Join(T1,2, T3),
one possible rule is that the output cardinality can be computed

using the input distributions on the join column, i.e. |T1,2,3| can be

computed using {Ha
T1,2

, Ha
T3
}, where a is the join attribute.

These rules can be applied recursively to generate different CSS for

a given a SE. We list the rules for some of the common operators

used in ETL below.

4.1.1 Select and Project Operators
The rules for select and project operators are listed in Table 2 and

are quite straightforward. The first rule says that the cardinality

of a selection can be estimated if the distribution on the selection

attribute is known. The second rule specifies that the distribution

of an attribute b on the output of a selection on attribute a can be

estimated if a joint distribution on (a, b) is known on the input re-

lation. The project operator only selects certain columns, so the

output cardinalities and distributions are identical to the input car-

dinalities and distributions.

Id Plan se Inputs

S1 σa(T1) |σa(T1)| Ha
T1

S2 σa(T1) Hb
σa(T1)

H
(a,b)
T1

if b 6= a

P1 πa(T1) |πa(T1)| |T1|

P2 πa(T1) Hb
πa(T1)

Hb
T1

Table 2: Rules for Select and Project

4.1.2 Join Operator
There are multiple ways to estimate the cardinality of a join opera-

tor. These are listed in Table 3. The first set of rules (J1 and J2) are

derived from the standard technique used by optimizers to estimate

join cardinalities. The cardinality of a join can be determined from

the distributions on the input tables on the join attribute, by taking

a dot product, i.e. |T1,2| = Ha
T1
.Ha

T2
, where a is the join attribute.

Similarly, to estimate the distribution on the output of the join, we

need a joint distribution on attributes a, b on the table to which b be-

longs. A matrix multiplication between the two distributions H
a,b

T1

and Ha
T2

will produce the required distribution on the join results

Hb
T1,2

, in the case where b ∈ T1.

Id Plan se Inputs

J1 ✶a (T1, T2) |T1,2| Ha
T1

, Ha
T2

J2 ✶a (T1, T2) Hb
T1,2

, H
a,b

T1
, Ha

T2
if b ∈ T1

where b 6= a Ha
T1

, H
a,b

T2
otherwise

J3 ✶a (T1, T2) Hb
T1,2

, Hb
T1

, Hb
T2

where b = a

J4 ✶a (T1, T2) |T1,2| H
J13

T1,2,3
, H

J13

T3
,

∣

∣

∣
T1

J12

✶ T2

∣

∣

∣

J5 ✶a (T1, T2) Hb
T1,2

H
J13,b

T1,2,3
, H

J13

T3
, Hb

T1
J12✶T2

Table 3: Rules for Join

Rules J4 and J5 are derived from the union-division method, which

is a new method proposed by us in order to exploit the observable

statistics from the plan to the maximum. For example, if the initial

plan was as shown in Figure 5, then SE T1,2 is not directly ob-

servable. However, T1,2,3 is observable, so we try to exploit the

312

distributions on T1,2,3. All the rows that form part of IR T1,2,3

would be part of T1,2. Rows from T1 that do not join with T3 get

filtered from T1,2,3, whereas they are included in T1,2. Thus,

T1,2 = T1
a
✶ T2

= (T J13

1 ∪ T
J13

1)
a
✶ T2

= (T J13

1

a
✶ T2) ∪ (T

J13

1
a
✶ T2) (1)

Thus to compute the cardinality of T1,2, we need to compute the

cardinalities of (T J13

1

a
✶ T2) and (T

J13

1
a
✶ T2). Denoting (T J13

1

a
✶

T2) as T ′

1,2, and considering the fact that a join has a multiplicative

effect on the distribution of the join attribute,

T1,2,3 = T
′

1,2 ✶ T3

Thus,H
J13

T1,2,3
=

〈

H
J13

T ′

1,2

|HJ13

T3

〉

Thus,H
J13

T ′

1,2

=
H

J13

T1,2,3

H
J13

T3

(2)

Putting them together, we get:

∣

∣T
′

1,2

∣

∣ =
∣

∣

∣
H

J13

T ′

1,2

∣

∣

∣

=

∣

∣

∣

∣

∣

H
J13

T1,2,3

H
J13

T3

∣

∣

∣

∣

∣

, from Equation 2 (3)

Thus, to compute the cardinality of T1,2, we need to observe H
J13

T1,2,3
,

H
J13

T3
and

∣

∣

∣
(T

J13

1 ✶ T2)
∣

∣

∣
, as mentioned in the rule J4. The rule J5

can be similarly derived. Note that to observe T
J13

1 ✶ T2, we may

need to add an explicit reject link for T1 after its join with T3, if it

does not already exist, as shown in Figure 5. Though it looks like

this technique requires a lot more statistics, it can be cheaper since

the number of tuples on the reject link can be small.

4.1.3 Group By Operators
The rules for group-by operator are listed in Table 4. The first rule

specifies that the cardinality of the group-by is same as the number

of distinct values of the group-by attributes in the input table. The

distribution of attributes b on the group-by result can be computed

from the histogram on T for attributes a, when b ⊆ a. If b is not

a subset of a, the distribution does not exist, since b will not be

present in the output tuples.

Id Plan se Inputs

G1 G(T, a) |G(T, a)| |aT |

G2 G(T, a) Hb
G(T,a) H

(a)
T if b ⊆ a

Table 4: Rules for Group By

4.1.4 Transformation Operators
Finally, the rules for transformation operators are listed in Table 5.

These operators could even be custom user defined functions. Since

transformation operators only transform the attributes, they do not

affect the cardinality. Thus the cardinality of the output is same as

that of the input. The distribution of attributes b on the transforma-

tion result is the same as the distribution of b on the input, if b 6= a.

This is because the transformation leaves b unchanged. If b = a,

the distribution of output cannot be computed from the input dis-

tributions, since it depends on the actual transformation function.

Id Plan se Inputs

U1 U(T, a) |U(T, a)| |T |

U2 U(T, a) Hb
U(T,a) H

(b)
T if b 6= a

Table 5: Rules for Transformation operators

4.1.5 Identity Rules
These rules are not specific to any operator, but directly apply to

any SE and are listed in Table.

Id se Inputs

I1 |T | Ha
T

I2 Ha
T H

a,b

T

Rule I1 specifies that the cardinality of

a relation can be computed from a his-

togram on any set of attributes of that

relation, by just adding up the bucket

values. Rule I2 specifies that a his-

togram on attribute set a can be com-

puted from a more fine-grained histogram on attributes (a, b), again

by aggregating on the buckets on the b attribute.

4.2 Applying the rules to generate CSS
Given an initial workflow, and the plan space generated by the opti-

mizer, we can apply the rules to generate the CSS for the flow. The

algorithm is listed in Algorithm 1. W is the workflow for which

the statistics need to be determined, R is the set of all non-identity

rules and I is the set of identity rules. Given the initial plan, the

optimizer is invoked to generate the plan space (lines 1–3) and the

set of possible SEs over all the plans (E). Since we are interested in

estimating the cardinalities of all SEs, we add the cardinality statis-

tic to the tobecomputed set (lines 4–5). Lines 6–16 iterate over

all the statistics in the tobecomputed set. For each statistic se to

be computed, the plans generated for that SE are looked up from

the P . For each plan, the rules matching from R are determined

and each such rule is applied to generate a set of statistics (S) that

can be used to compute se (lines 7–11). If any statistic (s′, e′) in

S is not already considered, it is added to the tobecomputed set

(lines 12–14). The set S is also added as a CSS for se in the out-

put (line 15). Further, se is added to the computed set once all

the plans for e have been considered (line 16). At the end of the

run, the output C has the CSS for all the se that are relevant. The

final step is to apply the identity rules to generate additional CSS

(lines 17–21). A check is made to ensure that no new statistics are

generated in this step. This is because, the identity rules can lead

to a blowup in the number of statistics. For example, by repeatedly

applying I2, we can see that Ha
T can be computed from a histogram

on any subset of attributes containing a, which can be exponential

in the number of attributes. However, it is always cheaper to main-

tain a histogram on a smaller set of attributes. Thus, we should not

generate histograms on more attributes, unless they have been al-

ready generated by some other rule. This will be explained further

through an example below.

4.3 Example
Consider the plan space for a flow as shown in Figure 6. Figure 6(a)

is the original plan and Figure 6(b) is the alternative plan gener-

ated by the optimizer. The SEs for this plan space are (E) =

313

Alg. 1 Generate CSS for a ETL workflow

Input. Workflow W
Input. Ruleset R, IdentityRuleset I
Output. C = {(se, {s′e′})} the CSSs for required statistics

1. C = ∅; tobecomputed = ∅; computed = ∅
2. Invoke optimizer on W to generate plan space P
3. E = {e : (e, Pe) ∈ P}
4. for (e ∈ E)
5. Add (|e| , e) to tobecomputed
6. while (tobecomputed 6= ∅)
7. (s, e) = tobecomputed.pop()
8. Pe = P[e]
9. for (p ∈ Pe)
10. for (r ∈ R matching p.op and s)
11. S = r(p, s)
12. for ((s′, e′) in S)
13. if ((s′, e′) /∈ computed)
14. add (s′, e′) to tobecomputed
15. add (se, S) to C
16. add (s, e) to computed
17. for ((se, S) in C)
18. for (r in I)
19. apply r to(s′, e′) ∈ S to get S′

20. if (S′ contains only statistics
already generated)

21. add(se, S′) to C

{O,P,C,O ✶ P,O ✶ C,O ✶ P ✶ C}. Note that the plan

joining C with P is not generated since it is a cross product. For

brevity, we denote A ✶ B as AB. The algorithm starts with

tobecomputed = {|O| , |P | , |C| , |OP | , |OC| , |OPC|}. The plan

space for SE OPC is {OP ✶ C,OC ✶ P}. Let us consider the

plan OP ✶ C. By applying J1, we get the CSS {Hcid
OP , H

cid
C } for

|OPC|. Hcid
OP and Hcid

C are added to tobecomputed since they are

required by this CSS. Similarly, the plan OC ✶ P would produce

the CSS {Hpid
OC , H

pid
P }. Next, we consider the statistic H

pid
OC in

tobecomputed, which has a single plan O ✶ C. Applying, rule J2

we get the CSS {Hpid,cid
O , Hcid

C }. Rule J5 could also apply in this

case, which would generate the CSS {Hpid,pid
OPC , H

pid
P , H

pid

O
pid

✶P
}.

Similarly, other all the statistics from tobecomputed are processed

to generate the CSS for each of them. Now consider the CSS

{Hcid
OP , H

cid
C } for |OPC|. If we apply rule I2 to Hcid

OP we get

H
cid,pid
OP which is a statistic already generated by other rules. Thus

we consider {Hcid,pid
OP , Hcid

C } as another CSS for |OPC|. How-

ever, H
cid,X
OP , where X is some other attribute of OP is not con-

sidered since H
cid,X
OP , doesn’t get generated by any of the regular

rules. Finally, note that we restrict the number of CSS by apply-

ing the rules to only one level in a plan and not recursively. For

example, consider the CSS {Hcid
OP , H

cid
C } generated for |OPC|. If

we expand this recursively, we would also get the CSS {Hcid,pid
O ,

H
pid
P , Hcid

C } for |OPC|. However, we do not do so, since the CSS

{Hcid,pid
O , H

pid
P } will be generated for Hcid

OP , which will cover this

option.

Figure 6: Plan space for generating CSS

5. OPTIMIZATION FRAMEWORK
As seen in Section 4, there are multiple possible CSS for each

statistic of a SE. The cost of observing the statistics in a CSS could

vary widely. There could be multiple cost metrics such as the CPU-

cost of observing the statistics, the memory overhead for maintain-

ing the statistics, etc. The goal of this step is to select a optimal

set of statistics with respect to the cost metric such that at least one

CSS for the cardinality of each SE in E is covered. As described

earlier, this coverage ensures that the cost of any possible plan can

be estimated.

The simple approach of choosing the least cost CSS for each SE is

not globally optimal, since there is an amortization of the cost of

statistics that are common across the CSS. For example, in Figure 5,

assume that the costs of the CSSs for the cardinality of T1,2 and

T1,3 are as depicted in table in fig 7.

se CSS Cost

|T1,3| 1. |T1,3| 9

2. H
J13

T1
, H

J13

T3
9 + 1 = 10

|T1,2| 3. H
J12

T1
, H

J12

T2
9 + 3 = 12

4. H
J13

T123
, H

J13

T3
, H

J12

T
J13

1

, H
J12

T2
11

Figure 7: Cost of statistics

If we choose the least cost CSS for each statistic, the choices are

CSS-1 for |T1,3| and CSS-4 for |T1,2|. The complete set of statistics

is {|T1,3| , H
J13

T123
, H

J13

T3
, H

J12

T
J13

1

, H
J12

T2
}, leading to a total cost of

9 + 11 = 20. However, if J13 = J12, i.e. T1 joins with T2 and T3

on the same attribute, it can be seen that H
J12

T1
is the same distribu-

tion as H
J13

T1
. Thus if we had chosen CSS-2 and CSS-3 to cover the

two statistics, the complete set of statistics is {HJ12

T1
, H

J12

T3
, H

J12

T2
},

leading to a total cost of 9+1+3 = 13, which is less than the cost

of choosing CSS-1 and CSS-4. This is due to the fact that the cost

of H
J12

T1
is shared between CSS-2 and CSS-3.

5.1 Problem Formulation
Let S = {s1, s2, . . .} be the set of all statistics over all the SEs.

Depending on the initial plan, some of these statistics are directly

observable. Let SO ⊆ S denote the set of observable statistics.

Further, let SC = {|e| : e ∈ E} denote the set of cardinality statis-

tics over all the SEs. Each si ∈ S has a set of CSSs generated by

the rules. Let CSSij denote the jth CSS for si. Each CSS specifies

a set of statistics that can be used to compute si. The problem can

be defined as finding a set of statistics to actually observe S ′

O ⊆ SO

such that it satisfies two properties:

1. Each s ∈ SC is computable. A statistic s is computable if

either it is directly observed, i.e. s ∈ S ′

O or at least one of its

CSS is covered. A CSS is covered if all the statistics in it are

computable.

2. S ′

O is optimal in terms of the cost of observation.

Therefore, in principle the problem is to find a subset of SO under

some constraints. This can be modeled as an extended version of

the classical Hitting-Set Problem [13] in literature. This problem is

known to be NP hard and can be solved using a linear programming

formulation.

314

5.2 LP Formulation of the problem
We use a 0− 1 integer linear program formulation. A variable x is

associated with SO; the value of variable xi is 1 if the correspond-

ing statistic si is being observed. A variable y is associated with

S; the value of the variable yi is 1 if the corresponding statistic si
is computable. A variable z is associated with the set of CSSs such

that, zij is 1, if the corresponding CSSij is covered.

To ensure that a CSS is declared covered only if all the constituent

statistics are computable, the following set of constraints are intro-

duced, one for each CSSij , i.e. ∀i∀j .
∑

k:sk∈CSSij

yk ≥ zij .|CSSij |

A statistic whose only CSS is a trivial CSS is computable if and

only if it is directly observed. For each such si ∈ SO , the following

condition is introduced:

yi = xi

The ‘only if’ condition is not required for statistics that have a non-

trivial CSS, since it can be computable without being observed. For

each such si ∈ SO , the following condition is introduced:

yi ≥ xi

Similarly, to ensure that a statistic is deemed computable if and

only if any of its CSSs are covered, the following set of constraints

are introduced, one for each si, i.e. ∀i.

yi ≤
∑

j

zij

This covers the ‘only if’ condition. For the ‘if’ condition, the fol-

lowing constraints are introduced, one for each j, i.e. ∀j.

yi ≥ zij

Finally, to ensure that each statistic in SC is computable, the fol-

lowing set of constraints are introduced, one for each si ∈ SC , i.e.

∀i:si∈SC
,

yi ≥ 1

With this formulation, the objective of the LP is to just optimize the

following function:

min

∑
ci.xi

The statistics for which xi = 1 are the ones that need to be ob-

served.

Consider the example shown in Figure 5. The set of statistics over

all SEs (S), the statistics which are observable (SO), the statistics

that needs to be computable SC and their respective cost for ob-

servation (ci) are captured as input to LP as shown in Figure 8.

The statistic |T2| i.e. s2 is observable, needs to be computed and

therefore is marked 1 in both the vectors, while |T12| is not di-

rectly observale (since subexpression T12 is not part of the current

plan) but needs to be computed (because some other ordering of

the workflow might need it to compute the cost of the plan) and so

it is marked 0 and 1 in SO and SC respectively. These along with

all the CSS (like those specified in Figure 7) forms the input for the

LP and the output is the set of statistics to observe whose total cost

is minimal such that SC is covered.

5.3 Greedy Heuristics
The LP formulation could take a long time to solve since S can be

quite large. In such a case, greedy heuristics could be used to arrive

at a good solution. One simple heuristic is, in each round, to pick

the CSS with the least cost from the set of CSSs that cover at least

one of the uncovered statistics in SC . After each step, the newly

covered statistics are removed from the set of uncovered statistics.

Also, the costs of the remaining CSSs are reduced based on the

statistics picked in this step, since these statistics would be already

available.

5.4 Cost Metrics
The cost of a CSS can be measured in terms of various metrics.

We consider two metrics - the memory overhead and the CPU cost.

The memory overhead for measuring a histogram on a set of at-

tributes is equal to the number of distinct values of that set of at-

tributes. However, since the exact number of distinct values over

the output of a SE may not be known, we conservatively use the

number of all possible values. Thus, the memory requirement for

a single attribute histogram is proportional to the cardinality of

the attribute. For histograms on multiple attributes, the memory

required is the product of the cardinalities of the constituent at-

tributes.

Statistic Memory

|T | 1

|aT | |a|
Ha

T |a|

H
a,b
T |a| |b|

The memory overheads of the vari-

ous statistics are summarized in Ta-

ble. The CPU cost of measuring the

statistic is proportional to the num-

ber of tuples in the SE on which the

statistic is measured, since for each

tuple, the statistic needs to be up-

dated. Thus, to compute the actual CPU cost, we would need the

sizes of the SEs, which is what we are trying to estimate using the

statistic. We break this circular dependency by using the SE sizes

computed from the previous runs. In the first run, we use a coarse

approximation based on independence assumptions, since no pre-

vious data is available.

6. ENHANCEMENTS

6.1 Optimization under Resource Constraints
Till now, we have assumed that all the resources necessary for iden-

tifying the statistics and computing them are available. However,

this assumption may not hold in some cases. For example, in Fig-

ure 1, to compute the cardinality of IR Orders ✶ Customer, a

CSS is {HCustomer_id
Orders , HCustomer_id

Customer }. The memory required for

this CSS is 2 ∗ |Customer_id| (from Table in Section 5.4), which

may not be available.

Generally the cost of the trivial CSS is far less (only 1 counter) than

the cost of other CSSs. Therefore, if resources are constrained, one

extreme approach is to estimate the cardinality of each SE using its

trivial CSS. However, all SEs are not observable in the given initial

plan. The initial plan could be altered in a subsequent run so that

the statistic that is not observable in the current run could be ob-

served in the reordered plan. In the current example, the trivial CSS

would require observing the cardinality of Orders ✶ Customer.

However, this trivial CSS is not observable in the initial plan (Fig-

ure 1(a)). To address this, the ETL plan can be re-ordered as shown

in Figure 1(b), which makes |Orders ✶ Customer| directly ob-

servable.

Thus, repeated execution with plan re-ordering can be exploited to

ensure that the optimal plan for an ETL is computed even under

315

S s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 . . .

|T1| |T2| |T3| |T12| |T13| |T23| |T123| H
J12

T1
H

J12

T2
H

J13

T3
H

J13

T123
H

J12

T
J13

1

. . .

SO 1 1 1 0 1 0 1 1 1 1 1 1 . . .

SC 1 1 1 1 1 1 1 0 0 0 0 0 . . .

ci 1 1 1 ∞ 1 ∞ 1 100 100 100 10 30 . . .

Figure 8: Example LP Formulation

constrained resources. This is the approach followed in [6, 8]. Our

method is a natural generalization of these approaches, in which we

don’t restrict only to the trivial CSS. We use a mix of trivial CSSs

and other CSSs, depending on the available memory, thus reducing

the number of plan re-orderings.

6.2 Integrating existing statistics from source

systems
Sometimes, a few statistics may already be available, especially

when the source systems are relational DB systems. The optimal

statistics identification framework can be easily extended to take

advantage of these statistics. All the statistics that are available can

be added by default to the set of observable statistics SO and their

costs ci set to 0. This ensures that the framework will always pick

these statistics to cover as many of the statistics in SC as possible.

7. EXPERIMENTAL EVALUATIONS
This section details some experiments to evaluate the effectiveness

of statistics identification framework proposed in the previous sec-

tions. We are intentionally focusing on establishing the effective-

ness of the statistics gathering and determination of optimal statis-

tics to observe, rather than the effectiveness of the optimization

itself. The previous works in the literature touch upon that and es-

tablish the necessity for cost-based optimization of ETL workflows.

Our focus here is to determine the optimal statistics to observe, so

that subsequently cost-based optimization of the workflow is pos-

sible.

The set of workflows used for the experiments were a representa-

tive set of 30 workflows, motivated from a draft version of TPC-

DI benchmark being prepared for benchmarking ETL workflows.

All the workflows were designed in IBM InfoSphere DataStage

V9.1 [10]. Our Optimal Statistics Identification module is not in-

tegrated with any ETL designer component like DataStage. There-

fore all the workflows were exported as XMLs from Datastage to

be consumed by our module. we simulated a simple join-order pur-

mutation generator which takes the optimization blocks and UDF

boundaries into consideration, to generate different sub-expressions.

All the experiments were run on a Intel Core i5 machine with 2.6

GHz CPU and having 4GB of RAM. The machine configuration

will effect only the timings of the run, while the others stay invari-

ant.

Stat Card UV

Max 417874 417874

Min 3342 102

Mean 104466 65768

Median 52234 6529

The data characteristics of

the input relations like table

cardinalities, unique values

of an attribute (note that we

dont need the actual data) are

synthetically generated and

are as shown in the adja-

cent table. These are gener-

ated from Zipfian distribution

with a high skew.

7.1 Complexity of Workflows
Figure 9 gives an idea of the complexity of the workflows we have

used for the experiments. The graph captures the number of SEs,

the number of CSS formed without and with the union-division

method. From the design perspective, the ETLs range from sim-

ple linear ETLs having only one execution plan to complex ETLs

having 8-way joins and many transformations. The graph captures

that by comparing the number of SEs and the CSSs. The higher the

number(both the SEs and CSS), the complex the ETL is.

Figure 9: Complexity of the Workflows

For example, workflow 21 is a complex workflow having multi-

ple transformations and a 8-input join. We can also see that the

union-division method introduces quite a few additional CSS to

choose from. Of course the additional CSS introduced increased

the search space of the optimal statistics to choose from and so we

have measured the additional time overhead that the additional CSS

introduce.

Figure 10: Time Taken for Statistics Identification

Figure 10 captures the time taken for CSS generation using dif-

ferent rules as specified in the previous sections and also the time

taken by the LP solver for identifying the optimal statistics to ob-

serve. The total time required for identifying the optimal statistics

is within 100ms for all the workflows, which is quite reasonable

considering that this is an offline process. Further, it can be seen

that the additional CSS generated by the union-division method

doesn’t add any considerable overhead.

316

7.2 Memory Overhead
Figure 11 shows the memory required by each of the workflows to

observe the optimal statistics determined using the previously dis-

cussed LP formulation. We can see from the figure that with some

additional memory, all the statistics necessary for determining the

cost of any re-ordering of the plan can be computed. The units for

memory is an abstract unit representing the number of integers (us-

ing coarse approximation as explained in Section 5) to be stored.

For example, for workflow 16, we need approximately 70000 units

of memory and if an integer takes about 4 bytes, then the memory

required is about 273KB.

It can be seen from the figure that there are few instances where the

new union-division method introduced new choices of CSS, which

reduces the amount of memory required. For example, in case of

workflow 3, the amount of memory required with and without our

method is 29922 and 1811197 units respectively. Of course for

few workflows, the CSS generated by union-division method was

not optimal and so was not chosen. For example, for workflow 23,

the memory required when union-division method is not employed

was 3444 units. while for the same workflow, the CSS generated

using union-division method was almost twice as costly at 6951
units. But since we are selecting the optimal CSS, the first one is

chosen.

For some of the workflows the amount of memory required is high

and possibly could be more than the allowed memory limit. In

those cases, it could be possible to observe a subset of the CSS that

fit with in the memory limit in the current run and re-execute the

workflow with a re-orderded plan(s), which allows observation of

the rest of the statistics. Developing the techniques for determining

the optimal statistics with plan re-ordering is part of our plan for

future extensions to the current work.

Figure 11: Memory required for observing optimal CSS

7.3 Comparison with existing methods
In this section, we compare with existing techniques such as [6] that

observe only trivial CSSs and use plan re-orderings to cover all the

SEs. Observing the trivial CSS corresponds to observing only the

cardinalities (no distributions) at various points in the plan. This

is a quick, easy-to-implement and low-overhead method of passive

monitoring [20] that can be used to get the actual cardinalities of

SEs which are part of the plan being executed. However, the trivial

CSS of all the SEs may not be observable in a single plan. This can

be handled by repeating the query execution with different plans

such that each SE is covered in some plan. This approach of re-

peated execution with plan modification was described in [6], in

which they determine the cardinality of all the SEs just by observ-

ing the cardinalities in the previous runs and then use them for op-

timizing the subsequent runs of the query. We first derive a formula

for the lower bound on the number of re-orderings:

For a workflow, which has a 5-relation join all the 5 SE which cover

the base relations and the SE representing the final output are cov-

ered by any plan. Therefore, the number of SEs that actually need

to be covered are 31 − (5 + 1). Also any plan for this query con-

tains 9 SE, out of which 6 are the base relations and the final output.

Therefore the number of actual SEs that can be covered by a single

plan is 3. That is in general for a ‘n’ table join flow, the number of

SEs that actually have to be covered is 2n − (n + 2). While, the

number of SEs that can be observed (and therefore covered) for a

given plan is (n − 2). Therefore, the minimum number of execu-

tions necessary to cover all SEs without considering any semantics

of the query is:
⌈

2n−(n+2)
(n−2)

⌉

. Therefore, for the above example,

we need 9 executions. Clearly, semantics of the query like cartesian

product and the metadata information like whether the join are sim-

ple dimension-lookups etc., can be exploited to reduce the number

of SEs that need to be covered and thus the number of executions

necessary.

If only trivial CSSs are considered, then the number of execu-

tions necessary to cover all SEs for our experimental workflows

are shown in Figure 12. For each workflow, we worked out one

possible solution of plan re-orderings that would cover all the SEs.

This gives an upper bound on the number of re-orderings that are

necessary. We also plot Min executions, which is the lower bound

computed using the formula above.

Figure 12: Number Executions to cover all SEs

From the figure, it can be seen that to cover all the different SEs

for workflow 30 we need at the minimum 14 executions, while we

could find a re-ordering which we required 18 executions. Note

that there could be a better re-ordering which could require still

less executions, but certainly not less than 14.

The reason for the number of executions to be 1 for quite a few

ETLs is because either they are very simple linear ETLs with just

one execution plan or have joins across optimization block bound-

aries. As discussed in the earlier sections, operators across the op-

timization blocks doesn’t commute and therefore even those plans

ended up having single execution plan.

Also, In few cases it could be possible that the number of exe-

cutions necessary to cover all SE can be large. For example, 14
executions necessary in the case of workflow 30, means that the

optimal plan for the query can be found only after so many number

of executions, which might not be acceptable. Using the techniques

in this paper, all the SEs can be covered using the initial run itself,

if sufficient memory is available. Even if there is a memory limit, it

could be possible to reduce the number of executions, if CSSs are

observable with in that memory limit across multiple executions.

317

For workflow 21 in the benchmark, the Min executions necessary

was 41, while the the one we found required > 70 executions to

cover all the CSS.

8. FUTURE WORK
8.1 Modeling errors
When generating CSSs, different types of statistics are explored

and the current work assumes that all these statistics are always ac-

curate. Generally frequency histograms are bucketized for a range

of values, and thus the selectivity estimates computed using them

introduce error. Section 3 briefly discusses this. When all the statis-

tics are accurate, all of them can compete for optimality equally.

But if each of the statistic has an associated error in estimation,

then the optimization function needs to consider even the allowed

error along with the memory constraints.

8.2 Space-time tradeoff with errors
Given a workflow, its optimal plan could be determined using the

initial plan, given there is enough memory to observe and store

all the necessary statistics. But it is generally not the case. So

there is a trade-off between the amount of memory allowed and the

number of (re)executions. When the statistics are not accurate but

introduce errors, this space-time tradeoff might have to be extended

to accommodate the allowed error.

9. CONCLUSIONS
In this paper, we addressed the problem of cost based optimiza-

tion of ETL workflows in the case where the statistics on the in-

put relations are either missing or incomplete. We proposed a new

framework that identifies all necessary statistics by using a formu-

lation for determining optimal statistics that can enable cost-based

optimization of the given query. Also new techniques for determin-

ing the cardinality of operators are proposed. The use of metadata,

cross-product rules and rules for cardinality estimation drastically

reduces the statistics that are needed to estimate all the cardinali-

ties. Experimental results on the ETL benchmarks show that with

a small memory overhead, it is possible to measure all the statistics

needed in a single execution of the plan.

10. ACKNOWLEDGMENTS
We thank Manish Bhide from IBM and Ravindra Guravannaver

from IIT Hyderabad for their valuable comments during our discus-

sions. Thanks to Vinayaka Pandit and Krishnasuri Narayanam for

their help in formulating and modelling LP. We also thank anony-

mous reviewers for their thorough feedback.

11. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning Histograms:

Building Histograms Without Looking at Data. In SIGMOD

Conference, pages 181–192, 1999.

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously

Adaptive Query Processing. In SIGMOD Conference, pages

261–272, 2000.

[3] N. Bruno and S. Chaudhuri. Exploiting statistics on query

expressions for optimization. In SIGMOD Conference, pages

263–274, 2002.

[4] N. Bruno and S. Chaudhuri. Conditional selectivity for

statistics on query expressions. In SIGMOD Conference,

pages 311–322, 2004.

[5] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy.

Diagnosing Estimation Errors in Page Counts Using

Execution Feedback. In ICDE, pages 1013–1022, 2008.

[6] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy. A

pay-as-you-go framework for query execution feedback.

PVLDB, 1(1):1141–1152, 2008.

[7] C.-M. Chen and N. Roussopoulos. Adaptive selectivity

estimation using query feedback. In SIGMOD Conference,

pages 161–172, 1994.

[8] H. Herodotou and S. Babu. XPLUS: A SQL-Tuning-Aware

Query Optimizer. PVLDB, 3(1):1149–1160, 2010.

[9] IBM. IBM Infosphere Datastage Balanced Optimization.

IBM InfoSphere DataStage and InfoSphere QualityStage,

Version 8.5 Documentation, Dec. 2011.

[10] IBM. IBM InfoSphere DataStage and InfoSphere

QualityStage, Version 9.1 Documentation, 2013.

[11] Informatica. How to Achieve Flexible, Cost-effective

Scalability and Performance through Pushdown Processing.

Whitepaper, Nov. 2007.

[12] N. Kabra and D. J. DeWitt. Efficient Mid-Query

Re-Optimization of Sub-Optimal Query Execution Plans. In

L. M. Haas and A. Tiwary, editors, SIGMOD 1998,

Proceedings ACM SIGMOD International Conference on

Management of Data, June 2-4, 1998, Seattle, Washington,

USA, pages 106–117. ACM Press, 1998.

[13] R. Karp. Reducibility Among Combinatorial Problems.

Complexity of Computer Computations, pages 85–103, 1972.

[14] N. Kumar and P. S. Kumar. An Efficient Heuristic for

Logical Optimization of ETL Workflows. In BIRTE, pages

68–83, 2010.

[15] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and

H. Pirahesh. Robust Query Processing through Progressive

Optimization. In SIGMOD Conference, pages 659–670,

2004.

[16] A. Simitsis. Mapping conceptual to logical models for ETL

processes. In DOLAP, pages 67–76, 2005.

[17] A. Simitsis, P. Vassiliadis, and T. K. Sellis. State-Space

Optimization of ETL workflows. IEEE Trans. Knowl. Data

Eng., 17(10):1404–1419, 2005.

[18] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal.

QoX-driven ETL design: reducing the cost of ETL

consulting engagements. In SIGMOD Conference, pages

953–960, 2009.

[19] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos.

Optimizing ETL workflows for fault-tolerance. In ICDE,

pages 385–396, 2010.

[20] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO -

DB2’s LEarning Optimizer. In VLDB, pages 19–28, 2001.

[21] V. Tziovara, P. Vassiliadis, and A. Simitsis. Deciding the

physical implementation of ETL workflows. In DOLAP,

pages 49–56, 2007.

[22] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost Based Query

Scrambling for Initial Delays. In L. M. Haas and A. Tiwary,

editors, SIGMOD 1998, Proceedings ACM SIGMOD

International Conference on Management of Data, June 2-4,

1998, Seattle, Washington, USA, pages 130–141. ACM

Press, 1998.

[23] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual

modeling for ETL processes. In DOLAP, pages 14–21, 2002.

318

