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We find that all Feynman integrals (FIs), having any number of loops, can be completely determined
once linear relations between FIs are provided. Therefore, FI computation is conceptually changed to a
linear algebraic problem. Examples up to five loops are given to verify this observation. As a by-product,
we obtain a powerful method to calculate perturbative corrections in quantum field theory.
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Introduction.—Feynman integrals (FIs) encode key
information of quantum field theories. The study of FIs
is important both for exploring mysteries of quantum field
theories and for their phenomenological application.
Integrating over some variables is found to be a necessary
step to determine FIs in all known systematic methods. This
seems to be a reasonable phenomenon, as FIs themselves
are defined by integrating over loop momenta. However,
because it is usually hard to perform integration in a
systematic and efficient way, is it possible to totally bypass
integration in determining FIs?
Available systematic methods to compute FIs can be

divided into direct methods and indirect methods. Direct
methods include sector decomposition [1–13], the Mellin-
Barnes representation [8–13], loop-tree duality [14–23],
and so on, where one computes FIs by directly performing
integration over some variables. Indirect methods compute
FIs indirectly by solving corresponding equations, which
include difference equations [24–27] and differential equa-
tions [28–40]. To uniquely determine the solution, boun-
dary information is needed in these indirect methods.
Unfortunately, the only known systematic way to obtain
boundary information is to use direct methods to calculate
them. Therefore, integration is still necessary in these in-
direct methods.
The auxiliary mass flow (AMF) method [38–40] is a

kind of differential equation method, which computes FIs
by setting up and solving differential equations (DEs) with
respect to an auxiliary mass term η (called η-DEs). The
virtue of AMF is that its boundary conditions at η → ∞ are
simply vacuum bubble integrals, which can be more easily
calculated by using other methods [41–50].

In this Letter, we make the following observation.
Boundary information for AMF, which can always be cast
to single-mass vacuum FIs, can be related to propagator
integrals (p integrals) with one less loop. Then, p integrals
can again be calculated by using the AMF method, with the
input of new boundary information having one less loop.
By using this strategy iteratively, we eventually do not need
any input for boundary information in the AMF framework.
Thus, it is surprising to find that integration is totally
bypassed in determining FIs.
As a result of our observation, FIs can be completely

determined once linear relations between FIs are provided;
these relations are used to decompose all FIs to a small set
of bases, called master integrals (MIs), and to set up η-DEs
of these MIs. We note that numerically solving ordinary
differential equations (like η-DEs) is a well-known math-
ematical problem [51]. Therefore, the problem of integrat-
ing over loop momenta is now conceptually changed to a
linear algebraic problem of exploring the linear space
of FIs.
In the rest of this Letter, we first review the AMF method

and emphasize its input. We then describe our method to
compute boundary conditions within the AMF framework,
without any unknown information. Some examples are in
order to verify this method. Finally, we propose a powerful
way to calculate perturbative corrections within dimen-
sional regularization.
Before continuing, let us first give a brief introduction to

FIs. A family of FIs is defined by the following integrals
with various values of ν⃗,

Iν⃗ ¼
Z �YL

i¼1

dDli

iπD=2

�
D−νKþ1

Kþ1 � � �D−νN
N

Dν1
1 � � �DνK

K
; ð1Þ

where L is the number of loops; li are loop momenta; D is
the dimensionality of li; D1;…;DK are inverse propaga-
tors, with ν1;…; νK being integers; and DKþ1;…;DN are
irreducible scalar products introduced for completeness,
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with νKþ1;…; νN being nonpositive integers. It has been
proven that a family of FIs forms a finite-dimensional
linear space [52]. In other words, any FI in a given family
can be decomposed into a linear combination of MIs,
which is a finite set of bases of the linear space formed
by the family of FIs. Coefficients in this decomposition
are rational functions of all natural variables, like D,
Mandelstam variables, masses, and the η introduced in
AMF. Information of the linear space is completely
encoded in these decompositions, or linear relations
between FIs. Decomposition of FIs is usually realized
by integration-by-parts (IBP) reduction, which has been
extensively studied [24,53–73]. Having IBP reduction
relations, we then only need to study MIs.
Furthermore, because FIs containing linear propagators

can be determined by FIs containing only quadratic
propagators [74], we will not consider linear propagators
anymore.
Auxiliary mass flow method.—To determine Iν⃗ defined in

Eq. (1), in the AMF method, one introduces an auxiliary
family of integrals defined by

Ĩν⃗ðηÞ ¼
Z �YL

i¼1

dDli

iπD=2

�
D̃−νKþ1

Kþ1 � � � D̃−νN
N

D̃ν1
1 � � � D̃νK

K

: ð2Þ

Without loss of generality, we assume ν1 > 0 and
D1 ¼ l2

1 −m2 þ i0þ, where m can be zero. We can then
choose the propagator mode [40] to set D̃i ¼ Di for i > 1
and modify the mass term for i ¼ 1 by

D̃1 ¼ l2
1 −m2 − η: ð3Þ

The original Iν⃗ can be obtained by taking η → i0−,

Iν⃗ ¼ lim
η→i0−

Ĩν⃗ðηÞ: ð4Þ

Let us denote MIs of the auxiliary family by ⃗J̃ðηÞ and
denote its dimension by n. Using IBP reduction,

ð∂=∂ηÞ ⃗J̃ðηÞ can again be expressed as linear combinations

of ⃗J̃ðηÞ, which results in a system of closed η-DEs,

∂

∂η
⃗J̃ðηÞ ¼ AðηÞ ⃗J̃ðηÞ; ð5Þ

where AðηÞ is an n × n matrix with entries rationally
depending on η. Supposing that we already have boundary
conditions in hand, we can solve the η-DEs numerically

[38,51] to obtain ⃗J̃ðηÞ and thus their limit ⃗J̃ði0−Þ. As Ĩν⃗ðηÞ
can be expressed as linear combinations of ⃗J̃ðηÞ using IBP
reduction, all original FIs Iν⃗ (and certainly also their MIs)
are eventually determined.
An advantage of AMF is that boundary conditions at

η → ∞ can be systematically calculated. In this limit,

nonzero contributions only come from integration regions
where linear combinations of loop momenta are either of
Oð ffiffiffiffiffijηjp Þ or Oð1Þ [75,76]. In each of these limited number
of regions, a general propagator can be expressed as

1

ðlL þ lS þ pÞ2 −m2 − κη
;

where lL is the Oð ffiffiffi
η

p Þ part of the loop momenta, lS is the
Oð1Þ part of the loop momenta, p is a linear combination of
external momenta, m is the mass, and κ ¼ 0 or 1. Then, if
lL ≠ 0 or κ ≠ 0, we can simplify the propagator by

1

ðlL þ lS þ pÞ2 −m2 − κη
∼

1

l2
L − κη

: ð6Þ

Otherwise, the propagator is unchanged. After the above
simplification, the new FIs at the boundary are either
single-mass vacuum FIs or simpler FIs compared with
the original FIs. For the latter cases, we can compute them
again using AMF, which needs even simpler FIs as input
for boundary conditions.
By using AMF iteratively, to determine any L-loop FI,

we eventually only need single-mass vacuum FIs with no
more than L loops as additional input, besides IBP
reductions. Diagrams of some typical single-mass vacuum
FIs are shown in Fig. 1.
Determining single-mass vacuum Feynman integrals.—

Now, let us assume that Iν⃗ defined in Eq. (1) are single-
mass vacuum FIs, with D1 ¼ l2

1 −m2 þ i0þ as the only
massive propagator and ν1 > 0. Without loss of generality,
we set m2 ¼ 1 in the rest of this Letter.
Let us define a massless p integral

Îν⃗0 ðl2
1Þ ¼

Z �YL
i¼2

dDli

iπD=2

�
D−νKþ1

Kþ1 � � �D−νN
N

Dν2
2 � � �DνK

K
ð7Þ

with ν⃗0 ¼ ðν2;…; νNÞ, where l1 is its “external momen-
tum” and l2

1 is the only mass scale. Based on dimensional
counting, we have

(a)

(d) (e)

(b) (c)

FIG. 1. Some typical Feynman diagrams of single-mass vac-
uum FIs up to five loops, where solid lines denote massive
propagators and dotted lines denote massless propagators.
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Îν⃗0 ðl2
1Þ ¼ ð−l2

1Þ
ðL−1ÞD

2
−νþν1 Îν⃗0 ð−1Þ; ð8Þ

where ν ¼PN
i¼1 νi. The original integral Iν⃗ is then factor-

ized into two parts and can be evaluated as

Iν⃗ ¼
Z

dDl1

iπD=2

ð−l2
1Þ

ðL−1ÞD
2

−νþν1

ðl2
1 − 1þ i0þÞν1 Îν⃗0 ð−1Þ

¼ Γðν − LD=2ÞΓðLD=2 − νþ ν1Þ
ð−1Þν1Γðν1ÞΓðD=2Þ Îν⃗0 ð−1Þ; ð9Þ

which determines an L-loop single-mass vacuum FI Iν⃗ by
an (L − 1)-loop massless p integral Îν⃗0 ð−1Þ. This relation is
well known.
The key observation is as follows: The (L − 1)-loop

massless p integral Îν⃗0 ð−1Þ can be computed via AMF
discussed in the last section, which requires single-mass
vacuum FIs with no more than (L − 1) loops as additional
input, besides IBP reductions. Therefore, we find that, with
linear algebra provided by IBP reductions, single-mass
vacuum FIs with L loops are determined by those with less
than L loops. This works iteratively until the boundary at
L ¼ 1. Vacuum FIs with L ¼ 1 are completely determined
by the relation (9) by noticing that the value of the zero-
loop p integral is simply 1.
We eventually arrive at a surprising conclusion that all

single-mass vacuum FIs, and therefore all FIs, can be
completely determined once linear algebraic relations
between different FIs are provided. This conclusion is
valid for any number of loops L and arbitrary dimension-
ality D.
Examples.—To better understand the above observation,

let us compute some FIs.
One of the simplest examples is the two-loop single-

mass vacuum integral shown in Fig. 1(b), defined by

Ið1;1;1Þ ¼
Z �Y2

i¼1

dDli

iπD=2

�
1

ðl2
1 − 1Þl2

2ðl1 þ l2Þ2
; ð10Þ

where the Feynman prescription i0þ for each denominator
is suppressed. The relation (9) gives

Ið1;1;1Þ ¼
Γð3 −DÞΓðD − 2Þ
−Γð1ÞΓðD=2Þ Îð1;1Þð−1Þ; ð11Þ

with

Îð1;1Þð−1Þ ¼
Z

dDl2

iπD=2

1

l2
2ðl2 þ pÞ2 ; ð12Þ

where pμ satisfies p2 ¼ −1.
To calculate the one-loop p integral Îð1;1Þð−1Þ via the

AMF method, we introduce auxiliary integrals

Ĩð1;0ÞðηÞ ¼
Z

dDl2

iπD=2

1

l2
2 − η

; ð13Þ

Ĩð1;1ÞðηÞ ¼
Z

dDl2

iπD=2

1

ðl2
2 − ηÞðl2 þ pÞ2 ; ð14Þ

which are MIs of the corresponding auxiliary family.

Denoting ⃗J̃ ¼ ðĨð1;0Þ; Ĩð1;1ÞÞT , η-DEs can be obtained using
IBP reductions,

∂

∂η
⃗J̃ðηÞ ¼

 
1−ϵ
η 0

1−ϵ
−ηð1þηÞ

1−2ϵ
1þη

!
⃗J̃ðηÞ: ð15Þ

As η → ∞, only the integration region jl2j ∼Oð ffiffiffi
η

p Þ gives
a nonzero contribution. Thus, we have

Ĩð1;0ÞðηÞ ¼ ηD=2−1
Z

dDl2

iπD=2

1

l2
2 − 1

¼ ηD=2−1ð−1ÞΓð1 −D=2Þ; ð16Þ

where in the last step the relation (9) has been used, and

Ĩð1;1ÞðηÞ ¼η→∞
Z

dDl2

iπD=2

1

ðl2
2 − ηÞl2

2

¼ ηD=2−2
Z

dDl2

iπD=2

1

ðl2
2 − 1Þl2

2

¼ ηD=2−2
Z

dDl2

iπD=2

1

l2
2 − 1

¼ Ĩð1;0ÞðηÞ
1

η
; ð17Þ

where scaleless integrals are omitted in the third line.
By solving the η-DEs in Eq. (15) together with boundary

conditions at η → ∞ in Eqs. (16) and (17), Îð1;1Þð−1Þ ¼
Ĩð1;1Þði0−Þ is determined. We thus obtain the desired FI
Ið1;1;1Þ using the relation (11).
Clearly, the same procedure can be used to compute any

FI. Let us give the result of another example shown in
Fig. 1(e), which is one of the most complicated five-loop
single-mass vacuum FIs. Following the above-described
procedure, we can compute all MIs in this family to a very
high precision, with only input from the IBP reductions.
The result of the corner integral with 10-digit precision is
given by

− 2.073855510ϵ−2 − 7.812755312ϵ−1 − 17.25882864

þ 717.6808845ϵþ 8190.876448ϵ2 þ 78840.29598ϵ3

þ 566649.1116ϵ4 þ 3901713.802ϵ5 þ 23702384.71ϵ6;

ð18Þ
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where we have set D ¼ 4 − 2ϵ with only 9 orders in ϵ
expansion shown, although more orders and digits can be
easily obtained. The first seven terms of the expansion
agree with those obtained in Ref. [48], and other terms
are new.
A new method to calculate perturbative corrections.—

An important feature of our strategy is that the FIs we
calculate can have arbitrary dimensionality. On the one
hand, this makes our strategy applicable for a general
theory, e.g., nonrelativistic theory with dimensionality
equal to 3. On the other hand, by sampling different
dimensionality around a fixed value, say 4 − 2ϵ with some
small values of ϵ, we can fit the Laurent expansion with
respect to ϵ to any desired order, which is actually the way
we obtain the results in Eq. (18).
If we apply the above strategy directly to physical

processes, we arrive at a new and powerful method to
calculate perturbative corrections—for example, the next-
to-next-to-leading-order (NNLO) QCD correction to a top-
antitop quark pair fully inclusive production cross section
in lepton colliders eþe− → γ� → tt̄þ X, which have pre-
viously been calculated in Refs. [77–79]. In our method, we
calculate a bare cross section (before renormalization) with
a numerical value of ϵ and then renormalize it in the
standard MS scheme, with the same value of ϵ. To show the
numerical result, we choose the center-of-mass energy s,
renormalization scale μ, and the top quark mass as μ ¼ffiffiffi
s

p ¼ 1 and m2
t ¼ 1=8. We ignore contributions from

internal top quark loops and those from photons interacting
with the other five types of quarks because these contri-
butions are very small. Then, if we set ϵ ¼ 0.001, the
NNLO correction gives

σNNLO0.001 =ðαα2sÞ ¼ 9.261823090; ð19Þ

where only 10 digits are shown. Because the cross section
is a physical quantity that is free of divergence, σNNLOϵ can
give an estimation of the total cross section up to an OðϵÞ
error. Now let us calculate the cross section with another
value ϵ ¼ 0.0011, which gives

σNNLO0.0011=ðαα2sÞ ¼ 9.262629688: ð20Þ
The fact that σNNLO0.001 and σNNLO0.0011 have a relative difference at
the Oð1=1000Þ level confirms two things. First, the σNNLOϵ

calculated here is free of 1=ϵn divergence; otherwise, the
difference should be at the Oð1Þ level. Second, σNNLOϵ1 ¼
σNNLOϵ2 þOðϵ1 − ϵ2Þ is justified. Therefore, we can fit a
linear function of ϵ by combining values of σNNLO0.001 and
σNNLO0.0011 to provide a better estimation of σNNLO0 ,

σNNLO0 =ðαα2sÞ ≈ 9.2537þOðϵ2Þ; ð21Þ

which becomes closer to the exact result 9.253454354. By
calculating one more value of ϵ for each, we can further

improve the estimation with uncertainty suppressed by one
higher order in ϵ.
In this method, we do not need to manipulate a Laurent

expansion of ϵ during the intermediate stage of the calcu-
lation; thus, the computational time can usually be reduced by
several times. This improvement of efficiency is very impor-
tant for cutting-edge problems. Actually, using this method,
we have successfully calculated the above-mentioned tt̄
production to next-to-next-to-next-to-leading order for the
first time, which will be presented elsewhere [80].
Summary and outlook.—By combining the recently

proposed AMF method and Eq. (9), we find that all FIs,
with any number of loops and arbitrary dimensionality, can
be completely determined once linear relations between FIs
are provided. This interesting observation conceptually
changes FI computation to an algebraic problem. We have
explicitly verified this observation using some examples up
to five loops.
For phenomenological purposes, many general FIs need

to be calculated. The mainstream method to compute FIs
can be divided into two steps. In the first step, one reduces
all FIs to MIs, and in the second step, one calculates the
MIs. Both steps are found to be very difficult for current
cutting-edge problems. With our strategy, IBP reduction
becomes the only obstacle for FI calculation. Our strategy
has been implemented using the package AMFlow [81],
which can automatically calculate general FIs, with any
number of loops, to high precision, as long as IBP reduction
is successful. These features make our method unique
compared to other available methods of FI computation.
Because FIs with any dimensionality can now be

calculated, we can determine physical processes directly
with a given small value of ϵ, the dimensional regulator. In
this way, we can significantly improve the efficiency of
perturbative calculations. Furthermore, our method is
applicable for a general theory, like nonrelativistic theory
with dimensionality equal to 3.
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