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Determining Finite Volume Elements
for the 2D Navier-Stokes Equations
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Absatract

We consider the 2D Navier-Stokes equations on a square with pe-
riodic boundary conditions. Dividing the square into N equal sub-
squates, we show that if the asymptotic behavior of the average of
solutions on these subsquares (finite volume elements) is known, Lhen
the large time behavior of the solution itself is completely determined,
provided N is large enough. We also establish a rigorous upper hound
for N needed to determine the solutions to the Navier-Stokes equation

in termn of the physical parameters of the problem.
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1 Introduction

It is well established that the long time behavior of solutions to the Navier-Stokes Equa-
tions (NSE), in bounded domains, has a finite number of degrees of freedom. Several
detailed rigorous studies support this assertion. For example, it is known that the behay-
ior as f — o¢ of the solutions to the NSE is completely determined by the behavior of their
projection on the space spanned by the first m eigenfunctions of the lincar Stokes operator,
for m sufficiently large. More precisely, il the asymptotic hehavior of the first me modes
of two solutions agree, then the entire solutions agrec as t — oo, [10]. The corresponding
modes are called determining modes. (Also along these lines see [24] for a slightly weaker
result.) Later, in [9] an upper bound was established of the order (1 + log(+)!/? for
the number of determining modes, where (7, the Grashof nuaber, is the analogue of the
Revnolds number (see section 2 below). It is also known that the large time behavior of
solutions is determined by their values on a discrete set of points [11]. More specifically, if
two solution of the NSE agree on a sufficiently dense (finite) set of points, called a sot of
determining nodes, as t — 20, then they agree everywhere as time goes to infinity. Later
in [23] it was found that an upper bound for the number of determining nodes is of the
order (/31 4 log (/). Morcover, it is well known that the NSE possess a compact global
ettractor. The best known upper bound for its Fractal as well as its Hausdorfl dimension
is of the order G¥3(1 4 log ()3, given in [3]. More recontly, it has been shown [22]
that the NSE has an inertial form. ‘That is, the large-time behavior of the Navier-Stokes

eqpiations is completely deseribed by a finite dimensional system of ODEs,



These results are also important from a practical point of view. The existence of a
finite number of determining modes implies that the high modes are enslaved, at least
asymptotically, by the lower modes. Thus, one may seek the existence of a global function
which gives the high modes of every solution in terms of the lower modes, asymptotically
in time. Such a function has been shown to exist for saveral interesting partial differential
equations (sec . for example, [2] and the references therein). The graphs, in phase space,
of such functions are called Inertial Manifolds (I.M.). In general, an [.M. is a smooth (Lip-
schitz) finite dimensional manifold which is positively invariant uider the flow, and which
attracts every bounded subset in phase space at an exponential rate [11]. It is clear that
if the inertial manifold exists, then it contains the glnbal attractor. Further, the reduction
of the PDE to the .M. gives a finite dimensional ODE called an inertial form. Though the
existence of an LM. for the NSE is still open. however, as mentioned above, the NSE does
have an inertial form. In any case, these ideas have suggested new numerical schemes that
may be appropriate for approximating the global attractor. For exauple, they have lead
to the introduction of approrimate inertial manifolds and associated nonlinear Galerkin
methods [5). [6]. [8). [12]. [20), [27], (33), [34). and the references therein. A similar in-
terpretation is possible for the determining nodes. Indeed, in case the PDE has an LM.
it has been shown in (15] that the induced dynamical system of the nodal valnes of the
solutions is conjugate (equivalent) to the dynamical system of the PDE, In particular, it
may be possible to express, approximately, the values of the solutions at certain polnts in
terms of the values at other pointe (ef. [4], [15], 28], [31]. [32]). In either ease these results
indicate that it may be possible to improve the numerieal simulation of the NSE for long

time intervals without increasing the number of modes used or inereasing the resalution



of the computational grid.

In this paper we investigate another way to characterize the degrees of freedom of
the NSE. and that is the idea of Dctermining Finite Volume Elements, first introduced
in [13]. We consider the 2D NSE for a viscous incompressible fluid filling a square Q =

(0.L) x (0, L) with periodic boundary conditions imposed. The governing equations are

?ﬁ—u.&u+(u-")u+?p=[ in R? x (0,x)
C.u=0 in R?x (0,%)
P (1.1)

u(z), r3, 1) = u(ry, z3+ L, 1)

u(-l.'l..l'z.') = u('rl + L-'r)!’)!

/

where f = f(r.t), the volume forece, and v, the kinematic viscosity, are given. We denote
by u = u(x,t) the velocity vector. and p = p(z.t) the pressure which are the unknowns.
Further, we assume that the integrals of u and f vanish on © at all time (i.e. u and f
have mean zero in Q).

We divide Q into .V equal squares of side | = L/VV, and label the squares by
Qi.....Q~. We study the average values of solutions on the Q,'s. For this purpose
sot

N
(u)q, = F-/ql’l(.t)d.t
for every 1 < j < N, We wish to see to what degree knowledge of the behavior of the
local averages of the velocity vector charactorizes the flow. We investigate elsewhere the
implementation of these results in numerical simulations (see [15] and [7]).

The paper is organized as follows, In section 3 we investigate stationary solutions, We

show that if the finite volume elements of two stationary solutions agree, for sullicient|ly

large .V, then the two solutions are equal. In this case, we establish an upper bound



of order (7 for the number of subsquares needed for the finite volume elements to be
determining,.

Section 4 is devoted to the large time behavior of solutions. It is shown that if the
behavior of the local averages of two solutions goes to zero as time goes to infinity, for
sufliciently small subsquares, then the two solutions agree everywhere as t — >. We
also chow that the number of subsquares nceded for the finite volume eclements to be
determining, in this case, is of the order G2. Notice that by using local averages instead
of point wise values we remove the logarithmic correction terms as found in the upper
bounds for the number of determining nodes (cf. [23]). We remark that similar estimates
can be easily obtained for the 3D NSE provided the latter has global strong solutions in
titme. In particular, we know, in both the 2D as well as the 3D cases, if local averages
of two stationary solutions agree on sufficiently small subsquares, then the two solutions
agree everywhere in the domain.

In section 5 we extend our results to a reaction-diffusion equation. In addition. we
show that the number of determining finite volume clements is of the same order as the

dimension of the global attractor in this case.



2 Functional Setting and Preliminary Results
We sct

V = {u:R?*— R?, vector valued trigonometric polynomials

with period L,V -u =0, and / udr = 0}.
n

Further, we sot

H = the closure of ¥ in (L*(Q))?,

" = the closure of ¥V in (H'(Q))2,

where /1'(Q) (I = 1.2,...) denote the usual L2-Sobolev spaces. M is a Hilbert space

with the iuner product and norm

(u.v)=/‘;u(r)-u(:)d:, Ju| = (/nlu(:r)lad:t)l/z.

respectively, and u(z):v(z)is the usual Euclidean scalar product. Thanks to the Poincaré

Lemma, V' is also a Iilbert space with inner product and norm

2 Du.- (')v.- 2 3 0','.' 2
w0 =3 [ gt gade, o -3 [|a] o=

respectively. Let P denote the orthogonal projection in L2(Q2)? onto H. We denote by A
the Stokes operator

Au= -Plu,
(notice that in the periodic case Au = —=Au) and the bilinear operator
Biu,v) = P((u-V)n)

for all u,e in DAY = V0 (HAQ)2 We reeall that the operator A v positive sell.
adjoint operator with compact inverse, Thus there oxists a complete orthonormag set @)
of cigenfunctions of 4 such that dw) = Awyand 0 < Xy <Ay <o cwhere \y = ‘f ).



The NSE, (1.1), is equivalent to the differential equation in #

-(‘Ii—l:+u.'l'u+B(u.'u)=f. (2.1)

where from now on f = Pf, and it is assumed that f satisfies f € L™~((0,>): ). That is
supy>o | f(1)] < ac. (For details sce for example [1], [25] or [29].)
Let

1/2
F = limsup (/ |f(t.r)|2d:r) .
t—no 1

Following [9] we define the generalized Grashof number Gr as

The generalized Grashof number will play an analogous role as the Reynolds number, and
will be our bifurcation parameter. In what follows all our estimates will be in terms of the
generalized Grashof number. Notice that if f is time independent then Gr is the Grashof
number ¢ = ‘—l%

For questions related to existence, uniqueness, and regularity of solutions the reader

is referred for instance to [1], (13], [17], (19], [21], [25]. [29], and the references therein.

3 Stationary Solutions

Here we assume that the force, f, is time independent and that ¢r = ' = |[f|/ 2 If
¢/ is aufficiently small then the dynamics of (1) is trivial [29. p.70], and in this case the
global attractor consists of a unique exponentially stable stationary solution. We therefore
suppose that (¢ >> 1. However, we recall that ther exists volume forees such that the

dynamics of the NSE remains trivial independent of ¢/ (26].



Lemma 3.1 For every w € D(A) set

Nw) = llsnjasrgvl(w)o,l-

Then

L

Moo = 8 < e VENY(w)+ | dw 3.1

llwl| rlelglw(r)l < a y(w) 5 ,—-NI w| (3.1)
L‘Z

lw| < V2Ly(w)+ sviAwl (3.2)
L

NI < V6N ——|Aw|, 3.3

lw]l < V6 7(w)+2ﬁl w| (3.3)

Proof. Applying the Poincaré incquality to w(z) gives (see the appendix)
2 L? 2 L 2
[, Jweitde < Fiwla, P + 5% [ 1S wtede.
After summing over the j's we obtain
wf? < Ly(w) + Lo u? (3.0
= 6N

Now we interpolate in this last equation, ||w||? < |w]|Aw|, and apply Young's inequality
to obtain (3.2). Equation (3.3) is obtained in a similar fashion. To obtain (3.1) we use
Agmon’s inequality, |wf|3, € e}|w||Aw], and another application of Youngs's inequality.

Fe1 the bound on ¢) sce [9] O

We need one more fact about the NSE in two dimensions with periodie boundary

conditions: namely, tae nonlinear terin satisfies the identity

(B w). dw) =10 Y e D(A) (3.9)



(¢f. [1).[29]). Differentiating this last expression with respect to w in the direction of u

we obtain the useful identity
(B(u,w), Aw) + (B(w, u). Aw)+ (B(w, w), Au)y=0 (3.6)

for all u, w € D(A) (see [3]).

Theorem 3.2 Let u,v be two stativnary solutions of the 2D NSE satisfying
(u)g, = (v)q, for 1 <j<N.

Then u = v provided N > [(10 + 4v/2)V27]G.

Proof. Set w = u — v. Then w solves the equation
vdw -+ B(u,w)+ B(w,u) - B(w,w) = 0.
Taking the inner product with Aw and using (3.5) we obtain
viAw|? = =(B(w, w), Au).
Now we have the estimate
( B(w, w), Au)| € V2| wl|o|wl]] Au| (3.7)

(ef [1].[29]). Hence,

vl Aw)* < V2|wllollwl]| Aul.

One can easily show by using (B(u, u), Au) = 0 that |Au] < |f]/v. From (3.1), (3.3)

(notice 3( ) = 0 in this case), we get

)



2¢, L2?| f|
:l ‘ 2 f l
| | (u RT7AY ) <0.

It follows |Aw| = 0 (i.e. u = v), provided

N 2 \/'Eﬂ'zG.

4 Large Time Behavior

In this section we describe our results concerning the behavior for t — oo of the solutions
to the NSE. We reczll the following generalized version of Gronwall’s inequality. This
version was first used in [9] to estimate the number of modes needed to determine the

solutions to the NSE.

Lemma 4.1 Lect a be a locally integrable real valued function on (0,0), satisfying for

some 0 < T < oc the following conditions:

t+T
li‘m inf a(t)ddr=7>0
t+T
limsup a (r)dr =T < no,
t~—=0 t

where a~ = max{—a,0}. Further, let /3 be a real valued measurable function defined on
(0. such that J(t) — 0 as t goes to infinity. Suppose that £ is an absolutely continuous

non-negative function on (0, x) such that
d
ﬂf + af < 4, a.e. on (0.x).
(

Then E(1) — 0 as t — no,

10



Let u. v solve respectively the Navier-Stokes equations

du
q +vAu+ Blu,u)= f

u(0) = ug.
%+u.—lv+3(u. v)=g¢
v(0) = vo.

where f, g are given forces in L>(0, oc; /). Further, we suppose that lim;—~ [ f - g| = 0.

Theorem 4.2 In addition to the above assumpiions suppose that
‘l_l_q.lo(<u)01 - (U)QJ) = 0’
fer 1< j< N IFN 2 [(10 + 4V2)2]°Gr?, then

Jim Jlu(-, t) = v(-, O)ll Loy = 0.

Proof. The proof is similar to the one given for the determining nodes in [23]. We
therefore only give a sketch here.

Sct w = u — v. Ther w solves the equation

{—Idl_f' +vAw + B(u,w) + B(w,u) - Blw,w)= f -g.

Taking the inner product of (2.1) with Aw and using Fquations (3.1),(3.5), (3.6), and (3.7)

we g(‘t
| (.’”H'(')“2 |/‘“||2 (.IL _.l"ll 2 -
e - 1 A2 < e, VIRNA(w)||w])| Aul + | = gllAw].
2 dt Y lell? VRN | Aul ) |lell® < e y(w)|[wlf|Aul +|f - 9l



We apply Lemma 4.2, Set
3(1) = o, V12V y(w)jw|||Au] + | f - gl]Aw].

Using the fact that |:lu|,|Av| are bounded for t 3 1, [16], and the assumptions on f.g

and u.v. we have that J(t) — 0 as t — x. Set

12 !
o= | Awl _ ol Hu'|.~|u|.

v .
lwll? V2N fief]

It iollows from a priori estimates on the time average of |Au| (see [23]), namely,

1 t+T 2 F? F?
i — : dr € =——— 4+ —-
w7 ), 1Audr S a0+ 5
for every T > 0, that
t+T
limsup/ a (r)dr < x. (4.1)
t— 0 t
Similarly,
1 t.-T
liminf ,—/ a(t)dr >0 (1.2)
{—20 r t

holds e .od .V 2> dr?cdGir?. where ¢) is as in Lemma 3.1. Thus Lemma 1.1 applies
and ||w|]] — 0 as t — oc. Using the appropriate interpolation inequalities one can get

convergence in stronger norms.0

5 A Reaction-Diffusion Equation

Consider on 2 = (0. L) x (0, L) the two dimensional Chafoe-Infonte equation

"“-"‘ —dXu = byu +byuft.r)-u(t, r)u(t.r) =1
(. 1)

w(0..r) = uy(r),



where u(f. r) € R* and with periodic boundary conditions imposed. Hercafter d.by. b, ¢te

denote positive constants. For existence and uniqueness of solutions to (3.1) sece for ex-

ample [18].

Theorem B.1 Lct u.v solve (5.1) be such that

s.

Jim ((u), - (v)g,) =

f-”‘ 1 SJS .'\'. lf
1 L3,

N> -——,

6 d
Then

Jim flut- ) = e(- Ol L=y = 0.

Proof. Set w = u = v. Then w solves the equation

T
f‘_l'li = AAw = byw + by{u(t. ) u(t r)u(t,r) - v(t, ) v{tor)e(t.r)) = 0.

Taking the L%() inner product with w gives

L d 2 ] 1
2‘“|u| + d||w||? = by|w|

-Hu/(u(l..r)- u(t, r)u~e(t,r)-v(t,r)e)-(u(t,r) =v(t,r))dr =0, (5.2)
1}
A caleulation shows that for any vectors a,be 4

((a-a)a = (bb)b) - (a=0>) 20,

This itnplies that the last teemcin Equation (5.2) is positive and so

bd

o gl Hdlieli® byl <.



Using Equation (3.-1) we obtain

1d, A ,
- | — —— ) el < by L3,
rTL (« ool LGENSLTAR MY

Now if we require N > &0

the result follows after an application of Lemma 1.1, O

Theorem 5.2 Suppose L*b,/Ax%d > |. Then the Hausdor)y dimension of the attractor

Jor Equation (3.1) satisfies

2
2 - YR a 2
T ( _-b'l' - —f) -1 <dimA < \/2(22-: \/z)l" L + 1.

irid d

If L3, [ Ax%d < 1, then dimA=0.

Proof. To show the lower bound linearize Equation (5.1) about the steady state so-
luticn u = 0. Then it can be shown cero is a hyperbolic stationary solution, and the
dimension of the unstable manifold is larger than or equal to the number of cigenvalues
of = on 1 satisfving A < b;/d (see [30]). In our case the eigenvalues are of the form
5,"-';-(1" + &7y where [,k are integers. We then need to calculate how many integers satisfy

P ) la"bl

P4k« —=.

+ < dxdd

To do this we follow the proof of Proposition .14 in [1]). There it is shown that V., = {k ¢

24 k£ 0,k < r} satinfies

A 2

—_— 4
] d )
ﬂl( '_Il__ﬁ) E‘\".'.I_

‘Tv obtain the upper bound we use the trace formula as in [3). In particular, these estimates

come down to determining a constant snel that

m
LN

=1

R |
eym

Ny

1



(see [30]. p.300). Again from Proposition 4.1.1 of [1] we find that

A 2 '—”—j
(2+ V2)L2

I'liis impiies that (",' =27/(2 + Vv2). We have also that

') 2
dimA-1< éu
c, d

again see ([30] p.302). O

Remark 5.3 Notice that the bounds for the lower dimension of the attractor, the number
of determining finite volume elemen and the upper dimension of the attractor are of the

sate order as by L3 /d — x.
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6 Appendix

Here we give a brief sketeh of a proof for the Poincaré inequality used in Lemma 3.1 Let
) = (0.1) x (0,1). We first show the one dimensional version. For this let ¢ € 'y~ (M).
Integrating the equality

r(r) - l'(y)=/ v'(2)dz
v

over y and changing the order of integration one finds

{
I(v(z) = (1)) =/0 V()2 )z,

+a

:<r
where 2(2) = and (v) = }fé v(r)dr. It follows after squaring both sides,

=1l z>r
integrating over r, and using the Cauchy-Schwarz inequality that

. P .
lof* < o) + Fliell”

To obtain the two dimensional version lot u(zy,r;) € CF(M?). Now apply the one

dimensional version to u(ry,x3) holding r, fixed. Then integrate over 7+ to obtain

1l WAL 2 Pt
./u./u wd(ry.23)drgdr, 5-,—/0 (./u H(Ihil"))(l.l.")) '11'+F./0/0 uf.‘(rl.r-;)dr,:i.n.

To handle the first term in the above inequality again apply the one dimensional version
l i)

o r(ry) = j(: u(xy, rp)dra. After some algebra it follows that
. . Y L
Juf < Ei*+ <l
)

Sinee Cg (B)|g is dense in H2(82), the inequality follows,
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