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Abstract

Evaluating the total numbers of people at risk from infectious disease in the world requires not just

tabular population data, but data that are spatially explicit and global in extent at a moderate

resolution. This review describes the basic methods for constructing estimates of global population

distribution with attention to recent advances in improving both spatial and temporal resolution.

To evaluate the optimal resolution for the study of disease, the native resolution of the data inputs

as well as that of the resulting outputs are discussed. Assumptions used to produce different

population data sets are also described, with their implications for the study of infectious disease.

Lastly, the application of these population data sets in studies to assess disease distribution and

health impacts is reviewed. The data described in this review are distributed in the accompanying

DVD.

1. INTRODUCTION

Deriving population at risk estimates as a basis for evaluation of disease burdens requires

spatially explicit, moderate-resolution population data at the global scale. In this

contribution, methods for constructing estimates of global population distribution that are

suitable for geographic analysis are described. Though the basic approach has been used

widely for more than a decade, particular attention is given to recent advances to increase

both spatial and temporal resolution. As global data products are dependent on a diverse set

of inputs, issues related to input and output data resolution have an immediate bearing on the

suitability of the resulting datasets for a given task. This paper also reviews applications of

these population databases in the health sector, in particular, for the study of infectious

disease. Finally, the population and associated data files that accompany this volume are

briefly described.
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1.1. Rendering Population on a Global Grid

Global or broad-scale inquiry on the relationship between population and environmental

factors such as disease vectors or habitats is intrinsically spatial. While notable exceptions

exist, especially at the local scale, two key barriers have contributed to the paucity of

spatially oriented analysis: (1) the methods of analysis require some knowledge of

geographic data and tools for analysis; and (2) population data, at regional and global scales,

have tended to be recorded in national units that do not permit cross-national, subnational, or

cross-habitat analysis. These barriers have been slowly eroding. One trend that has

contributed to this is that the collectors and custodians of demographic data—the national

census and statistics offices—increasingly compile and distribute data for small

administrative or statistical units. While data from population censuses conducted before the

1990 round of population censuses were often published only for the country and major

divisions such as provinces or states, more recent census output often includes digital census

databases with detailed demographic data for districts, subdistricts, or even “enumeration”

areas (EAs), the smallest geographical unit in most census operations.

Great progress has been made in harmonizing subnational data released for different dates so

that they are comparable across international borders. First, since census years are not

synchronized across the world, this involves interpolation or extrapolation of population

estimates to a common base year. Second, subnational reference units can be vastly different

in size and shape across countries. For spatial analysis, it is often preferable to instead record

population estimates on a set of standardized reporting units, such as regular grid cells.

Grids are more commonly used to collect or compile data describing natural phenomena. In

interdisciplinary work, conversion to a regular grid imposes consistency that would be more

difficult to achieve with irregularly shaped census or administrative units. Methods that

transform population data from native census units (which correspond to vector format) to a

regular raster grid are the main focus of this paper. A third harmonization issue arises for

other demographic variables where, despite efforts by the United Nations and others to

promote common definitions, indicators are often not entirely comparable. This is a major

reason why global, georeferenced demographic databases have so far focused on the

simplest of all demographic variables: total population.

Efforts to estimate population distribution for a regular raster grid predate the

computerization of geography that started in the 1980s. Early examples such as the map by

Adams (1968) for West Africa served largely cartographic purposes. Census offices, most

notably those of Japan and Sweden, also produced national population grids for inclusion in

national atlases (e.g., Tufte, 1990, on Japan). Computerized population maps for individual

countries were produced by the US Census Bureau using rectangular grid cells

superimposed with circles for major urban areas (Leddy, 1994). Deichmann and Eklundh

(1991) presented a continental, gridded population database for Africa used to investigate

interactions between population and land degradation. Others, such as Martin and Bracken

(1991), developed techniques for producing local-level population grids (see Clark & Rhind,

1992; Deichmann 1996a, for reviews).

1.2. Institutional Stewardship

While national statistical offices produce population estimates that are sometimes linked to

spatial data, few agencies render their population estimates on a common grid. The first

efforts to place population data on a global-scale latitude–longitude grid were completed in

the mid-1990s at the National Center for Geographic Information and Analysis at the

University of California, Santa Barbara (Tobler et al., 1997). This initial dataset was itself an

outgrowth of prior work on regional and continental databases. The Global Demography

Workshop held in 1994 at CIESIN (the Center for International Earth Science Information
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Network, now part of the Earth Institute at Columbia University) brought together experts in

the field and helped advance methodological development and database creation for the first

global grid. CIESIN is the locus of current global efforts, though it works closely with

partnering institutions. Like many complex global data products, the Gridded Population of

the World (GPW) database has evolved with numerous partners. Subsequent versions have

included different collaborators, inputs, and outputs, but the guiding principle is to achieve

the best possible suite of data products representing the distribution of human population,

sometimes heuristically (i.e., without modeling) and sometimes with light modeling

(Deichmann, 1996a). The fewer the assumptions and inputs that are used in the construction

of the databases, the fewer the restrictions that have to be imposed on the appropriateness of

use in a wide variety of applications. For example, if land cover were used to predict

population densities, one could not predict expected changes in land cover from a resulting

population distribution(s) that included land cover as a reallocation factor, as it would be

endogenous.

Since the first version of GPW, several key advances have been made: the spatial resolution

of administrative boundary data is improving; national statistical offices and spatial data

providers and related institutions are adopting more open-data policies; population and

spatial data providers are increasingly aware of, and increasingly collaborate with one

another; and the computing capacity to manage, manipulate, and process increasingly large

datasets is continually expanding (Balk and Yetman, 2005). As a result of these advances,

some countries now produce and disseminate high-resolution spatially explicit population

data. In local studies, nationally produced data are typically superior (i.e., of higher

resolution, with more variables, and so on) to globally rendered data. Researchers asking

highly place-based questions should begin with locally available data, if possible.

Nevertheless, many questions are regional in scale, or at least span across more than one

country, or require data that have been transformed to a common grid. For those problems,

the data in this paper are highly suitable.

The basic global database to arise out of these efforts is the GPW, now in its third revision,

with large gains to resolution having been made with each revision. In addition to the key

advances described above, advances in ancillary data to allow for light modeling, especially

valuable where input data are of suboptimal spatial resolution, have allowed for more

sophisticated but still simple modeling. Thus, GPW and related population data products are

the main focus of this review. The resulting datasets are also included in the accompanying

DVD. Details on the variations in these databases, their methods, assumptions, and

limitations follow.

2. DATA

The georeferenced population data sets that are the focus of this paper share as a critical

common characteristic: the fact that they are constructed with an emphasis on the highest-

resolution input data, rather than focusing on statistical or heuristic prediction of population

distribution from coarse input data. That is, they attempt to measure the distribution of the

population of the world, as measured at one’s usual place of residence. The basic premise is

that no amount of further processing or modeling can substitute for obtaining population

counts for the smallest geographic reporting units available. Censuses in many countries are

far from perfect and reliable civil registration systems exist only in a small number of

countries. These sources provide the only complete enumeration of a country’s population

and by definition, provide the only geographically complete count of residents. By making

additional assumptions about regularities in population distribution, it is possible to further

disaggregate the reported district or subdistrict totals, but usually one cannot then reliably

assess how accurate the resulting distributions are because there is no basis for sound
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validation. Population distribution modeling should therefore be considered a last resort in

the absence of EA population maps, rather than as a goal in itself. When modeling is

undertaken, the inputs of that model and the means for the redistribution should be made as

transparent as possible.

The differences in these evolving data products are reviewed in Table 1 and are discussed in

subsequent sections. Fundamental modifications include an increase in input resolution by

over 20 times from the first to the current version of GPW (Balk and Yetman, 2005), and

nearly a tripling again for the modeled data products of the Global Rural Urban Mapping

Project (GRUMP) (Balk et al., 2005a). Increases in the input data enabled a corresponding

increase in output resolution from 5 arc-minutes of GPW version 1–2.5 arc-minutes for later

versions of GPW and related products. The data products from the GRUMP effort utilize

higher resolution inputs, and thus outputs have been rendered at a 30 arc-second resolution.

The basic method by which population counts are transformed from census units to a grid,

developed for the first version of GPW (Tobler et al., 1997) and modified slightly for GPW

v2 (Deichmann et al., 2001), remain the same in the third version; related databases with

light modeling use additional methods, but the basic method underlies all of these databases.

Population data are transformed from their native spatial units that are usually administrative

division of irregular shape and resolutions (see Figure 1) to a global grid of square latitude–

longitude cells at a resolution of 2.5 arc minutes (i.e., approximately 4.6 km at the equator).

The main inputs consist of geographically referenced boundaries of administrative or

statistical reporting units at the highest available resolution—ideally the EA, but more

typically at district or subdistrict level. The methods used to distribute the reporting unit

total population numbers across the raster grid cells that fall into that unit differ slightly

between the different versions of GPW and closely related data. These will be discussed

below. Temporal adjustments are discussed in Section 3.

2.1. Gridded Population of the World

The GPW database uses two basic inputs: non-spatial population estimates (i.e., tables of

population counts listed by administrative area names) and spatially explicit administrative

boundary data. These are collected from hundreds of different data providers (often differing

for the population and boundary data). The first part of the process is to match the

population estimates with the administrative boundaries into what is known as polygon (or

vector) format, ensure that the resulting data are geospatially consistent (e.g., that all internal

boundaries match, leaving no unaccounted polygons or that island chains which might share

a single population figure should they belong to the same administrative unit), and sum to

the national-level population, as estimated by the data provider. These basic consistency

checks mirror census principles of not leaving any resident out and not counting anyone

more than once. To construct the GPW database, the administrative unit data in polygon

format are converted to raster grids. In version 1, built-in geographic information systems

(GIS) software functions were used to accomplish this conversion: grid cells that fall onto

the boundary of two or more units were assigned to only one reporting unit based on a

simple majority rule. The total unit population was then proportionally allocated over all

grid cells assigned to that unit. A second product from this effort used these grids as a

starting point for a re-distribution algorithm called smooth pycnophylactic (mass-preserving)

interpolation (Tobler, 1979). The assumption underlying this approach is that those areas

within a given administrative unit that neighbor regions with higher population densities are

likely to house more people than areas that neighbor low-population density regions. The

previously homogeneous population figures in grid cells within each administrative unit are

thus re-distributed taking grid cells in neighboring units into account. By iteratively

adjusting grid cell populations on this basis, the method results in a maximally smooth

surface while preserving total population within each reporting unit.
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The second and third versions of GPW retained most of the characteristics of the

“unsmoothed” version of GPW v1, while significantly increasing the number of reporting

units that served as input to the gridding routine. While version 1 relied on about 19 000

administrative units, version 2 used 120 000, and version 3 used 375 000 units with much of

the increased precision achieved in developing countries (see Table 1). The main difference

in processing in these newer versions lies in the way boundary areas between administrative

units are treated. While version 1 allocated grid cells to only one unit even if it was shared

by two or more (i.e., majority rule), GPW v2 and v3 use a proportional allocation so grid

cells are assigned population in proportion to the area of overlap of grid cell and

administrative units. Figure 2 (detail) and Table 2 illustrate this for a grid cell in the

Dominican Republic. Proportional allocation is often referred to as an areal weighting

scheme (e.g., Goodchild et al., 1993).

2.2. Global Rural Urban Mapping Project

The allocation mechanism for the GRUMP (Balk et al., 2005a) builds on the GPW approach

but explicitly considers population of urban areas. In addition to data for statistical reporting

units, the project collected population estimates, point location, and the approximate

footprint for urban centers in each country. The objective is to disaggregate the urban area

populations from the total population of the administrative unit into which the urban area

falls. This allows us to allocate urban and rural population separately, which effectively

increases the number of input units and thus the effective resolution of the population grid.

In contrast to GPW, estimates of population for urban centers were needed in addition to

population estimates associated with their census boundaries. Much less investment has

been required from national statistical agencies to collect and publish population estimates

for urban areas, unless these are entirely consistent with the census information for

administrative units (which is rarely the case). Nevertheless, city population figures are

published in a variety of sources. These data were collected and then matched with the urban

footprint. That matching also occurs through a series of steps starting with simply a name-

match of the populated places with geographic locations (i.e., latitude and longitude of the

presumed center of the urban area). The geographic coordinates were found in national or

international gazetteers, such as that of the US National Geospatial Intelligence Agency (see

Balk et al., 2005a, for details).

A more challenging problem was to determine the footprint of major city areas. The most

important source are nighttime satellite images that show areas lit by streetlights and other

permanent light sources that are concentrated in urban settlements (Elvidge et al., 1999). In

cases where statistical sources indicated a city that could not be detected on nighttime

satellite images—a common occurrence in Africa—urban areas were delineated from other

sources (e.g., Tactical Pilotage Charts) or approximated by circles whose sizes were given

by population–area relationships calibrated (through a regression analysis) on existing data.

It is acknowledged that a circle is not an accurate form for any city, but this assumption was

the most practical one to implement and the basic shape from lights for small extents tends

toward circular. Circle-generated extents in each country were cross validated with other

locations of near population size to confirm that the sizes were on the same order of

magnitude. Conversely, footprints that could not be matched with populated place

information were not assumed to have population and were discarded from the data. The

population estimates, matched with geographic point locations were summarized for each

footprint, producing an urban extent data set with population estimates.

The final step was to use these many pieces of information—which are summarized as

administrative regions with population estimates and urban extents with population

estimates (shown as panels 1A and 1B, respectively, in Figure 3)—and generate a
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population grid (panel 2B, Figure 3). (Figure 3 is Plate 4.3 in the Separate Color Plate

Section.).

Because these come from different sources, it is important to make sure that the urban area

population totals do not exceed those of the administrative areas in which the urban areas are

located. Thus, a model is used to re-allocate population of the administrative areas given the

population of the urban areas, the total population of the administrative area, and minimum

and maximum criteria about each country’s urbanization trends (details are given in Balk et

al., 2005a). The output resolution for this grid is 30 arc-seconds, similar to that of the

nighttime lights’ data. The GRUMP population grid also uses a proportional allocation rule

in gridding.

2.3. Accessibility Modeling

The final set of gridded population datasets reviewed here are based on an additional set of

assumptions about population distribution: the basic premise is that people tend to live in or

close to cities and tend to move toward areas that are well connected with urban centers.

Even in rural areas, it is expected that densely populated areas are closer to transport links

than more isolated areas, and higher densities are nearer cities than the hinterland. These

stylized facts concerning the distribution of people across space are implemented using the

concept of accessibility—a measure of the ease by which destinations such as markets or

service centers can be reached from a given location. In practice, these measures are adapted

from the well-known gravity model of spatial interaction (Haynes & Fotheringham, 1984).

They represent the sum of an indicator of size or mass at destinations (such as population of

surrounding cities) inversely weighted for some function of distance. The ideal measure here

is an estimate of travel time using the shortest route on a geographically referenced

transportation network of roads, rivers, rails, and so forth. The resulting access estimates for

each grid cell are then used to proportionally distribute each administrative unit population

total across the grid cells that fall into it. This approach has been implemented for

continental-scale databases for Africa, Asia, and Latin America, with support from the

United Nations Environment Programme, the International Center for Tropical Agriculture

(CIAT), and others. Nelson and Deichmann (2004) describe the latest version for Africa and

document the modeling approach in detail.

The most important input into the model is information about the transportation network

consisting of roads, railroads, and navigable rivers and their associated speeds of travel (i.e.

60 km per hour for 2-lane paved roads, 30 km per hour for railroads, etc.). The second main

component is information on the location and population of urban centers, which are then

linked to the transport network. These inputs are used to compute a measure of accessibility

(Vi) for each node (intersection) in the network, which is based on the sum of the population

of towns (Pk) in the vicinity of the current node weighted by a function of travel time across

the network between the node and the towns f(dik). Figure 4 illustrates the computation of

the accessibility index for a single node based on the weighted sum of the population of four

towns that are within a given travel time threshold.

The accessibility values at each node were interpolated into a raster surface to create an

accessibility index for each grid cell. Raster data on inland water bodies (lakes and glaciers),

protected areas, and altitude were then used heuristically to reduce the accessibility potential

in areas where there is little or no population. Accessibility values in water bodies and areas

of extremely high altitude were set to zero. Accessibility values in protected areas and forest

reserves were reduced by 80% and 50%, respectively. Both adjustments were heuristically

chosen in the absence of empirical data.
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The accessibility values estimated for each grid cell serve as weights to distribute population

proportionately. The grid cells in the accessibility index were summed within each

administrative unit. Each value was then divided by the corresponding administrative unit

sum such that the resulting weights sum to one within each administrative unit. Multiplying

each cell value by the total population yields the estimated number of people residing in

each grid cell. The standardization of the accessibility index implies that the absolute

magnitudes of the predicted access values are unimportant—only the variation within the

administrative unit determines population densities within each district (Deichmann, 1997;

Nelson & Deichmann, 2004)—but that, similar to GRUMP, the sum of grid cell population

values for each unit cannot exceed the value for the administrative unit in which they fall.

2.4. Highly Modeled Surfaces

Another recently developed dataset, LandScan, takes a highly modeled approach, whereby

much less investment is made in using the highest possible resolution population data

(ORNL, 2003). This data set is categorically different from those described above, in that it

does not attempt to represent nighttime, census residence, or usual population but rather it

aims to measure an “ambient” population—i.e., the average location of an individual across

seasons, days of the week, and times of day. Instead, effort is spent on getting annual

updates to relatively coarse-level population inputs, and to ancillary data (including roads,

nighttime lights, elevation, slope, and land cover) to be fitted to a complex model (Dobson

et al., 2000). The specific model parameters or their calibration are not published and, thus,

it is difficult to assess the appropriateness or accuracy of this approach. LandScan receives

less attention here, but is briefly discussed where it has been applied in the studies below.

3. METHODOLOGY

Though the basic method for re-distributing population from census and other units to a grid

has been discussed, there are additional methodological requirements. For each reporting

unit, a consistent population estimate for a baseline year is obtained. Where no census data

or official estimates are available for the target year, a population figure is estimated using

census year population and inter-censal growth rates.

3.1. Adjusting Population Estimates to Target Years

Key inputs in all population databases reviewed in the previous section are subnational

population totals typically available for small administrative or statistical reporting units.

The standard source for such data is a national population and housing census, or, in some

instances, a large demographic survey. Population censuses are undertaken periodically in

many countries, once a decade. Exceptions are countries in which well-functioning civil

registration systems make periodic census-taking unnecessary. Many countries take their

censuses on the decadal year (1980, 1990, 2000), others take them on the first year thereafter

(1991, 2001). (The US Census Bureau maintains an inventory of past and future census

dates for each country at www.census.gov/ipc/www/cendates/.) Some countries produce

inter-censal estimates. Other countries, particularly those experiencing civil unrest, with few

resources, or where census information may be deemed to be politically threatening, tend to

have less regular censuses taken at intervals wider than once per decade.

Given that the population data are collected in different years, the small area population

totals need to be reconciled by estimating population for the target years of interest. In GPW

v3, these are 1990, 1995, and 2000 as well as a projection for 2015. GRUMP is similarly

produced for 1990, 1995, and 2000. The regional Africa and Latin America data sets that are

based on the accessibility model include population estimates for 1960, 1970, 1980, 1990,

and 2000. For most countries, where two native population estimates were available from
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the national statistical offices, an average annual population growth rate was computed, as

follows:

(1)

where r is the average rate of growth, P1 and P2 the population totals for the first and second

reference years, respectively, and t the number of years between the two census

enumerations. This rate was then applied to the census figures to interpolate or extrapolate

population totals to the target years. For example, the 1995 estimate is calculated (where t is

now the difference between P1 and 1995):

(2)

Some countries had only one population estimate. This includes newly formed states (e.g.,

Croatia) as well as countries that for either economic or political reasons have not conducted

a census or released census results since 1990 (e.g., Angola). Others have conducted a recent

census (e.g., Afghanistan) but administrative areas have changed to an extent that it cannot

be matched with prior censuses. Additionally, many small islands have infrequent censuses

and do not have subnational data. In these instances, national-level growth rates from the

United Nations were used in lieu of intrinsically calculated growth rates (United Nations,

2001).

3.1.1. Boundary Matching Over Time—The GPW population surfaces use only

population and boundary information and the other datasets use these data in combination

with other sources. These pieces of information are linked. Where boundaries have changed

over time, as they often do, considerable effort is made to reconcile the differences. For

example, if a district in 1990 were split into two districts in 2000, the population for the two

districts in 2000 would be summed so as to represent the same areal distribution as given in

1990. (It is usually impossible to adequately divide the population for the given district of

1990 in the absence of information provided by the census office to this effect.) As higher

resolution data are collected, the need for reconciling boundary changes becomes greater,

because lower level units such as districts are modified more frequently than provinces or

states. Fitrani et al. (2005) describe how decentralization in Indonesia led to a sharp increase

in the number of local governments and associated boundaries (from 292 in 1998 to 434 in

2004). In many countries, changes are less dramatic, but reconciling boundaries and

reporting unit identifiers nevertheless poses one of the most challenging problems in

compiling detailed, cross-national population databases. Interpolating or extrapolating

population figures to a common base year often requires the use of a hybrid method,

whereby growth rates are calculated at a level where boundaries have not changed (e.g.,

provinces), and applied to higher resolution subunits such as districts.

3.1.2. Temporal Aspects of Ancillary Data for Modeled Population Grids—

Unlike the GPW databases, GRUMP and the Accessibility Model also use other datasets,

which represent phenomena that change over time: changes in urbanization and

infrastructure. Unfortunately, the current versions of these databases are limited to a single

snapshot. The urban extents are derived primarily from a stable city-lights’ database from a

1994–1995 composite and the roads’ data are approximately as of the year 2004. Users of

these databases, interested in changes over time, should be well aware of this limitation.

Future versions of this database will be able to incorporate improved temporal coverage,

since the nighttime lights’ data are being processed for additional time periods. Additional
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research will be required to confirm that changes in nighttime satellite-derived urban extents

truly reflect land-use changes surrounding major urban areas rather than changes in sensor

characteristics or processing. Should time series of road networks become available, they

too could be incorporated. Alternatively, historical transport networks can be approximated

by altering the speed of travel over particular surfaces to represent the poorer condition of

the transport network in the past and envisaged better conditions in the future.

3.2. Limitations of the Ancillary Data

GRUMP and the Accessibility Model rely on ancillary data because in all instances the best

possible data are not available. For this reason, it is important to understand the strengths

and weaknesses of those data sources before applying them. While some of the issues

associated with the temporal shortcomings have been mentioned, there are other caveats

unrelated to temporal concerns.

There have been many uses of the nighttime lights’ data as a proxy for urban areas (Elvidge

et al., 1997; Sutton et al., 2001; Pozzi et al., 2003; Schneider et al., 2003) and these data are

the only globally consistent and repeated sources of likely urban areas. Nevertheless, they

have a few key limitations: they are known to over-represent built-up area, an effect called

“blooming.” The blooming effect depends on intrinsic characteristics of the sensor and on

geolocation errors in the compositing process (Elvidge et al., 2004). Studies have shown that

it is not possible to find a unique threshold to reduce the blooming effect that would work

globally (Small et al., 2005). In fact, a 10% threshold could reduce the blooming effect

without significantly affecting many individual small settlements for the 1994/1995 dataset.

But this threshold does not provide a globally consistent basis for relating lighted areas to

urban extent, since the characteristics of the blooming effect are, to some extent, city and

country specific. Thus, heuristic or ad hoc adjustments of this nature would make data

analysis questionable. A second shortcoming of these data is that they under-represent small

settlements that are either poorly or infrequently lit due to insufficient detection by the

sensor. This is a particular problem in Africa or rural Asia, where population data are also

often sparse.

Given the limitations with the nighttime lights’ data, GRUMP protects against

overestimation of urban extents that are false positives—i.e., lights at industrial sites which

may not be (or are sparsely) populated—by requiring additional information for validation

(i.e., a name, location, and population estimate corresponding to the light). GRUMP also

uses additional sources and indirect techniques to estimate extents for known populations

that fall below the sensor’s detection threshold as discussed above (see Balk et al., 2005a).

For small-scale or even regional applications, the urban mask associated with the GRUMP

data may produce areal extents that are larger than expected. In these instances, use of the

urban extent mask if used with the GRUMP population grid may provide sub-urban

population detail that might assist in further delineating the more- and less-densely

populated areas within these enlarged—or agglomerated—urban areas and thus indicating

features (density) that are associated with urban gradients. Reliance on the extent mask in

and of itself may lead to overestimation of urban areas. For example, Tatem et al. (2005)

found that the GRUMP urban mask overestimates urban extents for Kenya when compared

with data derived from higher-resolution satellite imagery.

Future versions may be able to use improved night-lights products, both in their ability to

reduce the blooming (though that work is just underway) and to make use of lights detected

at more than a single time point. As mentioned, GRUMP was developed when only the

1994–1995 product was available, but subsequent to that, 1992–1993 and 2000 releases
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have become available. These are not fully analogous datasets, so additional work to

determine their utility for urban detection would first be required.

Similarly, for use in the Accessibility Model, there are few data sources that provide

consistent, geographically referenced transportation network data for large areas such as an

entire continent. The combination of the Vector Map Level 0 (VMap0) spatial data (NIMA,

1997) with the improved attribute data and the transport data used for the African

Accessibility Model should be viewed as currently the best available for the given

constraints. The spatial data for the African transport network is derived from the Vector

Map th VMap layers for roads, rivers, and railroads (NIMA, 1997). VMap0 is an updated

version of the Digital Chart of the World (DCW) and is suitable for applications at a scale of

1:1 million. While this provides a consistent level of spatial detail for Africa, the transport

links in the database do not contain sufficient information about their characteristics (road

quality, road type), which is essential for computing the travel times in the accessibility

model. For most of Africa, roads are the most important means of transport, and so the

attributes of the road links were substantially improved through the use of continental-scale

paper maps of Africa at a scale of 1:4 million (Michelin Travel Publications, 2004). These

maps were used to identify 132 000 km of major roads and 282 000 km of secondary roads

(11% and 22% of all roads in the VMap0 layer, respectively).

There are many uncertainties in the spatial and attribute data for the transportation network.

There is often no easy way to determine the original data source. It is also likely that the

original scale of the data varies from country to country. It is often hard to determine how

current the data are and how data from different sources were reconciled at country

boundaries. Indeed, it is quite possible that the final transportation network does not

represent consistently the state of the road network for any one year and it needs to be used

with great caution in applications that require data at scales greater than 1:1 million or that

require data for the state of the transport network for Africa pre-1990 or post-2005. Future

improvements in the quality of continental-scale transport networks will most likely depend

on the public release of VMap Level 1 data at 1:250 000 or concerted regional efforts to

publish consistent key data layers (such as SERVIR for Central America http://

servir.nsstc.nasa.gov/home.html).

4. HEALTH APPLICATIONS

Since the earliest version of GPW and the Accessibility Models in the mid-1990s, health

researchers have been using the data to better understand population exposure, vector-

habitat, disease distribution, mortality, and related factors (from habitat change to livestock

distribution to the distribution of underweight children). These data have been used

effectively at the regional and global scale, and in some instance (large areas or countries),

in fairly specific local areas. Gridded population data have been used to assist in sampling

for a health survey in Chad (Brooker et al., 2002; Beasley et al., 2002) to estimate the

geographic distribution of underweight children (Balk et al., 2005b), to determine changing

habitat (for example, Reid et al., 2000), and to estimate population at risk of a specific

infectious disease. Measures of population counts and density distributions have broad-scale

health applications. Although the bulk of this section addresses the latter, a brief review of

the former is also included, in part, because gridded population data act as a proxy for a host

of other health-related data.

4.1. General Health Studies

Regional studies of mortality and malnutrition have focused largely on understanding

biological and socioeconomic factors associated with those outcomes. Spatially explicit data

on those outcomes is typically not available. When survey or clinic data are georeferenced,
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as is increasingly the case, it becomes possible to consider a range of spatially explicit

factors, including population density. Density relates to disease transmission—and

ultimately health status—in a variety of ways. For example, person-to-person transmission is

likely to be high in densely populated urban areas, though such areas may reduce the

potential for particular vector habitats. Population density estimates also provide continuous

measures of the degree of urbanness (such as high-density core urban areas or less dense

semi-urban areas). In the absence of explicit data on the mode of disease transmission, or the

vector habitat, and with careful use, population density may be a useful proxy for an urban

continuum.

In a study of West African mortality, Balk and colleagues (2004) confirm the complexities

associated with measuring and interpreting population density: in urban areas, increases in

population density reduced the risk of infant deaths, and the further away from an urban

area, the greater the likelihood of infant death. In this study, density (GPW v3) and the

GRUMP urban extent mask (alpha version) are used as proxy variables for clinic or health

services density (which were not directly measured). In a study of underweight status in

African children, Balk and colleagues (2005b) find that population density (GPW v3,

CIESIN and CIAT, 2004)—again acting as an urban proxy—decreases the likelihood of

children being underweight. Similarly, Sachs and colleagues (2001) and Gallup and Sachs

(2001) use GPW v2 to explain differences in the spatial pattern of poverty and disease

burden in Africa. These studies find that coastal dwellers—in large part due to their access

to ports, urban areas, and infrastructure—experience less poverty and a lower economic

burden associated with malaria than inland populations.

4.2. Specific Diseases

Population grids have become a key tool to understanding the populations at risk of

contracting various infectious diseases. Infectious diseases have vectors or other

transmission routes that are generally highly location based or geographic in nature. The

means to understanding the impact of specific disease burdens depends in part on the ability

to identify spatially the areas at risk as well as understanding the population in those places.

Matching these spatial units—disease numerators with population denominators—is a large

part of the contribution that gridded population data make toward understanding specific

infectious diseases.

In many low-income countries, lack of resources and capacity in the health system prevent

the development of reliable records of malaria morbidity and mortality. A large body of

work has attempted to triangulate malaria risk and human population distribution to define

population at risk. This work was pioneered in Africa with the development of the MARA/

ARMA model of climate suitability for Plasmodium falciparum transmission (Craig et al.,

1999). Combinations of this map and the African population database (Deichmann, 1996b)

were used to define age-specific populations at risk in 1995. These estimates were derived

using national-level age distribution data from the UN Population Division applied to

subnational population totals. In combination with empirical epidemiological data from local

studies, Snow and colleagues (1999a, b) produced estimates of morbidity and mortality for

the total and under five-year-old populations of Africa (see also Hay et al., 2000). This work

was updated and augmented (Snow et al., 2003) to the year 2000 using the African

population database (Deichmann, 1996b) to determine the proportion of the population in

transmission risk categories and applying these to year 2000 national population estimates

from the United Nations (2001). The most accurate revision of these mortality and morbidity

figures for Africa has been done by using new extractions for the year 2000 using GPWv3

(CIESIN and CIAT, 2004) and the MARA model (Hay et al., 2005a). This work is also

incorporating the location of urban populations in Africa to discount morbidity and mortality

estimates for the significantly lower malaria transmission rates in these urban areas.
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Recently, these “population at risk” assessments have been conducted using historical maps

of malaria endemicity and its transmission extent to evaluate the changing population at risk

between 1900 and modern times at the global scale (Hay et al., 2004). Using a similar

approach to MARA/ARMA morbidity, estimates for P. falciparum have now been

conducted globally (Snow et al., 2005). In addition, some (Rogers and Randolph, 2000; Van

Leishout et al., 2004) have used GPWv2.0 (CIESIN et al., 2000) to estimate population at

risk under coupled scenarios of population and climate change. There are many issues

involved with the choice of population surfaces and their derivation and these have been

evaluated with respect to population at risk of malaria in Kenya (Hay et al., 2005b). Hay and

colleagues show the paramount importance of the average spatial resolution of the input

census data by comparing five population surfaces including GRUMP v1, GPW v2, and v3;

the Accessibility Model (version 3 not the most current); and LandScan. Figure 5 compares

the error associated with each dataset at varying levels of spatial aggregation: they all

estimate about the same population at the most aggregated level (the first administrative

level) but two stand apart, GPW v3 and GRUMP v1, providing notably superior estimates at

the highest spatial resolution. (Note that this publication was not undertaken on the most

recent versions of the Accessibility Model, in which the underlying inputs have been

improved, or of LandScan.) The results also highlight the issues involved and accuracy that

can be obtained using simple interpolation techniques at different administrative levels,

where these might be locally available. Although the interpolation methods differ, the best-

fit datasets are those with inputs of the highest mean spatial resolution (MSR).

Given the absence of reliable data on the total number of parasitic infections in a country,

estimates have often been based on prevalence data from a few limited studies and

extrapolated to the country as a whole. In order to make these extrapolations more accurate,

global georeferenced population datasets have been used increasingly. In particular,

population totals and distribution from the Africa Population database (Deichmann, 1996b)

and the first version of GPW (Tobler et al., 1995), along with district-level census data when

available, have been used to estimate population at risk of parasitic diseases or to estimate

the number of people infected. For example, different statistical models have been

developed to estimate the number of individuals to be treated based on the prevalence of

infection of a given disease and population structure and distribution (Brooker et al., 2000;

Lindsay & Thomas, 2000; Noma et al., 2002). Lindsay and Thomas (2000) use climate data

to predict the distribution of lymphatic filariasis and overlay the resulting risk maps with a

continental population grid (Deichmann, 1994) to estimate the number of people potentially

exposed to the infection in Africa.

The issue of identifying population at risk and priority areas for treatment has been

addressed by combining gridded population data with remotely sensed data. For instance, a

recent methodology was developed to combine ecological zones defined using satellite-

derived data (land-surface temperature and photosynthetic activity averages) with population

density and prevalence data to map population at risk of parasitic infections in different

countries in Africa (Brooker et al., 2001a, 2002; Kabatereine et al., 2004) and Asia (Brooker

et al., 2003). The results provide a targeted sampling frame of schools to guide valid

epidemiological surveys and the identification of priority areas for national school initiatives

and mass treatment. Noma et al. (2002) use GIS to identify bioclimatic zones of potential for

onchocerciasis and to select which communities should be surveyed. The results were used

to define areas of varying transmission risk to guide the implementation of control

strategies. Similarly, Brooker and colleagues (2001b) used an early version of the African

Population grid (Deichmann, 1996b) to determine populations at risk in particular locations

resulting in observation of a significant relationship between the prevalence of Schistosoma

mansoni and the distance of the schools from the lakeshore; as a matter of health policy,

“distance to lakeshore” can now be used as a means to screen schools in East Africa.
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A related application is one where global population data were used to study the relationship

between population distribution changes and associated habitat changes. For example, Reid

and colleagues (2000) predict that population distributional changes will, in effect, reduce

the cattle population habitat leading to the reduction of the tsetse fly population and sleeping

sickness prevalence in the human population.

Several uses of gridded population surfaces have demonstrated patterns in the distribution of

human population vis-à-vis physiographic, climatic, and other environmental parameters

that may be closely linked to health and disease burdens. For example, Small and Cohen

(2004) use GPW v2 to show that people tend to live at low altitude (with Mexico City being

an important exception) and near permanent water sources (rivers and coasts), but that

population is not nearly as localized with respect to climatic variables such as precipitation

or temperature. Disease vectors may be influenced by all of these factors, thus

demonstrating the need for moderate-resolution population surfaces that allow for these

factors to be disentangled in any given region of interest. In another study, Astrom and

colleagues (2003), using GPW v2, find that populations residing above a certain altitude—

due to the relationship with the physiological processing of oxygen at high altitude—

experience lower tumor incidence.

In the wake of the Indian Ocean tsunami of December 26, 2004, the GRUMP population

grid was used in combination with coastal buffer distances and elevation to estimate the

population exposed to the great wave (Balk et al., 2005c): roughly four million persons were

estimated to live within a 2 km buffer in the most-affected regions. These estimates were

then used to calculate death rates in some of the affected regions. National and moderate-

resolution subnational population estimates could not be used rapidly, and without

considerable assumptions, to generate estimates of exposure to natural hazards. (Even if

some countries had high-resolution subnational data, they would need to be gridded to make

such calculations.) Further, since this tragedy occurred across many national borders, it

highlighted the utility of having a global population grid that is agnostic about independent

of country boundaries. A global study of natural disaster hotspots has used GPW to estimate

the risk of mortality and economic loss from six major natural hazards (Dilley et al., 2005).

Lastly, an exploratory study considers the relationship of population density to the location

of newly emerging or re-emerging infectious disease (Patel et al., 2006). While the evidence

is preliminary and complex, it suggests that disease emergence may be causally related to

population dynamics, travel and trade routes.

5. DISCUSSION

Population input data are inevitably highly variable in terms of quality, resolution, and

accuracy, in ways that are not quantifiable. In part, that is the nature of demographic data,

which represent social processes, but treating them as if they were an easily measurable

physical variable (on a grid). Administrative units will always be larger in sparsely

populated areas, and perhaps will have more detail than may be needed for some

applications in high-density places. Users should bear this constraint in mind when using

these data.

5.1. Ideal Spatial Resolution

The ideal resolution for the study of infectious diseases and health will vary. Localized

disease outbreaks might require information on village location, boundaries, and associated

population characteristics. Emergency response studies, such as the recent tsunami in the

Indian Ocean (Balk et al., 2005c) require high-resolution administrative boundaries,

population, and other demographic data associated with those boundaries as well as
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infrastructure (e.g., health clinics) at risk. Where the emergency is brought on by a

geophysical phenomenon that is best estimated with physical data (such as coastal distance

or elevation) gridded data are a prerequisite for establishing baseline population exposure.

For broad synoptic analysis of health–environment issues, medium-resolution data would

likely be sufficient.

The databases discussed herein have been constructed with enough information to

incorporate uncertainty into the analysis. A simple measure for each pixel is the resolution—

in this case, the size of geographic area—of the administrative unit from which the pixel

population was derived or modeled. A grid of this indicator is available for version 3 of

GPW. In practice, few people take the trouble to do serious uncertainty or sensitivity

analyses. The responsibility of data producers is to provide all relevant information about

input data, document modeling, and processing and leave it to the user to take this

information into account.

In the development of the aforementioned data products, it has been useful to construct a

measure of effective resolution. Measured as the country-specific average resolution, it can

be thought of as the “cell size” if all units in a country were square and of equal size, which

of course they are not. It is calculated as follows:

(3)

A closer look at the varying resolution (or area) of the administrative units reveals other key

improvements in the database in the GPW efforts. The average resolution of all countries

went from 60 to 46, with improvements of 10 times or more for particular countries. Figure

6 shows the resolution improvements in Africa, for four versions of the Accessibility Model,

by cumulative population. In the current version of the accessibility model, as with GPW v3,

more than 60% of Africa’s population is represented by a mean resolution of 50 km or

better. This represents a significant improvement over previous models, including version 2

of the Accessibility Model and GPW v1, where 60% of the population was represented by

much coarser resolution, more than three times coarser than the current resolution (about

170 km).

Though GPW has always sought to be based on inputs of the best-available resolution at the

time, efforts to improve version 3 of GPW included acquisition of even higher resolution

data for countries with coarse-resolution inputs and islands some of which required labor

inputs to compile the basic data (such as digitizing). Earlier versions of GPW had less

motivation (and resources) to do this, because the output resolution of 2.5 arc-minutes

rendered finer input resolution redundant. The inputs for the third version of GPW were also

used as an input to the GRUMP population surface that includes reallocations toward urban

areas and whose output resolution is 30 arc-seconds. Given the small footprint of many

urban areas, the considerable investments in obtaining the highest available resolution

population data were necessary to achieve the best-possible match between input and output

resolution for each country. Often, these new inputs had to be digitized from imperfect

source materials, since digital versions of these data were not available. For countries that

are island chains, the improvements consisted of collecting island-level population data, and

then assigning population to existing spatial inputs. GPW v2 had 41 countries with country-

level (administrative level 0) data only, 31 of which were islands, which had an average

resolution of 46. In version 3, fewer than half of these countries remain (with a slightly

smaller share of them being islands) with an average resolution of 22.
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5.2. Conclusion

As capabilities in refining the estimates of population distribution, urban areas, and

associated infrastructure networks have increased, the more evident the localized nature of

the distribution of human population has become. Improved estimates show that less, not

more, land area tends to be occupied by moderate and densely populated settlements, as

shown in Figure 7 (Figure 7 is Plate 4.7 in the Separate Color Plate Section), for the case of

Ecuador. These spatial Lorenz curves show the cumulative fraction of the population as a

function of cumulative fraction of land area, where units are ordered by increasing

population density. Forty percent of Ecuador’s population lives on 15% of its land area

according to GPW v2. The improved resolution of GRUMP revise estimates substantially,

reducing it by more than half, to only 6% of the land area in this example. People live

locally, are burdened by disease locally, and receive their health services locally. Gains in

the improved resolution of human population distribution will continue to lead to a better

understanding of disease and health, but these gains must also be matched with

improvements in information on health clinics, health catchments, and infrastructure.

In the future, more high-resolution data should become available so that modeling will be

less and less necessary for most health analyses. While there may still be a need for modeled

population data—for example, to understand seasonal flows—the basic improvement would

be to the baseline population distribution. Hence what is important is to ensure long-term

funding for maintaining and updating these data, and to ensure open-data dissemination

policies so that data are made easily available for science and policy. For health studies,

priority next steps, apart from continuing to increase resolution, would be more consistent

global time series (e.g., going back several decades to assess recent trends), and further

demographic variables such as age distribution and other variables required to make

rigorous spatial projections.

6. DATA DISSEMINATION

The following data are available in the accompanying DVD: the Gridded Population of the

World version 3 (beta) at 2.5 arc-minutes: population counts, land area, and population

density; version 1 (alpha) of the GRUMP 30′ population surface; and the Accessibility

Model for Africa. All grids are available in GeoTIFF format. Users are strongly encouraged

to visit the respective websites for updates and final versions. For GPW and GRUMP, see

http://sedac.ciesin.columbia.edu/gpw, where users can also download the grids for 2015, the

GRUMP settlement points (alpha), and the urban extent mask (alpha) as well as ancillary

data products associated with GPW (e.g., national coastlines to match the population grid

and a grid of national identifiers). The website for Accessibility Model for Africa is http://

na.unep.net/globalpop/africa/Africa_index.html. An updated version of the Accessibility

Model for Latin America and the Caribbean is underway and users should visit CIAT’s

website http://gisweb.ciat.cgiar.org/population/ for updates. Users are strongly encouraged

to supply feedback, and their publications that make use of these data, to

gpw@ciesin.columbia.edu.

6.1. Data Selection

Before using the population surfaces in the companion DVD for analysis, a population

model and spatial resolution must be chosen and the data evaluated to ensure that its

precision meets the study requirements. Population surface and accessibility models should

not be used as ‘independent’ tests of the reliability of nighttime light imagery or

transportation network data (nor should they be used to modify such data in attempts to

eliminate errors) when they have been derived from these original datasets in the first place.

It is essential to avoid circularity in ‘improvements’ of both original and derived datasets.
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The choice of appropriate resolution—a 30 arc-second or 2.5 arc-minutes—depends on the

scale of the study. In general, the 2.5 arc-minute data are most appropriate for continental

and large-region studies; the 30 arc-second data are most appropriate for smaller regions and

national studies. In some cases, subnational studies are possible with the 30 arc-second data,

but it is not possible to derive meaningful results for small-area studies such as those for a

single city.

For the GPW and GRUMP data, the administrative unit area grid (available from the GPW

web site) may be used to determine the approximate locational precision of the population

surfaces on a cell-by-cell basis. The administrative unit area grid indicates the area of the

administrative unit from which the population value was derived. Where multiple units

contributed to a cell, the value is the weighted mean of the input administrative unit sizes. A

cutoff mean administrative unit area value can be approximated by calculating the area

based on a given radius. For example, to identify the cells with a locational accuracy of

approximately 10 km or greater, a cutoff value of 314 would be used, because cells with a

value greater than this are derived from an administrative unit that cannot be enclosed by a

circle with a radius of 10 km. In reality, a larger value should be used, as very few

administrative units are circular in shape.

6.2. Methods and Issues in Analysis

Using the population data surfaces requires a software package capable of dealing with

raster data, such as ArcGIS ™ (with the Spatial Analyst extension), Erdas Imagine®, Idrisi,

GRASS, MatLab®, or any number of others. GeoTIFF is a well-known format supported in

most packages that handle raster data. If translation is necessary, the open source Geospatial

Data Abstraction Library (GDAL), available at: http://www.remotesensing.org/gdal/, can be

used to convert files to a number of other formats.

The most common form of analysis is to aggregate population totals in the surfaces by some

other unit of analysis (such as ecological regions or habitats, buffers around points of

interest such as health clinics, and so on) using a zonal statistics function. Population density

grids may be used in a similar manner to characterize the variability of population within

different zones; the minimum, maximum, mean, and standard deviation of density values

within a given zone are often more useful for inter-zone comparison than just for the total

populations of the zones.

Regression analysis with population counts or density as an explanatory variable or as a per

capita denominator for explanatory variables other than population is another tool used

commonly with these data. While there are many legitimate uses of these raster population

surfaces in quantitative analysis of this type, care must be taken as raster data can invalidate

the assumptions in classic regression. This occurs simply as a function of the self-replicating

feature of the gridded nature of the data. A raster layer comparison is useful for explanation

but cannot be relied on for rejecting the null hypothesis at a given probability level

(Openshaw, 1991) because these data may be biased. That is, the original administrative

area data would have had a single value that was distributed across far more grid cells.

While the approximate value of each grid cell would be accurate, each observed grid cell is

not independent of (i.e., they are spatially dependent, being from the same original

administrative area polygon; and they inflate the number of observations). Geostatistical

approaches based on point observations (GPW and GRUMP make centroids of the units

used in gridding available for this purpose), or using the data to first construct variables

based on zonal statistics, may be better. The examples given herein have paid attention to

this caveat. These approaches can be accomplished with geostatistical extensions to any

other GIS software or stand-alone software packages for working with spatial data (e.g., the

ArcGIS® Geostatistical Analyst extension or the free GeoDa software package).
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Figure 1.
Administrative level used per country.
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Figure 2.
Grid cell size in relationship to administrative boundaries, Dominican Republic.
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Plate 4.3.
Process by which GRUMP population surface is constructed, illustrated for southern Ghana.

Panel 1 shows inputs side by side with their population counts. Panel 1A is identical to the

inputs to GPW, panel 1B shows the additional urban areas used in GRUMP. In panel 2, the

inputs are merged, first illustrated as an overlay of the urban footprints over the

administrative polygons in panel 2A, and the final grid, in panel 2B (with administrative and

urban) boundaries overlaid (density/square km).
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Figure 4.
The computation of accessibility potential for a single node on the transport network where

four towns are within the chosen travel time threshold.
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Figure 5.
Cumulative percent of the African population represented by mean spatial resolution (MSR)

(i.e., for version 4, 60% of the population is represented by an MSR of 50 or better).
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Figure 6.
Graph of error structure by administrative level for the five large area public-domain human

population distribution surfaces (see Hay et al., 2005b). Left axis is the root mean square

error expressed as a percentage of the mean population size of the administrative level.
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Plate 4.7.
Spatial Lorenz curve for the population distribution vis-à-vis the land area of Ecuador, 2000

(with insert indicating the non-cumulative distribution of population density).
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Table 2

Areal weighting scheme to allocation of population whose boundaries cross grid cells

Administrative unit
name

Administrative unit
density (persons/sq

km)

Area of overlap (sq
km)

Population estimate
for grid cell

Santiago Rodriguez 64.2 5.3 340

Santiago 246.5 2.2 542

San Juan 75.9 12.8 972

Total for cell 91.3 20.3 1854
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