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Abstract 
Three-dimensional (3D) surveying of a construction site using an image-based method may produce 

incorrect ground elevation results at vegetation-covered regions, because the light rays are reflected 

on the surface of vegetation in front of the “truth” ground. This paper presents a convolutional neural 

http://doi.org/10.1061/(ASCE)CP.1943-5487.0000930
http://epublications.marquette.edu/


network (CNN) method to identify and locate static vegetation using drone-based high-resolution 

orthoimages. The developed CNN-based image classification models are supplemented with an 

overlapping disassembling algorithm to generate 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel, 

or 64 × 64-pixel small-patches as model inputs. The training datasets are 10 pairs of 1,536 ×

1,536-pixel orthoimage and label-image dataset. Experimental results show that cropping a high-

resolution image into 9,025 overlapped 32 × 32-pixel small-patches (with a site size 

of 17.28 × 17.28  cm2) for image classification, and assembling the small-patch label-image 

predictions to a patch-wise label-image prediction, has the average pixel accuracy of 92.6% in 

identifying objects on the experimental site. In addition, a vegetation-removing algorithm is designed 

to divide the label-image prediction into 36,864 nonoverlapping 8 × 8-pixel patches and traverse them 

in 192 row-loops and 191 column-loops. The testing results show vegetation in label-images are 

modified with the “truth” ground elevation and verified with two datasets obtained on different dates. 

In addition, the measured elevation differentials are close to the measured vegetation heights on the 

experimental site. This research has advanced the drone-based orthoimaging method in construction 

site surveying, which can automatically identify the static obstacles and determine the ground 

elevations more accurately. Furthermore, an approach of using a CNN model to segment a 

construction site has been proven feasible. 

Introduction 

Earthmoving is the primary construction activity of any new infrastructure or building project. On a 

construction site, site preparation works, such as grubbing and clearing, are required to remove the 

surface materials including trees and plants, stumps, and large roots, and other vegetation (Kim and 

Russell 2003). After that, the earthwork operations, such as rough grading, excavating, hauling, 

backfilling, compacting, and finishing works, are conducted. These operations depend on the site 

elevations (Kim and Russell 2003). Surveying is an important operation to get the elevation data from a 

construction site at the beginning and during the construction period. Recently, the construction 

industry has started to use remote surveying methods such as laser scanning (Du and Teng 2007; Kwon 

et al. 2017), drone photogrammetry (Nassar and Jung 2012; Siebert and Teizer 2014), and stereo vision 

(Sung and Kim 2016). These methods are highly time efficient and do not interfere with other 

construction operations. However, the performance of these noncontact surveying methods is affected 

by the plants and other ground covers on construction sites when determing the ground elevations 

(Westoby et al. 2012). This is because the light rays are reflected on the surfaces of vegetation instead 

of the “truth” ground surfaces. In contrast, the contact surveying methods with Total Station, GPS, 

Level, and Theodolite can obtain the expected ground elevations as all selected target points are 

measured on the truth ground surface. On the other side, the contact surveying methods have 

noticeable weaknesses because they follow a time-consuming outdoor procedure and have a high 

probability of interfering with other construction operations. Therefore, to improve the effectiveness 

of the remote surveying, automatically detecting and removing the vegetation and other obstacles 

from their raw surveying results and determining the truth ground elevations are necessary and 

important for construction professionals who heavily depend on elevation data in earthwork 

operations and facility layout. 



Currently, detecting vegetation points from a photogrammetric point cloud based on vegetation 

indices and points’ spatial geometrical relations (Anders et al. 2019; Cunliffe et al. 2016) has limitations 

because it only allows a ground point subset and nonground (vegetation) point subset to be classified. 

In addition, the vegetation index methods are effective in identifying green vegetation, but ineffective 

with other colors such as the withered vegetation and shaded vegetation, which also results in the 

issue of treating other green texture objects as the vegetation. Previous research has shown the 

feasibility of deep learning methods in object detection using image (Schneider et al. 2018), video 

(Kang et al. 2018), point cloud (Engelcke et al. 2017), and image segmentation (Noh et al. 

2015; Badrinarayanan et al. 2017). In general, object detection includes the task of object classification 

and object localization. The results usually are marked with different colored boxes for identifying 

different objects’ categories and their locations in the original image. The image segmentation is more 

detailed than object detection and obtains the result of a same-sized pixelwise label-image, which uses 

different pixel colors to represent the different objects’ categories. 

The computer vision community has developed several hourglass-like deep learning models for 

pixelwise image segmentation for road scenes and indoor scenes (Badrinarayanan et al. 2017), and 

biomedical imagery (Ronneberger et al. 2015). These model architectures include, but are not limited to, 

DeconvNet (Noh et al. 2015), FCN (Shelhamer et al. 2017), PSPNet (Zhao et al. 2017), RedNet (Mao 

et al. 2016), SegNet (Badrinarayanan et al. 2017), and U-net (Ronneberger et al. 2015), which are given 

an input image and returns a pixelwise label-image (see Table 1). These models have three common 

features: (1) the encoder block starts and repeats with convolution layers and max-pooling layers 

(except the RedNet) to generate feature-maps from the input image; (2) the decoder block uses up-

sampling layers (has the same number as the max-pooling layers in the encoder block) to enlarge the 

feature-maps’ sizes; and (3) the end of the decoder, a convolution layer or a deconvolution layer, is 

used to translate the feature-maps to the label-image as model output. When training these hourglass-

like models, due to the insufficient GPU memory, using small-sized images for model training is 

required, such as resizing the ImageNet (Deng et al. 2009) down to as small as 256 × 256-pixel (Zhao 

et al. 2017). Because the original purpose of these hourglass-like models is for close-range and small-

scale image segmentation, downsizing the model training datasets will not impact the model’s 

prediction efficiency in road scenes and indoor scenes segmentation. Moreover, another approach is 

cropping the large-size image into small-sized patches for model training, after which, in the model 

prediction stage, due to the required GPU memory being much less than the model training stage, a 

large-sized input image can be processed by a well-trained hourglass-like model to generate a large-

sized label-image production when the GPU memory is sufficient. 

Table 1. Deep learning model architectures for pixelwise image segmentation 

Models/references 
Model training image 

sizes 
Type of model layers 

DeconvNet (Noh et al. 2015) 224 × 224  pixels  Convolution layer/max-pooling layer/fully  

connected layer/unpooling layer/deconvolution layer 

FCN (Shelhamer et al. 2017) 500 × 500  pixels  Convolution layer/max-pooling layer/ up-sampling  

layer /deconvolution layer 

PSPNet (Zhao et al. 2017) 256 × 256  pixels  Convolution layer/max-pooling layer/ pyramid pooling  

layer/up-sampling layer/concatenation layer 



Models/references 
Model training image 

sizes 
Type of model layers 

RedNet (Mao et al. 2016) 243 × 243  pixels  convolution layer/deconvolution layer 

SegNet (Badrinarayanan 

et al. 2017) 

360 × 480  pixels  Convolution layer/max-poling layer/up-sampling layer 

U-net (Ronneberger et al. 

2015) 

512 × 512  pixels  convolution layer/max-poling layer/up-sampling layer 

 

Additionally, the remote sensing and geoscience communities have developed some intelligent 

approaches to use the machine learning method for geospatial object detection in large scale images 

(Han et al. 2015), and utilize deep learning models, such as the deep convolutional neural network 

(DCNN) and fully convolutional network (FCN) to assist the large-scale land cover mapping in object 

classification to replace the traditional state-of-the-art classifier Random Forest and Support Vector 

Machine (Kussul et al. 2017; Liu et al. 2018). Their research objectives include, but are not limited to, 

landscape classification (Buscombe and Ritchie 2018), vegetation classification (Liu et al. 2018; Liu and 

Abd-Elrahman 2018), and crop classification (Kussul et al. 2017). In Table 2, the listed research has two 

common features: (1) the large-scale top-views were processed using either satellite imagery or aerial 

imagery, or the bundle adjustment generated orthoimage; and (2) the deep learning model was used 

for image patch classification, while the spatial information was given by other approaches, such as the 

conditional random field (Buscombe and Ritchie 2018), object-based image analysis (Liu and Abd-

Elrahman 2018) and sliding window scheme (Kussul et al. 2017). 



Table 2. Deep learning-based classifier in land cover mapping 

Objectives/references Deep learning 

models 

Object classification/image patch classification Object 

categories 

Object 

localization/image 

segmentation 

Landscape classification 

(Buscombe and Ritchie 2018) 

MobileNetV2 

DCNN (Sandler 

et al. 2018) 

Classified the selected sparse patches (224 ×

224  pixels) to class-labels 

7 in total Utilized conditional 

random field to  

predict pixelwise-label 

image with the  

known class-labels 

from the selected  

sparse patches 

Vegetation classification (Liu 

et al. 2018; Liu and Abd-

Elrahman 2018) 

DCNN Classified each object (corresponding to a 224 ×

224-pixel patch) to a class-label 

7 in total As conducted in the 

object-based image  

analysis, the 

orthoimage was 

segmented  

to several objects by 

Trimble’s  

eCognition software 

Vegetation classification (Liu 

et al. 2018) 

FCN Translated each object corresponding patch 

(224 × 224  pixels) to a pixelwise label-image, then 

assigned the majority pixel label as the object class-

label 

  

Crop classification (Kussul et al. 

2017) 

DCNN Classified each window (7 × 7  pixels) to a class-

label 

11 in total Slid the window with 1-

pixel step, and  

assigned the returned 

class-label to the  

central pixel of each 

sliding window  
 



In the proposed research project, the scene scale of the drone-based top-views and object categories 

in construction site segmentation tasks are different to the road scene segmentation and the land 

cover mapping. The existing gaps between the proposed research project and the previous project 

(using developed methods) include the following: (1) objects on a construction site are recorded as 

their top-views in the drone-based orthoimages (Fig. 1), which have much less texture feature than the 

side views in the road scenes; (2) for small object classification, such as cat and dog classification, the 

overall shape and edges are good features (Geirhos et al. 2019; Theodorus et al. 2020), while for a large 

area object, the texture is a usable feature when the whole object is not enclosed in the image; (3) one 

frame drone-based orthoimages cover less area and fewer inclosing objects than the satellite imagery 

and aerial imagery, and the boundaries of adjacent objects such as vegetation and shade are mixed 

with each other alternative to straight lines; (4) resizing the high-resolution orthoimage to fit the 

computing capacity of the hourglass-like deep learning models in Table 1 is not a good idea, while 

disassembling orthoimages into several small-sized patches is necessary to avoid reducing orthoimage 

size and keep the spatial information, which is referred to as the sliding window scheme (Han et al. 

2015; Kussul et al. 2017) or patch-based scheme (Maggiori et al. 2016) in remote sensing and geoscience 

communities; (5) using small image patches with hourglass-like models to generate a pixelwise label-

image, and then assigning the majority pixel label as the object class-label (Liu et al. 2018) is not 

necessary, because the probability of multiple objects appearing in a single image patch is going down 

as the patch size goes down; (6) small objects in drone-based orthoimages occupy more pixels than the 

small objects in the land cover mapping, and thus using the extremely thin patch (7 × 7  pixel) and 1-

pixel step in Kussul et al. (2017) to traverse the drone-based orthoimages is not necessary, which still 

can cause issues for small objects, like roads and forest stripes, being smoothed and misclassified 

(Kussul et al. 2017); and (7) classifying a small-sized image patch into only seven types of objects with 

the 50-layer convolutional layers and one fully connected layer model setup in Liu et al. (2018) and Liu 

and Abd-Elrahman (2018) is too redundant, because the pixel-to-pixel labeling is not necessary in the 

patch-based image classification, and therefore adding fully connected layers to increase the model 

classifying capacity is more efficient than adding convolution layers to generate feature-maps. 

Therefore, a patch-wise construction site segmentation and vegetation-removing framework is 

developed in the proposed research project. At first, the patch-based Convolutional Neural Network 

(CNN) approach is used to generate the patch-wise label-image for identifying vegetation on a 

construction site. In detail, the high-resolution orthoimage is proposed to crop into multiple 

overlapped small patches (50% in row and 50% in column); a CNN model serves as the classifier to 

identify each small-patch image as a vegetation patch or other categories and mark them with the 

corresponding pixel label, after which the labeled small-patches are assembled into a high-resolution 

result in the recorded sequence to restore the geospatial information (see Fig. 1). Because the CNN 

model is proposed to be trained with small-patch and class-label datasets, where small-patches are 

cropped from the drone-based orthoimages and manually crafted pixelwise label-images (Fig. 2), class-

labels are determined by the majority pixel label in each cropped label-image small-patch. Thus, only 

the main object will be extracted from each small-patch by the CNN model, and the assembled result is 

a patch-wise label-image, which has the same size as the drone-based orthoimage. Furthermore, in this 

research project, the construction site elevations are saved in elevation-map format, which is an 8-bit 

grayscale image (Fig. 3) and each pixel value represents the elevation data for the corresponding pixel 



in the orthoimage (Jiang and Bai 2020a). Thus, the elevation-map has the same pixel coordinate as the 

patch-wise label-image, and the vegetation removing and ground elevation determination operations 

could be easily conducted within them. In detail, the vegetation patches are searched from the patch-

wise label-image using the pixel class-label; the ground elevation for each vegetation patch is 

estimated from its neighbor ground pixels’ elevations based on the assumption of ground surface 

being smooth changes around and in the vegetation blocks. Moreover, experiments are conducted to 

evaluate the effectiveness of the proposed patch-wise construction site segmentation method with 

high-resolution orthoimage and label-image datasets and also to determine the best patch size. In 

addition, experiments are conducted to determine the vegetation’s heights and the truth ground 

elevations covered by vegetation from patch-wise label-images and elevation-maps. The rest of this 

paper presents the research results of dataset acquisition, model training dataset creation, model 

architecture, and algorithm designs, and also discusses the experimental results of model training and 

testing, and vegetation identifying and removing on an experimental site. 

Method Development 
In this section, the scheme of construction site high-resolution orthoimage, label-image, and elevation-

map datasets acquisition and the scheme of small-patch dataset creation are presented at first. Then, 

the CNN-based image classification model architecture and the overlapping small-patch disassembling 

and assembling algorithm are discussed. Finally, the design of a vegetation-removing algorithm is 

presented, which uses the pixel class-label information in the label-image to remove vegetation blocks 

in the elevation-map. 

Dataset Acquisition 

Orthoimage and Elevation-Map Acquisition 

A drone-based orthoimage of a construction site can be captured by yielding the camera gimble to 

negative 90 degrees and stably keeping the camera lens facing the ground. The authors’ recent work 

(Jiang and Bai 2020a) discussed a two-frame-image-based construction site elevations determination 

method, which utilizes a small-sized drone system to capture a low-high orthoimage pair for 

assembling a vertical-baseline stereo vision model; then the distances from the low-camera to the 

ground surface can be determined from the stereo vision model and can easily be translated to 

elevation data with a known control point. In addition, the elevation values are stored in an 8-bit 

grayscale image, referred to as an elevation-map, which has equal image size and site size as the 

generated orthoimage. 

In this research project, the drone system, DJI Phantom 4 Pro V2, is designed to fly at 𝐻𝐻 = 10 meters 

over the takeoff location to capture the construction site top-views, which have an image size 

of 4,864 × 3,648  pixels, a ground sample distance (GSD) of 0.27  cm/pixel, and a site size 

of 13.13 × 9.85  m2 (Fig. 1). These images (including their corresponding 20 meters images) are 

proposed to resize down to half-size (2,432 × 1,824  pixels) and cut to a square shape 

(1,824 × 1,824  pixels) as the inputs for generating the elevation-map by the elevations determination 

method in Jiang and Bai (2020a). At that point, the generated high-resolution orthoimages and 

elevation-maps have image size of 1,568 × 1,568  pixels, a GSD of 0.54  cm/pixel, and a site size 

of 8.47 × 8.47  m2, because the 128-pixel blank margins (no elevation data) are removed from 



the 1,824 × 1,824-pixel square shape. With the 8-bit grayscale elevation-map format, the grayscale 

pixel value can be easily converted from range [0, 255] to its corresponding elevation value range 

[−5−5, 5] meters by 𝑔𝑔𝑔𝑔𝑔𝑔𝑦𝑦𝑣𝑣,𝑢𝑢 = 255 × (𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝𝑣𝑣,𝑢𝑢 + 5)/10; and each 32 × 32-pixel patch in the 

elevation-map shares the same elevation value, i.e., all pixels in the 

patch 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[16: 48,16: 48] have the same grayscale value/elevation value as the central 

pixel 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[32,32]. 

Label-Image Creation 

Fig. 2 shows the graphical user interface of the Label-App, which is designed for labeling an orthoimage 

with 8-bit values [0, 255] and programmed using Python 3.6.8 and matplotlib 3.1.1 library. The label-

image is shown in terrain colormap for better visualization. During the label-image creation, the 

researchers fully mark the label-image with value 255 by default at first, and then use the cursor to 

point out vertices on the orthoimage for identifying each object and the keyboard to create a new 

class-label/value or select a predefined class-label/value such as “shade /240.” Like the orthoimage, 

the generated label-image also has an image size of 1,568 × 1,568  pixels, a GSD of 0.54  cm/pixel, 

and a site size of 8.47 × 8.47  m2. The crafted high-resolution label-images are saved in two file-

formats including a grayscale image file for visualization and a 1,568-row and 1,568-column spread 

sheet file for training the deep learning model. Saving as a spread sheet file is necessary because the 

interpolation value appears on the boundaries of different objects in the image file. 

Small-Patch Dataset Creation 

Based on the discussion in the introduction section, the collected high-resolution datasets 

(the 1,568 × 1,568  pixel dataset is much larger than the 256 × 256-pixel set) cannot be directly used 

for training a deep learning model. In the research project, the researchers proposed to disassemble 

the high-resolution orthoimage and label-image dataset into four small-patch orthoimage and label-

image datasets, which have the image sizes of 8 × 8  pixels, 16 × 16  pixels, 32 × 32  pixels, 

and 64 × 64  pixels, and site sizes of 4.32 × 4.32  cm2, 8.64 × 8.64  cm2, 17.28 × 17.28  cm2, 

and 34.56 × 34.56  cm2, respectively. Fig. 3 shows a high-resolution orthoimage, a label-image, and an 

elevation-map dataset. These images have a resolution of 1,536 × 1,536  pixels, which is generated by 

removing 16 pixels on each margin of the 1,568 × 1,568-pixel images, after which they can be 

cropped into integer numbers of 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel, or 64 × 64-pixel small-

patch side by side. Fig. 4 shows the example of these four different small-patches of orthoimages and 

label-images. The smallest patch (8 × 8  pixels) is close to the thin patch (7 × 7  pixels) used in Kussul 

et al. (2017), while the thin stripe objects on the satellite imagery do not appear in the high-resolution 

datasets of this research project. 

Additionally, when cropping these small-patches, the strides are set as 4, 8, 16, and 32 pixels, 

respectively (half of the patch size), to achieve the 50% overlap in row and 50% overlap in column. The 

number of small-patches can be calculated by Eq. (1) for a single high-resolution orthoimage and label-

image dataset. Moreover, in order to make the proposed CNN model more robust in different image 

orientations, the high-resolution orthoimages and label-images are planned to rotate 90, 180, and 

270 degrees to augment datasets by four times. Table 3 listed the number of small-patch datasets from 

a 1,536 × 1,536-pixel orthoimage and label-image pair 

(1) 



𝑁𝑁𝑁𝑁𝑚𝑚. 𝑜𝑜𝑜𝑜 𝑆𝑆𝑚𝑚𝑔𝑔𝐸𝐸𝐸𝐸_𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃ℎ𝐸𝐸𝑒𝑒 = �2 ×
𝐼𝐼𝑚𝑚𝑔𝑔𝑔𝑔𝐸𝐸 𝐻𝐻𝐸𝐸𝐻𝐻𝑔𝑔ℎ𝑃𝑃𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃ℎ 𝑆𝑆𝐻𝐻𝑆𝑆𝐸𝐸 − 1� × �2 ×

𝐼𝐼𝑚𝑚𝑔𝑔𝑔𝑔𝐸𝐸 𝑊𝑊𝐻𝐻𝑊𝑊𝑃𝑃ℎ𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃ℎ 𝑆𝑆𝐻𝐻𝑆𝑆𝐸𝐸 − 1� 

 

Table 3. Dataset parameters 

Patch sizes Strides Rows Columns Num. Num. after 4-rotation 

8 × 8 4 383 383 146,689 586,756 

16 × 16 8 191 191 36,481 145,924 

32 × 32 16 95 95 9,025 36,100 

64 × 64 32 47 47 2,209 8,836 

 

Patch-Wise Construction Site Segmentation 

Patch-Based Scheme 

Generally, a CNN model starts with a convolution layer and ends with a fully connected layer (Fig. 5). 

Then for a given image input, the model output is a binary class vector (Output_0), which contains the 

probability values of the predefined class-labels only. This is different to FCN models, which can 

generate out the pixelwise segmentation result. Therefore, three post-processes need to be conducted 

to get a high-resolution segmented label-image result using CNN model predictions. First, the Argmax 

function is used to return the index of the maximum probability value of the binary class vector; this 

index is the class-label/value prediction (Output_1) for the input orthoimage patch. For example, the 

veg is the class-label prediction for the input orthoimage patch in Fig. 5, because it has the maximum 

value of 95% among the 256 class-labels. Second, the class-label/value prediction is assigned to each 

pixel of the small-patch as the label-image patch prediction (Output_2) for the corresponding input 

orthoimage patch. Third, the small-patch label-image is used to assemble the high-resolution patch-

wise label-image prediction result (Output_3). 

In this research project, the patch-based scheme is implemented with the high-resolution orthoimage 

overlapping disassembling and high-resolution label-image assembling algorithm in Fig. 5, which makes 

the CNN model work with the high-resolution image to generate the patch-wise segmentation results. 

On the one hand, before the CNN model, this algorithm disassembles the orthoimage into several 

overlapped small-patches and records their locations in their sequence ID. The number of small-

patches is determined by Eq. (1). On the other hand, after the CNN model and the first-two 

postprocess, when using Output_2 to assemble the high-resolution label-image prediction (Output_3), 

these small-patches are considered as corner patches, edge patches, or regular patches, and only the 

selected region (marked as filled rectangles) of each patch will be used in the high-resolution label-

image prediction (Fig. 5). For example, 9,025 small-patches with a size of 32 × 32  pixels (95-row and 

95-column) will be produced from a 1,536 × 1,536-pixel orthoimage; the CNN model outputs the 

same number of 32 × 32-pixel label-image patch predictions; then, the specific regions of these label-

image patches are used to assemble a high-resolution 1,536 × 1,536-pixel label-image prediction, 

where for each regular 32 × 32-pixel label-image patch, the used region is only a quarter of the 

regular patch (16 × 16  pixels). Thus, in this example, each 16 × 16-pixel orthoimage patch is linked 

with a 16 × 16-pixel label-image patch prediction through a class-label prediction. 



Therefore, the expected result is a 4 × 4-pixel, 8 × 8-pixel, 16 × 16-pixel, or 32 × 32-pixel patch-

wise image segmentation result, after running the overlapping disassembling and assembling algorithm 

paralleled with the CNN-based image classification model with 8 × 8-pixel, 16 × 16-pixel, 32 ×

32-pixel, or 64 × 64-pixel patches, respectively. This is similar to resizing a 1,536 × 1,536-pixel image 

down to a 384 × 384-pixel, 192 × 192-pixel, 96 × 96-pixel, or 48 × 48-pixel image for pixelwise 

image segmentation, where each pixel is a useful  

4 × 4-pixel, 8 × 8-pixel, 16 × 16-pixel, or 32 × 32-pixel region in each regular patch, respectively. 

Small-Patch Dataset Shape 

Considering that texture is the only usable feature for classifying different objects on a construction 

site when the whole object is not inclosing in the small-patch, the proposed CNN model uses the RGB 

color orthoimage patches as model input data. Based on Table 3, a 1,536 × 1,536-pixel orthoimage 

can produce the model training datasets 

with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (586756,8,8,3), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (145924,16,16,3), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (36100,32,32,3), 

or 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (8836,64,64,3), where the first number is the quantity of the small-patches, the second and 

third numbers are the size of the small-patches, and the fourth number indicates these small-patches 

have RGB 3-channel. 

A label-image generated from the Label-App only has one channel. Disassembling a 1,536 ×

1,536-pixel label-image can produce small-patch datasets 

with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (586756,8,8,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (145924,16,16,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (36100,32,32,1), 

or 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (8836,64,64,1). Then, the majority (maximum frequency) pixel class-label/value in each 

small-patch is determined and set as the class-label/value for each label-image patch. For example, in 

Fig. 4 the “darker” region is larger than the “lighter” region of the 64 × 64-pixel label-image patch, 

and thus the class-label “sand”/value 80 is assigned for that small-patch. In doing so, the small-patch 

datasets are translated into class vector (integers), such 

as [𝟏𝟏𝟏𝟏𝟏𝟏,𝟗𝟗𝟗𝟗, … ,𝟏𝟏𝟏𝟏𝟏𝟏] with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (586756,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (145924,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (36100,256,1), 

or 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (8836,256,1). Additionally, the class vector needs to be converted to binary class matrix 

with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (586756,256,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (145924,256,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (36100,256,1), 

or 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (8836,256,1) as the model training datasets (Chollet 2015). For example, an integer of 130 

is translated to a binary class vector [𝟏𝟏.𝟏𝟏𝟏𝟏,𝟏𝟏.𝟏𝟏𝟐𝟐, … ,𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, … ,𝟏𝟏.𝟏𝟏𝟐𝟐𝟗𝟗𝟗𝟗] with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (256,1); and, then 

a class vector is translated to a binary class matrix with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (𝑁𝑁𝑁𝑁𝑚𝑚. 𝑜𝑜𝑜𝑜 𝑆𝑆𝑚𝑚𝑔𝑔𝐸𝐸𝐸𝐸_𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃ℎ𝐸𝐸𝑒𝑒, 256,1). 

CNN-Based Image Classification Model 

The CNN-based image classification model architecture is presented in Fig. 5, which includes a feature 

learning block and a classification block. The detailed model layers for the four different patch sizes are 

shown in Table 4, where the type of layers is described in the Keras 2.3 style (Chollet 2015). In the 

feature learning block, three convolution layers learn the orthoimage patches (model input) as feature-

maps (layer outputs). Three max pooling layers reduce the feature-maps’ (layer inputs) size to its half-

size as their layer outputs without losing important features. For example, the 8 × 8-pixel, 16 ×

16-pixel, 32 × 32-pixel, and 64 × 64-pixel patches are resized down to 1 × 1-pixel, 2 × 2-pixel, 4 ×

4-pixel, and 8 × 8-pixel patches, respectively, after the 3rd max pooling layer. The flatten layer 

transforms the feature-map (layer input) into a feature-vector (layer output), which can be used in the 

classification block. Three fully connected layers (also known as dense layers) translate feature-vectors 



(layer inputs) to a binary class vector [𝟏𝟏.𝟏𝟏𝟏𝟏,𝟏𝟏.𝟏𝟏𝟐𝟐, … ,𝒔𝒔𝒊𝒊, … ,𝟏𝟏.𝟏𝟏𝟐𝟐𝟗𝟗𝟗𝟗] as the CNN model output for each 

orthoimage patch input. 



Table 4. Model layer parameters 

Model architecture for 8 ×

8, 16 × 16, 32 × 32, 

and 64 × 64-pixel patches 

 

   

Output 

shapes for 

each patch 

    

     Row×column     

Blocks Layer (type and filter size) Stride Padding Activation 8 × 8 16 × 16 32 × 32 64 × 64 Channels 

Input input_1 (Input Layer) — — — 8 × 8 16 × 16 32 × 32 64 × 64 3 

Feature learning block conv2d_1 (64,Conv2D 3 × 3) 1 same ReLU 8 × 8 16 × 16 32 × 32 64 × 64 64 

 max_pooling2d_1 (Max Pooling 2 × 2) 2 — — 4 × 4 8 × 8 16 × 16 32 × 32 64 

 conv2d_2 (128,Conv2D 3 × 3) 1 same ReLU 4 × 4 8 × 8 16 × 16 32 × 32 128 

 max_pooling2d_2 (Max Pooling 2 × 2) 2 — — 2 × 2 4 × 4 8 × 8 16 × 16 128 

 conv2d_3 (256,Conv2D 3 × 3) 1 same ReLU 2 × 2 4 × 4 8 × 8 16 × 16 256 

 max_pooling2d_3 (Max Pooling 2 × 2) 2 — — 1 × 1 2 × 2 4 × 4 8 × 8 256 

 dropout_1 (Dropout 0.5) — — — 1 × 1 2 × 2 4 × 4 8 × 8 256 

Classification block flatten_1 (Flatten) — — — 256 1,024 4,096 16,384 — 

 dense_1 (Dense) — — ReLU 256 1,024 2,048 4,096 — 

 dropout_2 (Dropout 0.5) — — — 256 1,024 2,048 4,096 —  
dense_2 (Dense) — — ReLU 256 512 1,024 1,024 — 

 
dropout_3 (Dropout 0.5) — — — 256 512 1,024 1,024 — 

Output dense_3(Dense) — — SoftMax 256    — 

 



Furthermore, after each convolutional layer and dense layer, there is an activation function (layer), 

which performs the nonlinear transformation of the input features from the previous convolutional 

layers or dense layers (Dettmers 2015). Because the model input datasets will be normalized from 

value range [0,255] to [0.0,1.0] by dividing them by 255, the activation function should progressively 

change from 0.0 to 1.0 with no discontinuity. Therefore, the rectified linear unit activation function 

(ReLU), 𝑜𝑜(𝑥𝑥) = max(0, 𝑥𝑥), is used in hidden layers. Because the ReLU function does not always output 

a nonzero value, which results in less neurons being utilized and less dependence between features 

(Nair and Hinton 2010), it is faster than the Sigmoid activation functions. In addition, the SoftMax 

activation function is used in the 3rd dense layer to calculate the probabilities of the 256 class-labels in 

the binary class vector [𝟏𝟏.𝟏𝟏𝟏𝟏,𝟏𝟏.𝟏𝟏𝟐𝟐, … ,𝒔𝒔𝒊𝒊, … ,𝟏𝟏.𝟏𝟏𝟐𝟐𝟗𝟗𝟗𝟗]. Finally, the dropout layers are used to prevent 

model overfitting, which randomly sets half of the input units to 0 during the model training (Chollet 

2015). 

Additionally, for compiling the proposed CNN-based model, the researchers use “adam” as the 

optimizer, “categorical_crossentropy” as the loss function, and use “accuracy” as the metric. The 

“validation_split” is set to 0.05, which means that 95% of small-patch datasets are used for training the 

model and 5% of small-patch datasets are used for model validation. The “early stopping” 

configuration is set as “EarlyStopping(monitor=‘val_accuracy’, patience=5),” which means the model 

training will be stopped because the monitored quantity of validation accuracy had stopped improving 

for the past five epochs (Chollet 2015). 

Patch-Wise Vegetation Removing 

There are two approaches for removing the vegetations’ heights from the raw surveying result 

(elevation-map) and determining the truth ground elevations using the identified vegetation blocks in 

the patch-wise label-image. The first approach is measuring an average height of vegetation blocks on 

the construction site, and then directly subtracting this value in the elevation-map for the vegetation 

blocks. This may cause irregularity elevation changes on vegetation blocks’ boundaries, where the 

vegetation has a lower height than the central region. However, this approach has the advantage in 

dense vegetation areas, such as the bottom of Fig. 8, where have no ground surface shows in the top-

view. The second approach is estimating an average elevation of neighbor ground surfaces in the 

elevation-map, and then uses this value for updating the vegetation blocks’ elevations. This approach is 

similar to the iterations of interpolation method in removing vegetation points from a point cloud, 

which classifies points above the interpolated surface as vegetation, and interpolates again with a new 

selection of potential ground points (Anders et al. 2019). The second approach works for sparse 

vegetation areas or isolated plants, such as the marked vegetation blocks in Fig. 8, where the ground 

surfaces or neighboring grounds appear in the orthoimages and elevation-maps, and searching 

neighbor ground blocks with the label-image and interpolating these surroundings’ elevation values as the 

estimated truth ground elevation under the vegetation is possible. 

In this research project, the patch-wise vegetation removal focuses on the isolated and sparse 

vegetation blocks on the construction sites (Fig. 8). The proposed vegetation-removing algorithm in 

Fig. 6 is based on Approach 2, which is more convenient for automatically estimating the ground 

elevation without any manual participation, and the result is more smooth at the boundaries than 

Approach 1. In detail, the proposed VEG_REMOVING_IN_ROW_THEN_COL_TRAVERSE algorithm 



traverse the patch-wise label-image in the row-column-row-loop shown in Fig. 7, which ends with a 

row-loop. In each row-loop, the SEARCH_VEG_REPLACE_GROUND algorithm uses an adjustable 

window, which can be extended in the row direction only to search the minimum required number of 

ground pixels using the pixel class-label in the label-image. Similarly, in each column-loop, the 

adjustable window is changed in column direction only, to search the minimum required number of 

ground pixels as well. When sufficient ground pixels appear in the search window, 

the SEARCH_VEG_REPLACE_GROUND algorithm replaces the current vegetation patch’s elevation 

value 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[𝑔𝑔𝑜𝑜𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑔𝑔𝑜𝑜𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑃𝑃𝑔𝑔𝐻𝐻𝑊𝑊𝐸𝐸, 𝑃𝑃𝑜𝑜𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑃𝑃𝑜𝑜𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑃𝑃𝑔𝑔𝐻𝐻𝑊𝑊𝐸𝐸] in the elevation-map with 

the average elevation value ground_ele from the searched neighboring ground pixels. An alternative 

option is only replacing any pixel 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[𝑣𝑣,𝑁𝑁] in the elevation-map when its elevation value is 

higher than ground_ele. This will assist in keeping the sparse truth ground elevation in the elevation-

map, which classifies the lower pixels as the ground pixels, alternative to the vegetation pixels labeled 

in the patch-wise label image. In addition, the removed vegetation patches will be marked with a new 

ground class-label in the label-image, and drawn with a specific color in the orthoimage as well (see 

Fig. 7). 

Experiments 

In this section, the patch-wise construction site segmentation method is compared in 

the 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel, or 64 × 64-pixel patch-based CNN-based image 

classification models (Fig. 5 and Table 4) at first. Then, the vegetation-removing and truth ground 

elevation determination experiment is evaluated with the best patch-wise segmentation result of the 

experimental site (i.e., a lake beach site, as in Fig. 8). In this research project, the configuration of the 

software environment is Python 3.6.8, OpenCV 3.4.2, Keras 2.3.1, TensorFlow-GPU 1.14, CUDA 10.0, 

and cuDNN 7.6.4.38 on a workstation system with 2×Xeon Gold 5122@3.6GHz CPUs, 96GB (8GB×12) 

DDR4 2666 MHz memory, and 4×11GB memory GeForce RTX 2080 Ti GPUs. 

Construction Site Segmentation 

Training Dataset 

Followed by the high-resolution dataset acquisition method, 10 1,536 × 1,536-pixel orthoimages 

were collected during 2019 (Fig. 9), and the corresponding label-images were labeled with the 10 

categories of objects and surfaces in Table 5. For the vegetation blocks, in data A and B, the vegetation 

had not recovered yet; in data C and D, the vegetation was growing; and in data G, O, AD, AL, AM, and 

CG, the vegetation was fully grown, and their heights were around 2–3 ft (0.6096–0.9144  m0.6096–

0.9144  m, Fig. 8). 

Table 5. Class-label definitions 

Class-label 8-bit grayscale value Definitions 

n 255 Default value/other undefined objects 

Shade 240 Shades on ground 

Umbrella 220 Red umbrella surface 

Can 180 Garbage cans 

Shrub 150 Shrub surface 

Veg 130 Vegetation surface 

Withered 110 Withered vegetation surface 



Class-label 8-bit grayscale value Definitions 

Sand 80 Ground surface, includes sand and soil 

wood 30 Wooden surface, includes platform and path 

takeoff 0 Drone takeoff and landing pad 

 

Four small-patch orthoimage datasets were generated from 10 orthoimages, which have the 

following: 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (5867560,8,8,3), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (1459240,16,16,3), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (361000,32,32,3), 

and 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (88360,64,64,3), respectively. Furthermore, four binary class matrixes 

with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (5867560,256,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (1459240,256,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (361000,256,1), 

and 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (88360,256,1) were produced for the 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel, 

and 64 × 64-pixel small-patch label-image dataset, respectively. Therefore, the four small-patch 

orthoimage datasets and the four binary class matrixes were assembled as the four model training 

datasets for the four CNN models in Table 4, respectively. 

Training and Validation 

The CNN model training parameters including dataset numbers, batch sizes, and epochs are listed in 

Table 6. The results of training loss, training accuracy, validation loss, and validation accuracy with 

early stopping for the four different patch sizes are shown in Fig. 10, which were stopped at different 

epochs (see Table 6). The 64 × 64-pixel and 8 × 8-pixel patch trials stopped at the 13th epoch and 

were the earliest trials, and the 32 × 32-pixel patch stopped at the 14th epoch. The 16 ×

16-pixel patch took the most epochs for the validation accuracy to reach stable. 



Table 6. Model training parameters and results 

Patch size 

trials 
    Training epoch trials  

Patch sizes 
Datasets 

(validation split=0.05split=0.05) 
  

Batch 

sizes 

Early stopping (monitor=‘val_accuracy’, 

patience=5), epochs=50 
 

 Total No. Training Validation  w/ early stopping 
w/o early 

stopping 

8 5,867,560 5,574,182 293,378 256 13 50 

16 1,459,240 1,386,278 72,962 256 24 50 

32 361,000 342,950 18,050 256 14 50 

64 88,360 83,942 4,418 256 13 50 

 



Several small-patch validation samples are shown in Fig. 11, where the model training datasets of 

label-image patches (class-labels, or binary class vectors in the CNN model) are compared with the 

model predictions. These samples show the larger patches, i.e., the 32 × 32-pixel and 64 × 64-pixel, 

were more accurate than the smaller patches, i.e., the 8 × 8-pixel and 16 × 16-pixel. Although the 

large patches formed complex label-image patches with multiple objects (class-labels) in a single label-

image patch, the CNN model–generated class-labels were the same as the corresponding class-labels in 

the training dataset. The overall validation accuracy of the randomly selected 5% small-patch datasets 

also confirmed that the 32 × 32-pixel and 64 × 64-pixel patches were more accurate than 

the 8 × 8-pixel and 16 × 16-pixel patches (Fig. 10). However, it is hard to conclude that either 

the 32 × 32-pixel or 64 × 64-pixel batch has the best performance in the small-patch classification 

task based on these early stopping trials. 

In addition, the additional model trainings were conducted without early stopping to 50 epochs. In 

Fig. 12, the 64 × 64-pixel patch model has the largest model training accuracy of 0.9908 at the 50th 

epoch, but it is an overfit model because its validation accuracy of 0.9219 at the 50th epoch did not 

improve as the training accuracy did. The designed three dropout layers showed the limited function in 

avoiding the model overfitting issue in the 8 × 8-pixel, 16 × 16-pixel, and 32 × 32-pixel patch 

models. In Fig. 12, the extra training shows a slight negative impact on the 8 × 8-pixel patch model’s 

training accuracy and training loss, whereas it shows a slight improvement in the 32 × 32-pixel patch 

model training accuracy and training loss. However, the extra training has neither significantly good 

nor bad impact on the model validation accuracy and validation loss. For example, the 32 ×

32-pixel model has the best validation accuracy of 0.9304 at the 50th epoch, which is not much 

different from the 0.9288 at the early stopping trial. The cause of overfitting can be visualized in the 

assembled patch-wise validation results as well. In Fig. 13, compared to the early stopping, the 50-

epoch has the noise predictions on the wooden platform of data AM and G, but it has better model 

predictions for the “withered” class-label in data A and CG, so the overall model validation accuracy 

was maintained around 93% for the 32 × 32-pixel patch. Therefore, considering the 32 ×

32-pixel patch had the smallest model validation loss and the best model validation accuracy in the 

small-patch image classification, the researchers conclude that the 32 × 32-pixel patch (with a site size 

of 17.28 × 17.28  cm2) has the best performance in construction site patch-wise segmentation, 

followed by the 64 × 64-pixel patch and 16 × 16-pixel patch. The smallest 8 × 8-pixel patch, 

however, has the worst performance. 

Testing and Evaluation 

The trained early stopping and 50-epoch models were tested with the data AO in Fig. 3. The 

orthoimage and label-image were rotated and repeatedly disassembled into four small-patch 

orthoimage and binary class vector datasets, which have the numbers listed in the last column of 

Table 3. For example, the created testing dataset for the 32 × 32-pixel patch was 36,100 pairs of a 

small-patch orthoimage and binary class vector dataset. The best image classification testing accuracy 

of 0.9435 is the 32 × 32-pixel patch with 50-epoch (overfitting), the second-best testing accuracy of 

0.9433 is the 64 × 64-pixel patch with 50-epoch (overfitting), and the third-best testing accuracy of 

0.9423 is the 32 × 32-pixel patch with early stopping. Thus, about 94% of the small-patch orthoimages 

were assigned the correct class-labels by the CNN model. For the assembled patch-wise label-image in 

Fig. 14, the 32 × 32-pixel patch with early stopping shows the best segmentation result, followed by 



the 32 × 32-pixel patch with 50-epoch (overfitting). As for the results of model overfitting, the worse 

“wood” and “can” prediction performance and better “withered” prediction performance appeared 

after the early stopping point, which are the same as the CNN model validation results. Thus, the 

researchers conducted additional testing with the CNN-based image classification model of 

the 32 × 32-pixel patch with early stopping only, where orthoimage data AO, K, and Z were tested 

without rotations, and each of the patch-wise segmentation results were assembled from 9,025 

overlapped small-patch label image predictions. 

Fig. 15(a) mapped the unmatched pixels between the manually crafted pixelwise label-image (left) and 

the patch-wise segmentation results (right), where the testing data AO, K, and Z had a pixel accuracy of 

93.57% (2,207,641 of 2,359,296 pixel), 93.61%, and 90.64%, respectively. There are noticeable 

unmatched pixels on the boundaries of different objects, which are reasonable results because the 

comparisons are between a pixel and a 16 × 16-pixel patch (a quarter of 32 × 32-pxiel). Excluding the 

boundaries, the majority of unmatched pixels were between withered and veg, withered and sand, and 

shade and veg, where the CNN-based image classification results were more accurate than human eyes 

[Fig. 15(b)]. In this research project, the withered class-label was defined as a ground surface category 

between the sand and sparse veg; the shrub class-label was defined as dense plants other than the 

sparse veg; and the shade class-label was defined as the shade on the ground surface. Although the 

researchers tried hard to distinguish the different objects from the orthoimages, errors had mixed in 

with the manually crafted label-images somewhere. The small veg on the wooden path of data K was 

mislabeled but successfully identified by the CNN model [Fig. 15(b)]. However, the mislabeled 

boundaries of shrub and veg in the model training dataset resulted in the “well” trained CNN model 

identifying the veg patches with highlighted leaves and dark background as the wrong shrub patches 

[Fig. 15(c)]. This explains why the Intersection over Union (IoU) for shrub, shade, and withered were 

worse than the other class-labels in Table 7. Moreover, in the early stage of this research project, the 

researchers obtained a 0.9646 validation accuracy and 0.9673 testing accuracy in image patch 

classification without adding the withered class-label. Thus, the performance of patch-wise 

segmentation can be improved by considering the withered and sand as one ground surface category, 

and considering the mixed veg, shrub, and shade as one vegetation category. Furthermore, the pixel 

accuracy of 93.57% of data AO is not significantly different to its small-patch classification testing 

accuracy of 94.23%. Thus, the developed overlapping small-patch disassembling and assembling 

algorithm was efficient in the patch-wise segmentation task with an average pixel accuracy of 92.6%, 

which has the good performance for the large area objects, such as the IoU 0.9827 for wood and 

0.8666 for veg in the three testing datasets. The detailed IoU for each class-label of the model training 

and testing datasets are summarized in Table 7. 



Table 7. Model training and testing IoU 

Class-label Value Model validation IoU 

(intersection over union) 

          Model 

Testing IoU 

   

  
A B C D G O AD AL AM CG Average AO K Z Average 

na 255 — 0.0000a 0.0000a — — — 0.0000a — 0.0000a — — — — — — 

Shade 240 — — 0.7711 0.8853 0.7782 0.7588 0.5133 0.4902 0.6808 — 0.6968 0.4950 0.1557 0.1621 0.2709 

Umbrellab 220 — — — — — — 0.0000 — — 0.9682 0.4841 — — — — 

Canc 180 0.0000 0.9097 — 0.8739 — — 0.8406 0.8807 0.8594 — 0.7274 0.8483 — — 0.8483 

Shrubd 150 — — 0.8904 0.0000 0.0000 0.9384 0.0000 — — 0.9401 0.4615 0.0000 0.0000 0.0000 0.0000 

Veg 130 0.8783 0.8426 0.9635 0.8869 0.9050 0.9501 0.9333 0.8672 0.8787 0.8663 0.8972 0.8360 0.9137 0.8502 0.8666 

Witherede 110 0.5003 0.6243 0.3860 0.5040 0.4793 0.4164 0.0000 0.1989 0.1925 0.4697 0.3772 0.1840 0.0928 0.2789 0.1852 

Sandf,g 80 0.7476 0.8107 0.8681 0.8980 0.8545 0.0000f 0.8353 0.8845 0.7726 0.8415 0.8348 0.6832 0.0000 0.7446 0.4759 

Wood 30 0.9803 0.9939 0.9762 0.9932 0.9794 0.9544 0.9907 0.9772 0.9915 0.9874 0.9824 0.9886 0.9720 0.9875 0.9827 

Takeoff 0 — — — 0.8890 — — 0.8662 0.8917 0.8748 — 0.8804 0.8757 — 0.5258 0.7007 

Mean IoU  0.6213 0.6969 0.6936 0.7413 0.6661 0.6697 0.4979 0.7415 0.6563 0.8455 0.6830 0.6138 0.3557 0.5070 0.4922 

Corrected mean IoUa,f  
 

0.8362a 0.8092a 
  

0.8036f 0.5533a 
 

0.7501a 
 

0.7368a,f 
    

Pixel accuracy  0.9123 0.9477 0.9722 0.9620 0.9397 0.9662 0.9599 0.9245 0.9483 0.9680 0.9501 0.9357 0.9361 0.9064 0.9261 

Note: The above two errors were excluded to get the corrected Mean IoU should refer to the errors of a and f. 
a When manually crafting a label-image, all pixels were set to the default value 255 at first, which resulted in 141, 4, 8, and 58 pixels nn on Data B, C, AD, and AM. 
b The small corner (337 pixels) of the umbrella in Data AD (left-bottom) was not identified by the CNN model, while the umbrella had a good performance in Data CG. 
c This error occurred in Data A (left-upper) with 256 pixels, where the pixels are the ground surface on the experimental site. 
d Shrub was labeled in the bottom of Data C, O, and CG and well identified, but 4,864, 1,664, 256, 256, 72,192, and 14,080-pixel errors occurred in Data D, G, AD, AO, K, and Z, respectively. 
e No pixel was labeled as withered in Data AD, but the CNN model prediction was correct. 
f The isolated withered block in Data O was labeled with sand in the past, which resulted in 37 pixels not being completely covered by the correct withered class-label. 
g The prediction error occurred on the wooden path in Data K (left), and 103 pixels in the sand path were not covered by the correction withered while creating the label-image. 



Furthermore, the vegetation index 𝐸𝐸𝑥𝑥𝐸𝐸 = 2𝐸𝐸 − 𝑅𝑅 − 𝐵𝐵 (Anders et al. 2019) was applied to identify 

vegetation (𝐸𝐸𝑥𝑥𝐸𝐸 > 0.1) in the model training and testing dataset. Fig. 16 shows this vegetation index 

method was only sensitive to a range of green colors and also resulted in the error at the garbage cans 

in data AO. However, vegetation in data A were not identified; the sparse vegetation with dark color 

were skipped in data G, AO, K, and Z; and some of the dense vegetation in data C and CG were missed 

as well. Thus, the vegetation index method is not suitable for the detailed vegetation detection on a 

complicatedly textured construction site with other green textured objects. Therefore, the researchers 

conclude that the developed CNN-based image classification model with the 32 × 32-pixel (17.28 ×

17.28  cm2) patch has good accuracy in identifying objects on the construction site using the drone-

based high-resolution orthoimage. 

Vegetation-Removing Testing 

Algorithm Configuration 

In this research project, the patch-wise vegetation-removing experiments were conducted with 

the 32 × 32-pixel early stopping patch-wise segmentation predictions. The proposed algorithm in 

Fig. 6 was programmed using Python 3.6.8, with the following parameter settings. The shade, shrub, 

and veg were set as the veg_label_list (in Fig. 6), which were considered as vegetation blocks in the 

label-image, and needed to be removed and replaced with class-label ground/ value 95. 

The 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝒍𝒍𝒔𝒔𝒍𝒍𝒔𝒔𝒍𝒍 was set as sand, withered, and the relabeled ground, which were considered as 

ground blocks to provide the elevation values for vegetation blocks. The initial search window was set 

with size (𝑞𝑞𝑒𝑒𝑆𝑆𝐻𝐻𝐸𝐸 × 2𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 + 𝑒𝑒𝑃𝑃𝑔𝑔𝐻𝐻𝑊𝑊𝐸𝐸) × (𝑞𝑞𝑒𝑒𝑆𝑆𝐻𝐻𝐸𝐸 × 𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 + 𝑒𝑒𝑃𝑃𝑔𝑔𝐻𝐻𝑊𝑊𝐸𝐸), where 𝑞𝑞𝑒𝑒𝐻𝐻𝑆𝑆𝐸𝐸 is the small-patch 

(32-pixel) used in the CNN-based image classification model. The stridestride is the step used for 

traversing label-images, which was set as 𝑞𝑞𝑒𝑒𝐻𝐻𝑆𝑆𝐸𝐸/4 = 8-pixel; thus, a 1,536 × 1,536-pixel patch-wise 

label-image was disassembled into 36,864 small-patches (192-row, 192-column) with a size 

of 8 × 8  pixels, and traversed by 192 row-loop and 191 column-loop. The 𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞  is the parameter 

used to control the initial size of the search window and the required number of ground pixels in the 

search window, which impacts on the smooth degree of estimated truth ground elevations on the 

vegetation removed elevation-map. This research project used a large 𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 = 8 to get smooth 

elevation changes on the boundaries of vegetation and ground surfaces, and then, the minimum 

required number of ground pixels in the search window was 𝑞𝑞𝑒𝑒𝐻𝐻𝑆𝑆𝐸𝐸 × 𝑞𝑞𝑒𝑒𝐻𝐻𝑆𝑆𝐸𝐸 × 𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 = 32 × 32 × 8. 

The maximum search windows size depends on the parameter 𝑤𝑤𝐻𝐻𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖_𝑚𝑚𝑚𝑚𝑖𝑖, which was set as half of 

the image width = 768-pixel to handle the extreme condition that the ground surface only appeared 

in corners or edges, such as data CG. In this case, the first row-column-row-loop was not enough to 

remove the vegetation on bottom-left corner, and then, the additional row-column-row-loop 

successfully removed all vegetation and marked them with the pink color in the orthoimage 

[Fig. 17(a) and Table 8]. 



Table 8. Pixel class-label summary 

Class-

label 
Value 

Label-image 

prediction 
       

Vegetation removed label-image 

prediction 
    

  D  AO  G  CG  D AO G CG-1a CG-2a 𝑛𝑛 255 
 

— — — — — — — — — — — — 

Shade 240 21,760 0.92% 8,192 0.35% 229,632 9.73% — — — — — — — 

Umbrella 220 — — — — — — 436,224 18.49% — — — 436,224 436,224 

Can 180 18,688 0.79% 73,856 3.13% — — — — 18,688 73,856 — — — 

Shrub 150 4,864 0.21% 256 0.01% 1,664 0.07% 455,424 19.30% — — — 59,776 — 

Veg 130 444,480 18.84% 427,456 18.12% 1,003,520 42.53% 403,840 17.12% — — 384b 103,744 — 

Withered 110 75,136 3.18% 26,624 1.13% 41,216 1.75% 25,600 1.09% — — — — — 

Groundc 95 — — — — — — — — 925,440 728,832 1,842,176 797,568 961,088 

Sand 80 379,200 16.07% 266,304 11.29% 566,528 24.01% 76,224 3.23% — — — — — 

Wood 30 1,396,480 59.19% 1,539,456 65.25% 516,736 21.90% 961,984 40.77% 1,396,480 1,539,456 516,736 961,984 961,984 

Takeoff 0 18,688 0.79% 17,152 0.73% — — — — 18,688 17,152 — — — 

Sum — 2,359,296 100.00% 2,359,296 100.00% 2,359,296 100.00% 2,359,296 100.00% 2,359,296 2,359,296 2,359,296 2,359,296 2,359,296 
a Two row-column-row-loops were conducted to remove all vegetation. 
b 384-pixel of unremoved veg at the top-left corner of data G. 
c Ground = shade + shrub + veg + withered + sand. 



Furthermore, a shade, shrub, or veg pixel in the label-images was updated its elevation with the 

average elevation value (ground_ele) of the searched neighboring ground pixels when this vegetation 

pixel’s elevation 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[𝑣𝑣, 𝑁𝑁] in the elevation-map was higher than the ground_ele. Moreover, to 

get the smooth elevation changes on the boundaries of ground blocks and vegetation blocks, during 

the row-column-row-loop, the sand and withered pixels in the label-image were given updated 

elevations ground_ele and remarked with the class-label ground/ value 95 as well. Thus, after all 

vegetation pixels are removed by the developed algorithm, the total number of shade, shrub, veg, 

sand, and withered pixels in the patch-wise label-image prediction should be equal to the number of 

ground pixels in the vegetation removed label-image (Table 8). 

Testing and Evaluation 

The testing data AO in Fig. 3, and CNN model training data D and data G were used to evaluate the 

vegetation removing algorithm. Table 8 shows the sum number of shade, shrub, veg, sand, and 

withered pixels in the label-image prediction is equal to the number of ground pixels in the vegetation 

removed label-image, which confirms that the developed algorithm had successfully traversed the 

high-resolution patch-wise label-image in a single row-column-row loop [except the 384 veg pixels in 

data G, see Fig. 17(a)]. 

Fig. 17(b) shows the elevation differentials between the original elevation-maps and vegetation 

removed elevation-maps on ground blocks and vegetation blocks. There are larger elevation changes 

appearing on the edges of the wooden platform and garbage cans, where the updated elevations fixed 

the errors in the elevation-map. That is because in the elevation-map, each 32 × 32-pixel patch shared 

the same elevation value even if this patch contains different objects, while each 8 × 8-pixel small-

patch in the vegetation removed elevation-map shared the same elevation value based on the object’s 

class-label. Excluding these elevation corrections, the elevation differentials represent the vegetation 

heights on the experimental site. In Fig. 17(b), data AO has the larger elevation differential than data D 

for the same vegetation blocks, which correctly reflects the growing of the vegetation blocks from 

6/5/2019 to 9/5/2019. The elevation differential in data G is larger than data AO, which also reflects 

the vegetation heights on the experimental site (Fig. 8). The detailed vegetation heights (elevation 

differentials) and the peak values of data D, AO, and G are shown in Fig. 18(a), where the data D has 

the peak value of 0.4706 m, data AO has the peak value of 0.6275 m, and data G has the peak value of 

0.9412 m (considering the single value 0.9804 m as noise point). These peak values are close to the 

measured vegetation heights 0.6096 and 0.9144 m on the experimental site. Thus, any elevation 

differentials larger than these three peaks in these three data were considered as the noise points 

alternative to vegetation heights. 

In Fig. 18(a), the point clouds were generated using the selected central points of each 8 ×

8-pixel patch of the orthoimage (textures) and the elevation-differential-map (vegetation heights). 

Thus, 36,864 points were generated for each data, but only 6,945 veg points, 6,679 veg points, and 

15,680 veg points were retained for analysis in data D, AO, and G, respectively [see the statistics 

summary in Fig. 18(b)]. That is the same as the percentage of veg pixels of the label-images in Table 8, 

where 18.84%, 18.12%, and 42.53% represent veg pixels in data D, AO, and G, respectively. In addition, 

three subset point clouds, named D < 0.4706, AO < 0.6275, and G < 0.9804 were created by 

removing the points that have the elevation differential larger than the peak value of each data. Thus, 



for outliers, most are the elevation corrections on the edges of the wooden platforms, which were 

excluded from the subsets [see the boxplot in Fig. 18(b)]. In data D and AO, their differential of peak 

value is 0.1569 m, the 2-sample 𝑃𝑃-Test was conducted for these two subsets, which 95% confidently 

concluded that the mean of AO < 0.6275 is 0.0805 m greater than D < 0.4706. Similarly, the mean 

of G < 0.9804 is 0.1402 m greater than AO < 0.6275 at the 0.05 level of significance. In Fig. 18(b), 

three contour plots were crafted based on the three subset point clouds. The results indicate the 

largest vegetation height in data AO was 0.6 m for the right vegetation block, and 0.42 m for the left 

vegetation block; the largest vegetation height in data D was 0.45 m for the right vegetation block, and 

0.25 for the left vegetation block; the largest vegetation height in data G was 0.9 m for the two isolated 

vegetation blocks. Therefore, the researchers conclude that the measured elevation differentials 

successfully reflect the vegetation heights on the experimental site. 

In Fig. 19, the vegetation-removed point clouds were generated using the selected central points of 

each 8 × 8-pixel patch of the vegetation removed orthoimage (textures) and the vegetation removed 

elevation-map (elevation values), where 14,460 ground points and 11,388 ground points appeared in 

data D and data AO, and account for 39.23%, 30.89% of the total generated 36,864 points, which are 

the same percentages of ground pixels in the vegetation-removed label-images. Because the generated 

point clouds have the similar shape visually, the contour plots confirm the ground region are similar to 

each other, and the histogram shows the ground elevations have the similar distribution, the 

researcher conducted the additional 2-sample tt-Test for verifying these two ground point clouds are 

similar or not. The hypothesis test results indicated the difference between these two ground point 

clouds (Difference=AO_GROUND–D_GROUND) has the 99% CICI of (−0.010172, 0.00072689), and the 

standard deviations do not differ at the 0.01 level of significance for these two ground point clouds. 

Thus, the estimated ground elevations in data AO and data D are close to each other, and the 

measured vegetation heights were fully removed from the raw surveying results. Therefore, the 

researchers conclude that the developed vegetation-removing algorithm is stable in estimating the 

truth ground elevations, and the performance is robust under the different conditions of the covered 

vegetation. 

Furthermore, Fig. 20(a) shows a stitched point cloud demo of the data AO (mid), data G(right), and 

data AD (left), where the vegetation were removed in three separated orthoimages and elevation-

maps. These ground points have small elevation gaps on the joints between data AD and AO, and data 

AO and G. The smooth ground elevation changes on the joints could be achieved by stitching the three 

orthoimages and elevation-maps at first, and then, patch-wise segmenting the stitched orthoimages 

with the patch-based CNN model, and followed by the patch-wise vegetation removing. 

Fig. 20(b) shows a large-scale demo, where the 4,864 × 3,648-pixel orthoimage is the original image 

captured by the drone at 20m, which had a GSD of = 0.54  cm/pixel and site size of 26.26 ×

19.70  m2. The patch-wise label-image was generated by the 32 × 32-pixel early stopping model. The 

elevation data was generated by the elevation estimation method in Jiang and Bai (2020b). 456-row 

loops and 455-column loops were conducted to remove the vegetation and estimate the ground 

elevations. Because the developed patch-wise construction site segmentation and vegetation-

removing framework can be extended in these two cases, which is not limited to work with the model 

training and testing dataset, the researchers conclude that the developed framework in this paper 



(Fig. 1) can automatically identify the vegetation and determine the truth ground elevation covered by 

vegetation on a construction site. 

Conclusion and Future Research 

This paper presents a deep learning-based method to identify vegetation objects on a construction site 

using drone-based orthoimage and determine the truth ground surface elevations from the raw 

surveying results. The keypoints of the method are outlined in Fig. 1, which includes: (1) using a drone 

to acquire construction site orthoimages; (2) disassembling the high-resolution orthoimage into 

overlapping small-patches; (3) using the CNN-based image classification model to generate the class-

label for each orthoimage patch; (4) assigning the class-label to each pixel of the small-patches to 

generate the label-image predictions for each orthoimage patch; (5) assembling small-patch label-

image predictions to a high-resolution patch-wise label-image prediction; (6) searching and identifying 

vegetation blocks in the patch-wise label-image; (7) updating vegetation block elevation values with 

the surrounding grounds’ elevations in the same coordinate elevation-map; and (8) converting the 

vegetation removed elevation-map to elevation data or three-dimensional (3D) point cloud of the 

construction site. 

The CNN-based image classification models with 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel, 

and 64 × 64-pixel patches were tested and compared. The testing results showed the 32 ×

32-pixel patch (size = 17.28 × 17.28  cm2) had the best performance of 94% accuracy in identifying 

the main objects’ class-label from each small-patch orthoimage on the construction site. The 

developed overlapping disassembling and assembling algorithm, which runs in parallel with the CNN 

model, contributes to making the workstation system more convenient to train the CNN model with 

high-resolution images instead of shrinking images and losing image details. By cropping the datasets 

into multiple overlapped small-patches, the model training datasets were augmented as well. The 

testing results show that the developed patch-wise segmentation method, which disassembling 

the 1,536 × 1,536-pixel high-resolution image into 9,025 overlapping small-patches for image 

classification and assembling the label-image small-patch predictions to the 1,536 ×

1,536-pixel patch-wise label-image prediction is an effective image segmentation method with an 

average pixel accuracy of 92.6% and high IoU for large area objects. In addition, with this suitable 

small-patch size, the edges of different objects were well determined and applied to fix the elevation 

errors occurred on the edges of different objects in the elevation-maps. 

Additionally, after the objects on a construction site were identified in a 1,536 × 1,536-pixel patch-

wise label-image prediction, a vegetation-removing algorithm was used to divide this high-resolution 

label-image into 36,864 nonoverlapping 8 × 8-pixel patches and traverse them into 192 row-loops and 

191 column-loops. In each row-loop and column-loop, the developed algorithm extended search 

windows in the row and column direction, respectively. It searched the sufficient surrounding ground 

pixels first. Then, elevation values of the current vegetation patch in the corresponding elevation-map 

were replaced with the average elevation from the searched neighbor ground pixels. The testing 

results showed that vegetation blocks on the high-resolution label-image were removed and the truth 

ground elevations were determined, and the measured elevation differentials reflected the 

vegetations’ heights measured on the experimental site. 



To fully remove the static vegetation blocks on the experimental site, the CNN-based image 

classification model was trained with the datasets collected from the still experimental site, which only 

contain the static objects such as the static vegetation block and static structures. The experimental 

results confirm that the developed patch-wise construction segmentation and truth ground elevation 

determination framework works on the experimental site, while applying it on an active excavation 

construction site, and further work is required in model training dataset expansion, such as including 

the top-views of all potential static and dynamic objects on construction sites. This is because an active 

construction site is much more complex than the still construction site. The dynamic objects, such as 

excavators, dozers, trucks, and workers on the construction site have impacts on accurately 

determining the ground elevations using the remote surveying methods. For example, a dozer may be 

included in an elevation-map or a drone photogrammetric point cloud to compute automatically and 

correctly determine the truth ground elevation under the dozer; this equipment should be identified at 

first, and then its height should be removed from the surveying result. 

The success of this research project contributes to the advancement of drone application and deep 

learning methods in construction site surveying. The researchers provided and verified a feasible 

approach of using a CNN model to patch-wise segment a high-resolution drone-based orthoimage of 

construction sites with a high pixel accuracy and acceptable IoU. The developed model can be used for 

automatically identifying and locating multiple categories of static objects from the raw surveying 

results, which is more than identifying only vegetation or nonvegetation categories by the vegetation 

index method or iterations of interpolation method. In addition, this model can be extended to 

removing dynamic objects from the high-resolution orthoimaging videos. As a result, the research 

project proved that it is possible to use drone technologies to make the image-based construction 

surveying and measurement of ground elevations much more accurate and convenient. 

Data Availability Statement  
The model training and testing datasets (orthoimages and label-images appear in Fig. 3 and Fig. 9) are 

available from the corresponding author upon request. The Python code of the CNN-based image 

classification model (in Fig. 5 and Table 4) and vegetation-removing algorithm (in Fig. 6) are also 

available from the corresponding author upon request. 
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Figures 

 
Fig. 1. Overall workflow of the proposed framework. 

 
Fig. 2. Label-image crafting example. (Image by Yuhan Jiang.) 

 
Fig. 3. Pair of orthoimage, label-image, and elevation-map dataset. 



 
Fig. 4. Small-patch examples. 

 
Fig. 5. CNN-based image classification model with 32 × 32 − 𝑝𝑝𝐻𝐻𝑥𝑥𝐸𝐸𝐸𝐸 patch. 

 
Fig. 6. Vegetation-removing algorithm. 



 
Fig. 7. Row-column-row-loop for traversing a label-image. 

 
Fig. 8. Experimental site. (Image by Yuhan Jiang.) 



 
Fig. 9. Training and validation datasets. 



 
Fig. 10. Training and validation loss and accuracy of early stopping trials. 

 
Fig. 11. Small-patch predictions of early stopping trials. 



 
Fig. 12. Training and validation loss and accuracy of 50-epoch trials. 

 
Fig. 13. Patch-wise predictions. 



 
Fig. 14. Testing results. 

 
Fig. 15. (a) Mapped pixel prediction errors; (b) detailed prediction comparisons; and (c) detailed label 

errors. 

 
Fig. 16. Vegetation identifying results. 



 
Fig. 17. (a) Vegetation removing in label-image; and (b) vegetation removing in elevation-map. 

 
Fig. 18. (a) Vegetation height in profile; and (b) vegetation height in contour plot. 



 
Fig. 19. Estimated ground elevation comparisons. 

 
Fig. 20. (a) Results stitching demo; and (b) large-scale demo. 
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