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Abstract

Three-dimensional (3D) surveying of a construction site using an image-based method may produce
incorrect ground elevation results at vegetation-covered regions, because the light rays are reflected
on the surface of vegetation in front of the “truth” ground. This paper presents a convolutional neural
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network (CNN) method to identify and locate static vegetation using drone-based high-resolution
orthoimages. The developed CNN-based image classification models are supplemented with an
overlapping disassembling algorithm to generate 8 X 8-pixel, 16 X 16-pixel, 32 X 32-pixel,

or 64 X 64-pixel small-patches as model inputs. The training datasets are 10 pairs of 1,536 X
1,536-pixel orthoimage and label-image dataset. Experimental results show that cropping a high-
resolution image into 9,025 overlapped 32 X 32-pixel small-patches (with a site size

of 17.28 x 17.28 cm?) for image classification, and assembling the small-patch label-image
predictions to a patch-wise label-image prediction, has the average pixel accuracy of 92.6% in
identifying objects on the experimental site. In addition, a vegetation-removing algorithm is designed
to divide the label-image prediction into 36,864 nonoverlapping 8 X 8-pixel patches and traverse them
in 192 row-loops and 191 column-loops. The testing results show vegetation in label-images are
modified with the “truth” ground elevation and verified with two datasets obtained on different dates.
In addition, the measured elevation differentials are close to the measured vegetation heights on the
experimental site. This research has advanced the drone-based orthoimaging method in construction
site surveying, which can automatically identify the static obstacles and determine the ground
elevations more accurately. Furthermore, an approach of using a CNN model to segment a
construction site has been proven feasible.

Introduction

Earthmoving is the primary construction activity of any new infrastructure or building project. On a
construction site, site preparation works, such as grubbing and clearing, are required to remove the
surface materials including trees and plants, stumps, and large roots, and other vegetation (Kim and
Russell 2003). After that, the earthwork operations, such as rough grading, excavating, hauling,
backfilling, compacting, and finishing works, are conducted. These operations depend on the site
elevations (Kim and Russell 2003). Surveying is an important operation to get the elevation data from a
construction site at the beginning and during the construction period. Recently, the construction
industry has started to use remote surveying methods such as laser scanning (Du and Teng 2007; Kwon
et al. 2017), drone photogrammetry (Nassar and Jung 2012; Siebert and Teizer 2014), and stereo vision
(Sung and Kim 2016). These methods are highly time efficient and do not interfere with other
construction operations. However, the performance of these noncontact surveying methods is affected
by the plants and other ground covers on construction sites when determing the ground elevations
(Westoby et al. 2012). This is because the light rays are reflected on the surfaces of vegetation instead
of the “truth” ground surfaces. In contrast, the contact surveying methods with Total Station, GPS,
Level, and Theodolite can obtain the expected ground elevations as all selected target points are
measured on the truth ground surface. On the other side, the contact surveying methods have
noticeable weaknesses because they follow a time-consuming outdoor procedure and have a high
probability of interfering with other construction operations. Therefore, to improve the effectiveness
of the remote surveying, automatically detecting and removing the vegetation and other obstacles
from their raw surveying results and determining the truth ground elevations are necessary and
important for construction professionals who heavily depend on elevation data in earthwork
operations and facility layout.



Currently, detecting vegetation points from a photogrammetric point cloud based on vegetation
indices and points’ spatial geometrical relations (Anders et al. 2019; Cunliffe et al. 2016) has limitations
because it only allows a ground point subset and nonground (vegetation) point subset to be classified.
In addition, the vegetation index methods are effective in identifying green vegetation, but ineffective
with other colors such as the withered vegetation and shaded vegetation, which also results in the
issue of treating other green texture objects as the vegetation. Previous research has shown the
feasibility of deep learning methods in object detection using image (Schneider et al. 2018), video
(Kang et al. 2018), point cloud (Engelcke et al. 2017), and image segmentation (Noh et al.

2015; Badrinarayanan et al. 2017). In general, object detection includes the task of object classification
and object localization. The results usually are marked with different colored boxes for identifying
different objects’ categories and their locations in the original image. The image segmentation is more
detailed than object detection and obtains the result of a same-sized pixelwise label-image, which uses
different pixel colors to represent the different objects’ categories.

The computer vision community has developed several hourglass-like deep learning models for
pixelwise image segmentation for road scenes and indoor scenes (Badrinarayanan et al. 2017), and
biomedical imagery (Ronneberger et al. 2015). These model architectures include, but are not limited to,
DeconvNet (Noh et al. 2015), FCN (Shelhamer et al. 2017), PSPNet (Zhao et al. 2017), RedNet (Mao

et al. 2016), SegNet (Badrinarayanan et al. 2017), and U-net (Ronneberger et al. 2015), which are given
an input image and returns a pixelwise label-image (see Table 1). These models have three common
features: (1) the encoder block starts and repeats with convolution layers and max-pooling layers
(except the RedNet) to generate feature-maps from the input image; (2) the decoder block uses up-
sampling layers (has the same number as the max-pooling layers in the encoder block) to enlarge the
feature-maps’ sizes; and (3) the end of the decoder, a convolution layer or a deconvolution layer, is
used to translate the feature-maps to the label-image as model output. When training these hourglass-
like models, due to the insufficient GPU memory, using small-sized images for model training is
required, such as resizing the ImageNet (Deng et al. 2009) down to as small as 256 X 256-pixel (Zhao
et al. 2017). Because the original purpose of these hourglass-like models is for close-range and small-
scale image segmentation, downsizing the model training datasets will not impact the model’s
prediction efficiency in road scenes and indoor scenes segmentation. Moreover, another approach is
cropping the large-size image into small-sized patches for model training, after which, in the model
prediction stage, due to the required GPU memory being much less than the model training stage, a
large-sized input image can be processed by a well-trained hourglass-like model to generate a large-
sized label-image production when the GPU memory is sufficient.

Table 1. Deep learning model architectures for pixelwise image segmentation

Model training image

Models/references .
sizes

Type of model layers

DeconvNet (Noh et al. 2015) | 224 X 224 pixels Convolution layer/max-pooling layer/fully

connected layer/unpooling layer/deconvolution layer
FCN (Shelhamer et al. 2017) | 500 x 500 pixels Convolution layer/max-pooling layer/ up-sampling
layer /deconvolution layer

PSPNet (Zhao et al. 2017) 256 X 256 pixels Convolution layer/max-pooling layer/ pyramid pooling
layer/up-sampling layer/concatenation layer




Models/references Qillzoe(:el training image Type of model layers

RedNet (Mao et al. 2016) 243 X 243 pixels convolution layer/deconvolution layer

SegNet (Badrinarayanan 360 x 480 pixels Convolution layer/max-poling layer/up-sampling layer
et al. 2017)

U-net (Ronneberger et al. 512 x 512 pixels convolution layer/max-poling layer/up-sampling layer
2015)

Additionally, the remote sensing and geoscience communities have developed some intelligent
approaches to use the machine learning method for geospatial object detection in large scale images
(Han et al. 2015), and utilize deep learning models, such as the deep convolutional neural network
(DCNN) and fully convolutional network (FCN) to assist the large-scale land cover mapping in object
classification to replace the traditional state-of-the-art classifier Random Forest and Support Vector
Machine (Kussul et al. 2017; Liu et al. 2018). Their research objectives include, but are not limited to,
landscape classification (Buscombe and Ritchie 2018), vegetation classification (Liu et al. 2018; Liu and
Abd-Elrahman 2018), and crop classification (Kussul et al. 2017). In Table 2, the listed research has two
common features: (1) the large-scale top-views were processed using either satellite imagery or aerial
imagery, or the bundle adjustment generated orthoimage; and (2) the deep learning model was used
for image patch classification, while the spatial information was given by other approaches, such as the
conditional random field (Buscombe and Ritchie 2018), object-based image analysis (Liu and Abd-
Elrahman 2018) and sliding window scheme (Kussul et al. 2017).



Table 2. Deep learning-based classifier in land cover mapping

2017)

label

Objectives/references Deep learning Object classification/image patch classification Object Object
models categories localization/image

segmentation

Landscape classification MobileNetV2 Classified the selected sparse patches (224 X 7 in total Utilized conditional

(Buscombe and Ritchie 2018) DCNN (Sandler 224 pixels) to class-labels random field to

et al. 2018) predict pixelwise-label

image with the
known class-labels
from the selected
sparse patches

Vegetation classification (Liu DCNN Classified each object (corresponding to a 224 X 7 in total As conducted in the

et al. 2018; Liu and Abd- 224-pixel patch) to a class-label object-based image

Elrahman 2018) analysis, the
orthoimage was
segmented
to several objects by
Trimble’s
eCognition software

Vegetation classification (Liu FCN Translated each object corresponding patch

et al. 2018) (224 x 224 pixels) to a pixelwise label-image, then

assigned the majority pixel label as the object class-
label
Crop classification (Kussul et al. DCNN Classified each window (7 X 7 pixels) to a class- 11 in total Slid the window with 1-

pixel step, and
assigned the returned
class-label to the
central pixel of each
sliding window




In the proposed research project, the scene scale of the drone-based top-views and object categories
in construction site segmentation tasks are different to the road scene segmentation and the land
cover mapping. The existing gaps between the proposed research project and the previous project
(using developed methods) include the following: (1) objects on a construction site are recorded as
their top-views in the drone-based orthoimages (Fig. 1), which have much less texture feature than the
side views in the road scenes; (2) for small object classification, such as cat and dog classification, the
overall shape and edges are good features (Geirhos et al. 2019; Theodorus et al. 2020), while for a large
area object, the texture is a usable feature when the whole object is not enclosed in the image; (3) one
frame drone-based orthoimages cover less area and fewer inclosing objects than the satellite imagery
and aerial imagery, and the boundaries of adjacent objects such as vegetation and shade are mixed
with each other alternative to straight lines; (4) resizing the high-resolution orthoimage to fit the
computing capacity of the hourglass-like deep learning models in Table 1 is not a good idea, while
disassembling orthoimages into several small-sized patches is necessary to avoid reducing orthoimage
size and keep the spatial information, which is referred to as the sliding window scheme (Han et al.
2015; Kussul et al. 2017) or patch-based scheme (Maggiori et al. 2016) in remote sensing and geoscience
communities; (5) using small image patches with hourglass-like models to generate a pixelwise label-
image, and then assigning the majority pixel label as the object class-label (Liu et al. 2018) is not
necessary, because the probability of multiple objects appearing in a single image patch is going down
as the patch size goes down; (6) small objects in drone-based orthoimages occupy more pixels than the
small objects in the land cover mapping, and thus using the extremely thin patch (7 X 7 pixel) and 1-
pixel step in Kussul et al. (2017) to traverse the drone-based orthoimages is not necessary, which still
can cause issues for small objects, like roads and forest stripes, being smoothed and misclassified
(Kussul et al. 2017); and (7) classifying a small-sized image patch into only seven types of objects with
the 50-layer convolutional layers and one fully connected layer model setup in Liu et al. (2018) and Liu
and Abd-Elrahman (2018) is too redundant, because the pixel-to-pixel labeling is not necessary in the
patch-based image classification, and therefore adding fully connected layers to increase the model
classifying capacity is more efficient than adding convolution layers to generate feature-maps.

Therefore, a patch-wise construction site segmentation and vegetation-removing framework is
developed in the proposed research project. At first, the patch-based Convolutional Neural Network
(CNN) approach is used to generate the patch-wise label-image for identifying vegetation on a
construction site. In detail, the high-resolution orthoimage is proposed to crop into multiple
overlapped small patches (50% in row and 50% in column); a CNN model serves as the classifier to
identify each small-patch image as a vegetation patch or other categories and mark them with the
corresponding pixel label, after which the labeled small-patches are assembled into a high-resolution
result in the recorded sequence to restore the geospatial information (see Fig. 1). Because the CNN
model is proposed to be trained with small-patch and class-label datasets, where small-patches are
cropped from the drone-based orthoimages and manually crafted pixelwise label-images (Fig. 2), class-
labels are determined by the majority pixel label in each cropped label-image small-patch. Thus, only
the main object will be extracted from each small-patch by the CNN model, and the assembled result is
a patch-wise label-image, which has the same size as the drone-based orthoimage. Furthermore, in this
research project, the construction site elevations are saved in elevation-map format, which is an 8-bit
grayscale image (Fig. 3) and each pixel value represents the elevation data for the corresponding pixel



in the orthoimage (Jiang and Bai 2020a). Thus, the elevation-map has the same pixel coordinate as the
patch-wise label-image, and the vegetation removing and ground elevation determination operations
could be easily conducted within them. In detail, the vegetation patches are searched from the patch-
wise label-image using the pixel class-label; the ground elevation for each vegetation patch is
estimated from its neighbor ground pixels’ elevations based on the assumption of ground surface
being smooth changes around and in the vegetation blocks. Moreover, experiments are conducted to
evaluate the effectiveness of the proposed patch-wise construction site segmentation method with
high-resolution orthoimage and label-image datasets and also to determine the best patch size. In
addition, experiments are conducted to determine the vegetation’s heights and the truth ground
elevations covered by vegetation from patch-wise label-images and elevation-maps. The rest of this
paper presents the research results of dataset acquisition, model training dataset creation, model
architecture, and algorithm designs, and also discusses the experimental results of model training and
testing, and vegetation identifying and removing on an experimental site.

Method Development

In this section, the scheme of construction site high-resolution orthoimage, label-image, and elevation-
map datasets acquisition and the scheme of small-patch dataset creation are presented at first. Then,
the CNN-based image classification model architecture and the overlapping small-patch disassembling
and assembling algorithm are discussed. Finally, the design of a vegetation-removing algorithm is
presented, which uses the pixel class-label information in the label-image to remove vegetation blocks
in the elevation-map.

Dataset Acquisition

Orthoimage and Elevation-Map Acquisition

A drone-based orthoimage of a construction site can be captured by yielding the camera gimble to
negative 90 degrees and stably keeping the camera lens facing the ground. The authors’ recent work
(Jiang and Bai 2020a) discussed a two-frame-image-based construction site elevations determination
method, which utilizes a small-sized drone system to capture a low-high orthoimage pair for
assembling a vertical-baseline stereo vision model; then the distances from the low-camera to the
ground surface can be determined from the stereo vision model and can easily be translated to
elevation data with a known control point. In addition, the elevation values are stored in an 8-bit
grayscale image, referred to as an elevation-map, which has equal image size and site size as the
generated orthoimage.

In this research project, the drone system, DJI Phantom 4 Pro V2, is designed to fly at H = 10 meters
over the takeoff location to capture the construction site top-views, which have an image size

of 4,864 x 3,648 pixels, a ground sample distance (GSD) of 0.27 cm/pixel, and a site size

of 13.13 x 9.85 m? (Fig. 1). These images (including their corresponding 20 meters images) are
proposed to resize down to half-size (2,432 X 1,824 pixels) and cut to a square shape

(1,824 x 1,824 pixels) as the inputs for generating the elevation-map by the elevations determination
method in Jiang and Bai (2020a). At that point, the generated high-resolution orthoimages and
elevation-maps have image size of 1,568 X 1,568 pixels, a GSD of 0.54 cm/pixel, and a site size

of 8.47 X 8.47 m?, because the 128-pixel blank margins (no elevation data) are removed from



the 1,824 x 1,824-pixel square shape. With the 8-bit grayscale elevation-map format, the grayscale
pixel value can be easily converted from range [0, 255] to its corresponding elevation value range
[-5-5, 5] meters by gray,,,, = 255 X (Ele_map,,,, + 5)/10; and each 32 X 32-pixel patch in the
elevation-map shares the same elevation value, i.e., all pixels in the

patch Ele_map[16: 48,16: 48] have the same grayscale value/elevation value as the central

pixel Ele_map[32,32].

Label-Image Creation

Fig. 2 shows the graphical user interface of the Label-App, which is designed for labeling an orthoimage
with 8-bit values [0, 255] and programmed using Python 3.6.8 and matplotlib 3.1.1 library. The label-
image is shown in terrain colormap for better visualization. During the label-image creation, the
researchers fully mark the label-image with value 255 by default at first, and then use the cursor to
point out vertices on the orthoimage for identifying each object and the keyboard to create a new
class-label/value or select a predefined class-label/value such as “shade /240.” Like the orthoimage,
the generated label-image also has an image size of 1,568 X 1,568 pixels, a GSD of 0.54 cm/pixel,
and a site size of 8.47 X 8.47 m?. The crafted high-resolution label-images are saved in two file-
formats including a grayscale image file for visualization and a 1,568-row and 1,568-column spread
sheet file for training the deep learning model. Saving as a spread sheet file is necessary because the
interpolation value appears on the boundaries of different objects in the image file.

Small-Patch Dataset Creation

Based on the discussion in the introduction section, the collected high-resolution datasets

(the 1,568 x 1,568 pixel dataset is much larger than the 256 X 256-pixel set) cannot be directly used
for training a deep learning model. In the research project, the researchers proposed to disassemble
the high-resolution orthoimage and label-image dataset into four small-patch orthoimage and label-
image datasets, which have the image sizes of 8 X 8 pixels, 16 X 16 pixels, 32 x 32 pixels,

and 64 x 64 pixels, and site sizes of 4.32 X 4.32 cm?, 8.64 X 8.64 cm?, 17.28 X 17.28 cm?,

and 34.56 x 34.56 cm?, respectively. Fig. 3 shows a high-resolution orthoimage, a label-image, and an
elevation-map dataset. These images have a resolution of 1,536 X 1,536 pixels, which is generated by
removing 16 pixels on each margin of the 1,568 X 1,568-pixel images, after which they can be
cropped into integer numbers of 8 X 8-pixel, 16 X 16-pixel, 32 X 32-pixel, or 64 X 64-pixel small-
patch side by side. Fig. 4 shows the example of these four different small-patches of orthoimages and
label-images. The smallest patch (8 X 8 pixels) is close to the thin patch (7 X 7 pixels) used in Kussul
et al. (2017), while the thin stripe objects on the satellite imagery do not appear in the high-resolution
datasets of this research project.

Additionally, when cropping these small-patches, the strides are set as 4, 8, 16, and 32 pixels,
respectively (half of the patch size), to achieve the 50% overlap in row and 50% overlap in column. The
number of small-patches can be calculated by Eq. (1) for a single high-resolution orthoimage and label-
image dataset. Moreover, in order to make the proposed CNN model more robust in different image
orientations, the high-resolution orthoimages and label-images are planned to rotate 90, 180, and

270 degrees to augment datasets by four times. Table 3 listed the number of small-patch datasets from
a 1,536 x 1,536-pixel orthoimage and label-image pair

(1)



I Height I Width
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Table 3. Dataset parameters

Patch sizes Stridess Rows Columns Num. Num. after 4-rotation
8x8 4 383 | 383 146,689 586,756
16 x16 | 8 191 | 191 36,481 | 145,924
32x32 | 16 95 95 9,025 36,100
64 x 64 | 32 47 47 2,209 8,836

Patch-Wise Construction Site Segmentation

Patch-Based Scheme

Generally, a CNN model starts with a convolution layer and ends with a fully connected layer (Fig. 5).
Then for a given image input, the model output is a binary class vector (Output_0), which contains the
probability values of the predefined class-labels only. This is different to FCN models, which can
generate out the pixelwise segmentation result. Therefore, three post-processes need to be conducted
to get a high-resolution segmented label-image result using CNN model predictions. First, the Argmax
function is used to return the index of the maximum probability value of the binary class vector; this
index is the class-label/value prediction (Output_1) for the input orthoimage patch. For example, the
veg is the class-label prediction for the input orthoimage patch in Fig. 5, because it has the maximum
value of 95% among the 256 class-labels. Second, the class-label/value prediction is assigned to each
pixel of the small-patch as the label-image patch prediction (Output_2) for the corresponding input
orthoimage patch. Third, the small-patch label-image is used to assemble the high-resolution patch-
wise label-image prediction result (Output_3).

In this research project, the patch-based scheme is implemented with the high-resolution orthoimage
overlapping disassembling and high-resolution label-image assembling algorithm in Fig. 5, which makes
the CNN model work with the high-resolution image to generate the patch-wise segmentation results.
On the one hand, before the CNN model, this algorithm disassembles the orthoimage into several
overlapped small-patches and records their locations in their sequence ID. The number of small-
patches is determined by Eq. (1). On the other hand, after the CNN model and the first-two
postprocess, when using Output_2 to assemble the high-resolution label-image prediction (Output_3),
these small-patches are considered as corner patches, edge patches, or regular patches, and only the
selected region (marked as filled rectangles) of each patch will be used in the high-resolution label-
image prediction (Fig. 5). For example, 9,025 small-patches with a size of 32 X 32 pixels (95-row and
95-column) will be produced from a 1,536 X 1,536-pixel orthoimage; the CNN model outputs the
same number of 32 X 32-pixel label-image patch predictions; then, the specific regions of these label-
image patches are used to assemble a high-resolution 1,536 X 1,536-pixel label-image prediction,
where for each regular 32 X 32-pixel label-image patch, the used region is only a quarter of the
regular patch (16 X 16 pixels). Thus, in this example, each 16 X 16-pixel orthoimage patch is linked
with a 16 X 16-pixel label-image patch prediction through a class-label prediction.



Therefore, the expected result is a 4 X 4-pixel, 8 X 8-pixel, 16 X 16-pixel, or 32 X 32-pixel patch-
wise image segmentation result, after running the overlapping disassembling and assembling algorithm
paralleled with the CNN-based image classification model with 8 X 8-pixel, 16 X 16-pixel, 32 X
32-pixel, or 64 X 64-pixel patches, respectively. This is similar to resizing a 1,536 X 1,536-pixel image
down to a 384 X 384-pixel, 192 X 192-pixel, 96 X 96-pixel, or 48 X 48-pixel image for pixelwise
image segmentation, where each pixel is a useful

4 X 4-pixel, 8 X 8-pixel, 16 X 16-pixel, or 32 X 32-pixel region in each regular patch, respectively.

Small-Patch Dataset Shape

Considering that texture is the only usable feature for classifying different objects on a construction
site when the whole object is not inclosing in the small-patch, the proposed CNN model uses the RGB
color orthoimage patches as model input data. Based on Table 3, a 1,536 X 1,536-pixel orthoimage
can produce the model training datasets

with shape (586756,8,8,3), shape (145924,16,16,3), shape (36100,32,32,3),

or shape (8836,64,64,3), where the first number is the quantity of the small-patches, the second and
third numbers are the size of the small-patches, and the fourth number indicates these small-patches
have RGB 3-channel.

A label-image generated from the Label-App only has one channel. Disassembling a 1,536 X
1,536-pixel label-image can produce small-patch datasets

with shape (586756,8,8,1), shape (145924,16,16,1), shape (36100,32,32,1),

or shape (8836,64,64,1). Then, the majority (maximum frequency) pixel class-label/value in each
small-patch is determined and set as the class-label/value for each label-image patch. For example, in
Fig. 4 the “darker” region is larger than the “lighter” region of the 64 X 64-pixel label-image patch,
and thus the class-label “sand”/value 80 is assigned for that small-patch. In doing so, the small-patch
datasets are translated into class vector (integers), such

as [130,95, ...,130] with shape (586756,1), shape (145924,1), shape (36100,256,1),

or shape (8836,256,1). Additionally, the class vector needs to be converted to binary class matrix
with shape (586756,256,1), shape (145924,256,1), shape (36100,256,1),

or shape (8836,256,1) as the model training datasets (Chollet 2015). For example, an integer of 130
is translated to a binary class vector [0.0g, 0.0, ..., 1. 013y, ..., 0. 0,55] with shape (256,1); and, then
a class vector is translated to a binary class matrix with shape (Num. of Small_Patches, 256,1).

CNN-Based Image Classification Model

The CNN-based image classification model architecture is presented in Fig. 5, which includes a feature
learning block and a classification block. The detailed model layers for the four different patch sizes are
shown in Table 4, where the type of layers is described in the Keras 2.3 style (Chollet 2015). In the
feature learning block, three convolution layers learn the orthoimage patches (model input) as feature-
maps (layer outputs). Three max pooling layers reduce the feature-maps’ (layer inputs) size to its half-
size as their layer outputs without losing important features. For example, the 8 X 8-pixel, 16 X
16-pixel, 32 X 32-pixel, and 64 X 64-pixel patches are resized down to 1 X 1-pixel, 2 X 2-pixel, 4 X
4-pixel, and 8 X 8-pixel patches, respectively, after the 3rd max pooling layer. The flatten layer
transforms the feature-map (layer input) into a feature-vector (layer output), which can be used in the
classification block. Three fully connected layers (also known as dense layers) translate feature-vectors



(layer inputs) to a binary class vector [0.0g, 0.0, ..., P;, ..., 0. 0355] as the CNN model output for each
orthoimage patch input.



Table 4. Model layer parameters

Model architecture for 8 x
8,16 x 16,32 x 32,
and 64 X 64-pixel patches

Output
shapes for
each patch

Rowxcolumn

Blocks Layer (type and filter size) Stride |Padding|Activation 8x8 16 X 16] 32 x 32| 64 X 64|Channels
Input input_1 (Input Layer) — — — 8x8 16 X161 32x32| 64X64 3
Feature learning block conv2d_1 (64,Conv2D 3 X 3) 1 same RelLU 8x8 16 X 16 32x 32| 64X 64 64

max_pooling2d_1 (Max Pooling 2 X 2) 2 — — 4 X4 8x8 16 X16 | 32x 32| 64
conv2d_2 (128,Conv2D 3 X 3) 1 same RelLU 4 x4 8x8 16 x16 | 32x32| 128
max_pooling2d_2 (Max Pooling 2 X 2) 2 — — 2X2 4 x4 8x8 16 x 16| 128
conv2d_3 (256,Conv2D 3 X 3) 1 same RelLU 2X2 4 X4 8x8 16 X 16| 256
max_pooling2d_3 (Max Pooling 2 X 2) 2 — — 1x1 2X2 4 x4 8x8 256
dropout_1 (Dropout 0.5) — — — 1x1 2X2 4x4 8x8 256
Classification block flatten_1 (Flatten) — — — 256 1,024 4,096 16,384 —
dense_1 (Dense) — — RelLU 256 1,024 2,048 4,096 —
dropout_2 (Dropout 0.5) — — — 256 1,024 2,048 4,096 —
dense_2 (Dense) — — RelLU 256 512 1,024 1,024 —
dropout_3 (Dropout 0.5) — — — 256 512 1,024 1,024 —
Output dense_3(Dense) — — SoftMax 256 —




Furthermore, after each convolutional layer and dense layer, there is an activation function (layer),
which performs the nonlinear transformation of the input features from the previous convolutional
layers or dense layers (Dettmers 2015). Because the model input datasets will be normalized from
value range [0,255] to [0.0,1.0] by dividing them by 255, the activation function should progressively
change from 0.0 to 1.0 with no discontinuity. Therefore, the rectified linear unit activation function
(ReLV), f(x) = max(0, x), is used in hidden layers. Because the ReLU function does not always output
a nonzero value, which results in less neurons being utilized and less dependence between features
(Nair and Hinton 2010), it is faster than the Sigmoid activation functions. In addition, the SoftMax
activation function is used in the 3rd dense layer to calculate the probabilities of the 256 class-labels in
the binary class vector [0.0g, 0.0, ..., p;, ..., 0. 0,55]. Finally, the dropout layers are used to prevent
model overfitting, which randomly sets half of the input units to 0 during the model training (Chollet
2015).

Additionally, for compiling the proposed CNN-based model, the researchers use “adam” as the
optimizer, “categorical_crossentropy” as the loss function, and use “accuracy” as the metric. The
“validation_split” is set to 0.05, which means that 95% of small-patch datasets are used for training the
model and 5% of small-patch datasets are used for model validation. The “early stopping”
configuration is set as “EarlyStopping(monitor=‘val_accuracy’, patience=5),” which means the model
training will be stopped because the monitored quantity of validation accuracy had stopped improving
for the past five epochs (Chollet 2015).

Patch-Wise Vegetation Removing

There are two approaches for removing the vegetations’ heights from the raw surveying result
(elevation-map) and determining the truth ground elevations using the identified vegetation blocks in
the patch-wise label-image. The first approach is measuring an average height of vegetation blocks on
the construction site, and then directly subtracting this value in the elevation-map for the vegetation
blocks. This may cause irregularity elevation changes on vegetation blocks’ boundaries, where the
vegetation has a lower height than the central region. However, this approach has the advantage in
dense vegetation areas, such as the bottom of Fig. 8, where have no ground surface shows in the top-
view. The second approach is estimating an average elevation of neighbor ground surfaces in the
elevation-map, and then uses this value for updating the vegetation blocks’ elevations. This approach is
similar to the iterations of interpolation method in removing vegetation points from a point cloud,
which classifies points above the interpolated surface as vegetation, and interpolates again with a new
selection of potential ground points (Anders et al. 2019). The second approach works for sparse
vegetation areas or isolated plants, such as the marked vegetation blocks in Fig. 8, where the ground
surfaces or neighboring grounds appear in the orthoimages and elevation-maps, and searching
neighbor ground blocks with the label-image and interpolating these surroundings’ elevation values as the
estimated truth ground elevation under the vegetation is possible.

In this research project, the patch-wise vegetation removal focuses on the isolated and sparse
vegetation blocks on the construction sites (Fig. 8). The proposed vegetation-removing algorithm in
Fig. 6 is based on Approach 2, which is more convenient for automatically estimating the ground
elevation without any manual participation, and the result is more smooth at the boundaries than
Approach 1. In detail, the proposed VEG_REMOVING_IN_ROW _THEN_COL_TRAVERSE algorithm



traverse the patch-wise label-image in the row-column-row-loop shown in Fig. 7, which ends with a
row-loop. In each row-loop, the SEARCH_VEG_REPLACE_GROUND algorithm uses an adjustable
window, which can be extended in the row direction only to search the minimum required number of
ground pixels using the pixel class-label in the label-image. Similarly, in each column-loop, the
adjustable window is changed in column direction only, to search the minimum required number of
ground pixels as well. When sufficient ground pixels appear in the search window,

the SEARCH_VEG_REPLACE_GROUND algorithm replaces the current vegetation patch’s elevation
value Ele_map[rowipgex: TOWindex + Stride, colingex: €Olingex + Stride] in the elevation-map with
the average elevation value ground_ele from the searched neighboring ground pixels. An alternative
option is only replacing any pixel Ele_map][v, u] in the elevation-map when its elevation value is
higher than ground_ele. This will assist in keeping the sparse truth ground elevation in the elevation-
map, which classifies the lower pixels as the ground pixels, alternative to the vegetation pixels labeled
in the patch-wise label image. In addition, the removed vegetation patches will be marked with a new
ground class-label in the label-image, and drawn with a specific color in the orthoimage as well (see
Fig. 7).

Experiments

In this section, the patch-wise construction site segmentation method is compared in

the 8 x 8-pixel, 16 x 16-pixel, 32 X 32-pixel, or 64 X 64-pixel patch-based CNN-based image
classification models (Fig. 5 and Table 4) at first. Then, the vegetation-removing and truth ground
elevation determination experiment is evaluated with the best patch-wise segmentation result of the
experimental site (i.e., a lake beach site, as in Fig. 8). In this research project, the configuration of the
software environment is Python 3.6.8, OpenCV 3.4.2, Keras 2.3.1, TensorFlow-GPU 1.14, CUDA 10.0,
and cuDNN 7.6.4.38 on a workstation system with 2xXeon Gold 5122@3.6GHz CPUs, 96GB (8GBx12)
DDR4 2666 MHz memory, and 4x11GB memory GeForce RTX 2080 Ti GPUs.

Construction Site Segmentation

Training Dataset

Followed by the high-resolution dataset acquisition method, 10 1,536 X 1,536-pixel orthoimages
were collected during 2019 (Fig. 9), and the corresponding label-images were labeled with the 10
categories of objects and surfaces in Table 5. For the vegetation blocks, in data A and B, the vegetation
had not recovered yet; in data C and D, the vegetation was growing; and in data G, O, AD, AL, AM, and
CG, the vegetation was fully grown, and their heights were around 2-3 ft (0.6096—0.9144 m0.6096—
0.9144 m, Fig. 8).

Table 5. Class-label definitions

Class-label 8-bit grayscale valug Definitions

n 255 Default value/other undefined objects
Shade 240 Shades on ground

Umbrella | 220 Red umbrella surface

Can 180 Garbage cans

Shrub 150 Shrub surface

Veg 130 Vegetation surface

Withered | 110 Withered vegetation surface




Class-label 8-bit grayscale valug Definitions

Sand 80 Ground surface, includes sand and soil
wood 30 Wooden surface, includes platform and path
takeoff 0 Drone takeoff and landing pad

Four small-patch orthoimage datasets were generated from 10 orthoimages, which have the
following: shape (5867560,8,8,3), shape (1459240,16,16,3), shape (361000,32,32,3),

and shape (88360,64,64,3), respectively. Furthermore, four binary class matrixes

with shape (5867560,256,1), shape (1459240,256,1), shape (361000,256,1),

and shape (88360,256,1) were produced for the 8 X 8-pixel, 16 X 16-pixel, 32 X 32-pixel,

and 64 X 64-pixel small-patch label-image dataset, respectively. Therefore, the four small-patch
orthoimage datasets and the four binary class matrixes were assembled as the four model training
datasets for the four CNN models in Table 4, respectively.

Training and Validation

The CNN model training parameters including dataset numbers, batch sizes, and epochs are listed in
Table 6. The results of training loss, training accuracy, validation loss, and validation accuracy with
early stopping for the four different patch sizes are shown in Fig. 10, which were stopped at different
epochs (see Table 6). The 64 X 64-pixel and 8 X 8-pixel patch trials stopped at the 13th epoch and
were the earliest trials, and the 32 X 32-pixel patch stopped at the 14th epoch. The 16 X

16-pixel patch took the most epochs for the validation accuracy to reach stable.



Table 6. Model training parameters and results

Patch size - .
. Training epoch trials
trials
Patch sizes Datasets Batch Early stopping (monitor="val_accuracy’,
(validation split=0.05split=0.05) sizes patience=5), epochs=50
- N . w/o early
Total No. Training | Validation w/ early stopping stopping
8 5,867,560 5,574,182 293,378 | 256 13 50
16 1,459,240 1,386,278 72,962 256 24 50
32 361,000 342,950 | 18,050 256 14 50
64 88,360 83,942 4,418 256 13 50




Several small-patch validation samples are shown in Fig. 11, where the model training datasets of
label-image patches (class-labels, or binary class vectors in the CNN model) are compared with the
model predictions. These samples show the larger patches, i.e., the 32 X 32-pixel and 64 X 64-pixel,
were more accurate than the smaller patches, i.e., the 8 X 8-pixel and 16 X 16-pixel. Although the
large patches formed complex label-image patches with multiple objects (class-labels) in a single label-
image patch, the CNN model-generated class-labels were the same as the corresponding class-labels in
the training dataset. The overall validation accuracy of the randomly selected 5% small-patch datasets
also confirmed that the 32 X 32-pixel and 64 X 64-pixel patches were more accurate than

the 8 x 8-pixel and 16 X 16-pixel patches (Fig. 10). However, it is hard to conclude that either

the 32 X 32-pixel or 64 X 64-pixel batch has the best performance in the small-patch classification
task based on these early stopping trials.

In addition, the additional model trainings were conducted without early stopping to 50 epochs. In

Fig. 12, the 64 X 64-pixel patch model has the largest model training accuracy of 0.9908 at the 50th
epoch, but it is an overfit model because its validation accuracy of 0.9219 at the 50th epoch did not
improve as the training accuracy did. The designed three dropout layers showed the limited function in
avoiding the model overfitting issue in the 8 X 8-pixel, 16 X 16-pixel, and 32 X 32-pixel patch
models. In Fig. 12, the extra training shows a slight negative impact on the 8 X 8-pixel patch model’s
training accuracy and training loss, whereas it shows a slight improvement in the 32 X 32-pixel patch
model training accuracy and training loss. However, the extra training has neither significantly good
nor bad impact on the model validation accuracy and validation loss. For example, the 32 X

32-pixel model has the best validation accuracy of 0.9304 at the 50th epoch, which is not much
different from the 0.9288 at the early stopping trial. The cause of overfitting can be visualized in the
assembled patch-wise validation results as well. In Fig. 13, compared to the early stopping, the 50-
epoch has the noise predictions on the wooden platform of data AM and G, but it has better model
predictions for the “withered” class-label in data A and CG, so the overall model validation accuracy
was maintained around 93% for the 32 X 32-pixel patch. Therefore, considering the 32 X

32-pixel patch had the smallest model validation loss and the best model validation accuracy in the
small-patch image classification, the researchers conclude that the 32 X 32-pixel patch (with a site size
of 17.28 x 17.28 cm?) has the best performance in construction site patch-wise segmentation,
followed by the 64 X 64-pixel patch and 16 X 16-pixel patch. The smallest 8 X 8-pixel patch,
however, has the worst performance.

Testing and Evaluation

The trained early stopping and 50-epoch models were tested with the data AO in Fig. 3. The
orthoimage and label-image were rotated and repeatedly disassembled into four small-patch
orthoimage and binary class vector datasets, which have the numbers listed in the last column of
Table 3. For example, the created testing dataset for the 32 X 32-pixel patch was 36,100 pairs of a
small-patch orthoimage and binary class vector dataset. The best image classification testing accuracy
of 0.9435 is the 32 x 32-pixel patch with 50-epoch (overfitting), the second-best testing accuracy of
0.9433 is the 64 X 64-pixel patch with 50-epoch (overfitting), and the third-best testing accuracy of
0.9423 is the 32 X 32-pixel patch with early stopping. Thus, about 94% of the small-patch orthoimages
were assigned the correct class-labels by the CNN model. For the assembled patch-wise label-image in
Fig. 14, the 32 x 32-pixel patch with early stopping shows the best segmentation result, followed by



the 32 X 32-pixel patch with 50-epoch (overfitting). As for the results of model overfitting, the worse
“wood” and “can” prediction performance and better “withered” prediction performance appeared
after the early stopping point, which are the same as the CNN model validation results. Thus, the
researchers conducted additional testing with the CNN-based image classification model of

the 32 X 32-pixel patch with early stopping only, where orthoimage data AO, K, and Z were tested
without rotations, and each of the patch-wise segmentation results were assembled from 9,025
overlapped small-patch label image predictions.

Fig. 15(a) mapped the unmatched pixels between the manually crafted pixelwise label-image (left) and
the patch-wise segmentation results (right), where the testing data AO, K, and Z had a pixel accuracy of
93.57% (2,207,641 of 2,359,296 pixel), 93.61%, and 90.64%, respectively. There are noticeable
unmatched pixels on the boundaries of different objects, which are reasonable results because the
comparisons are between a pixel and a 16 X 16-pixel patch (a quarter of 32 X 32-pxiel). Excluding the
boundaries, the majority of unmatched pixels were between withered and veg, withered and sand, and
shade and veg, where the CNN-based image classification results were more accurate than human eyes
[Fig. 15(b)]. In this research project, the withered class-label was defined as a ground surface category
between the sand and sparse veg; the shrub class-label was defined as dense plants other than the
sparse veg; and the shade class-label was defined as the shade on the ground surface. Although the
researchers tried hard to distinguish the different objects from the orthoimages, errors had mixed in
with the manually crafted label-images somewhere. The small veg on the wooden path of data K was
mislabeled but successfully identified by the CNN model [Fig. 15(b)]. However, the mislabeled
boundaries of shrub and veg in the model training dataset resulted in the “well” trained CNN model
identifying the veg patches with highlighted leaves and dark background as the wrong shrub patches
[Fig. 15(c)]. This explains why the Intersection over Union (loU) for shrub, shade, and withered were
worse than the other class-labels in Table 7. Moreover, in the early stage of this research project, the
researchers obtained a 0.9646 validation accuracy and 0.9673 testing accuracy in image patch
classification without adding the withered class-label. Thus, the performance of patch-wise
segmentation can be improved by considering the withered and sand as one ground surface category,
and considering the mixed veg, shrub, and shade as one vegetation category. Furthermore, the pixel
accuracy of 93.57% of data AO is not significantly different to its small-patch classification testing
accuracy of 94.23%. Thus, the developed overlapping small-patch disassembling and assembling
algorithm was efficient in the patch-wise segmentation task with an average pixel accuracy of 92.6%,
which has the good performance for the large area objects, such as the loU 0.9827 for wood and
0.8666 for veg in the three testing datasets. The detailed loU for each class-label of the model training
and testing datasets are summarized in Table 7.



Table 7. Model training and testing loU

Class-label Value | Model validation loU Model
(intersection over union) Testing loU
A B C D G o AD AL AM CG Average| AO K VA Average
n® 255 — 0.0000% 0.000094 — — — 0.00004 — 0.0000% — — — — — —
Shade 240 — — 0.7711| 0.8853 | 0.7782| 0.7588| 0.5133| 0.4902| 0.6808 | — 0.6968 | 0.4950 0.1557| 0.1621] 0.2709
Umbrella® 220 — — — — — — 0.0000| — — 0.9682| 0.4841 | — — — —
Can¢ 180 0.0000 0.9097 | — 0.8739 | — — 0.8406| 0.8807| 0.8594 | — 0.7274 | 0.8483 — — 0.8483
Shrub® 150 — — 0.8904| 0.0000 | 0.0000| 0.9384| 0.0000| — — 0.9401| 0.4615 | 0.0000 0.0000 0.0000/ 0.0000
Veg 130 0.8783 0.8426| 0.9635| 0.8869 | 0.9050| 0.9501| 0.9333| 0.8672| 0.8787 | 0.8663| 0.8972 | 0.8360 0.9137| 0.8502| 0.8666
Withered® 110 0.5003 0.6243 | 0.3860| 0.5040 | 0.4793| 0.4164| 0.0000| 0.1989| 0.1925| 0.4697| 0.3772 | 0.1840 0.0928 0.2789 0.1852
Sand"e 80 0.7476 0.8107 | 0.8681| 0.8980 | 0.8545| 0.0000{ 0.8353| 0.8845| 0.7726| 0.8415| 0.8348 | 0.6832 0.0000 0.7446/ 0.4759
Wood 30 0.9803 0.9939| 0.9762| 0.9932 | 0.9794| 0.9544| 0.9907| 0.9772| 0.9915| 0.9874| 0.9824 | 0.9886 0.9720 0.9875| 0.9827
Takeoff 0 — — — 0.8890 | — — 0.8662 | 0.8917| 0.8748 | — 0.8804 | 0.8757 — 0.5258 0.7007
Mean loU 0.6213 0.6969 | 0.6936| 0.7413 | 0.6661| 0.6697| 0.4979| 0.7415| 0.6563 | 0.8455| 0.6830 | 0.6138 0.3557, 0.5070 0.4922
Corrected mean loU?f 0.8362% 0.80929 0.8036/ 0.55337 0.75013 0.7368f
Pixel accuracy 0.9123 0.9477| 0.9722| 0.9620 | 0.9397| 0.9662| 0.9599| 0.9245| 0.9483 | 0.9680| 0.9501 | 0.9357 0.9361] 0.9064 0.9261

Note: The above two errors were excluded to get the corrected Mean loU should refer to the errors of a and f.

2When manually crafting a label-image, all pixels were set to the default value 255 at first, which resulted in 141, 4, 8, and 58 pixels nn on Data B, C, AD, and AM.

®The small corner (337 pixels) of the umbrella in Data AD (left-bottom) was not identified by the CNN model, while the umbrella had a good performance in Data CG.

¢This error occurred in Data A (left-upper) with 256 pixels, where the pixels are the ground surface on the experimental site.

4Shrub was labeled in the bottom of Data C, O, and CG and well identified, but 4,864, 1,664, 256, 256, 72,192, and 14,080-pixel errors occurred in Data D, G, AD, AO, K, and Z, respectively.
¢ No pixel was labeled as withered in Data AD, but the CNN model prediction was correct.
fThe isolated withered block in Data O was labeled with sand in the past, which resulted in 37 pixels not being completely covered by the correct withered class-label.

8The prediction error occurred on the wooden path in Data K (left), and 103 pixels in the sand path were not covered by the correction withered while creating the label-image.



Furthermore, the vegetation index ExG = 2G — R — B (Anders et al. 2019) was applied to identify
vegetation (ExG > 0.1) in the model training and testing dataset. Fig. 16 shows this vegetation index
method was only sensitive to a range of green colors and also resulted in the error at the garbage cans
in data AO. However, vegetation in data A were not identified; the sparse vegetation with dark color
were skipped in data G, AQ, K, and Z; and some of the dense vegetation in data C and CG were missed
as well. Thus, the vegetation index method is not suitable for the detailed vegetation detection on a
complicatedly textured construction site with other green textured objects. Therefore, the researchers
conclude that the developed CNN-based image classification model with the 32 X 32-pixel (17.28 X
17.28 cm?) patch has good accuracy in identifying objects on the construction site using the drone-
based high-resolution orthoimage.

Vegetation-Removing Testing

Algorithm Configuration

In this research project, the patch-wise vegetation-removing experiments were conducted with

the 32 X 32-pixel early stopping patch-wise segmentation predictions. The proposed algorithm in
Fig. 6 was programmed using Python 3.6.8, with the following parameter settings. The shade, shrub,
and veg were set as the veg_label_list (in Fig. 6), which were considered as vegetation blocks in the
label-image, and needed to be removed and replaced with class-label ground/ value 95.

The ground,,,.; Was set as sand, withered, and the relabeled ground, which were considered as
ground blocks to provide the elevation values for vegetation blocks. The initial search window was set
with size (gszie X 2ratiog + stride) X (qszie X ratio, + stride), where gsize is the small-patch
(32-pixel) used in the CNN-based image classification model. The stridestride is the step used for
traversing label-images, which was set as gsize /4 = 8-pixel; thus, a 1,536 X 1,536-pixel patch-wise
label-image was disassembled into 36,864 small-patches (192-row, 192-column) with a size

of 8 X 8 pixels, and traversed by 192 row-loop and 191 column-loop. The ratio, is the parameter
used to control the initial size of the search window and the required number of ground pixels in the
search window, which impacts on the smooth degree of estimated truth ground elevations on the
vegetation removed elevation-map. This research project used a large ratio, = 8 to get smooth
elevation changes on the boundaries of vegetation and ground surfaces, and then, the minimum
required number of ground pixels in the search window was gsize X gsize X ratiog = 32 X 32 X 8.
The maximum search windows size depends on the parameter win;,, max, Which was set as half of
the image width = 768-pixel to handle the extreme condition that the ground surface only appeared
in corners or edges, such as data CG. In this case, the first row-column-row-loop was not enough to
remove the vegetation on bottom-left corner, and then, the additional row-column-row-loop
successfully removed all vegetation and marked them with the pink color in the orthoimage

[Fig. 17(a) and Table 8].



Table 8. Pixel class-label summary

Class- Label-image Vegetation removed label-image
Value - .
label prediction prediction
D AO G CG D AO G CG-1° CG-2°

n 255 — — — — — — — — — — — —
Shade 240 | 21,760 0.92% 8,192 0.35% 229,632 | 9.73% — — — — — — —
Umbrella | 220 | — — — — — — 436,224 | 18.49% | — — — 436,224 | 436,224
Can 180 | 18,688 0.79% 73,856 3.13% — — — — 18,688 73,856 — — —
Shrub 150 | 4,864 0.21% 256 0.01% 1,664 0.07% 455,424 | 19.30% | — — — 59,776 —
Veg 130 | 444,480 18.84% | 427,456 | 18.12% | 1,003,520 42.53% | 403,840 | 17.12% | — — 384 103,744 | —
Withered | 110 | 75,136 3.18% 26,624 1.13% | 41,216 1.75% 25,600 1.09% — — — — —
Ground¢ | 95 — — — — — — — — 925,440 728,832 | 1,842,176 797,568 | 961,088
Sand 80 379,200 16.07% | 266,304 | 11.29% | 566,528 | 24.01% | 76,224 3.23% — — — — —
Wood 30 1,396,480 59.19% | 1,539,456 65.25% | 516,736 | 21.90% | 961,984 | 40.77% | 1,396,480 1,539,456 516,736 | 961,984 | 961,984
Takeoff 0 18,688 0.79% 17,152 0.73% — — — — 18,688 17,152 — — —
Sum — 2,359,296 100.00%| 2,359,296/ 100.00% 2,359,296 100.00% 2,359,296 100.00% 2,359,296 2,359,296 2,359,296/ 2,359,296/ 2,359,296

2Two row-column-row-loops were conducted to remove all vegetation.
b384-pixel of unremoved veg at the top-left corner of data G.
¢Ground = shade + shrub + veg + withered + sand.



Furthermore, a shade, shrub, or veg pixel in the label-images was updated its elevation with the
average elevation value (ground_ele) of the searched neighboring ground pixels when this vegetation
pixel’s elevation Ele_map[v, u] in the elevation-map was higher than the ground_ele. Moreover, to
get the smooth elevation changes on the boundaries of ground blocks and vegetation blocks, during
the row-column-row-loop, the sand and withered pixels in the label-image were given updated
elevations ground_ele and remarked with the class-label ground/ value 95 as well. Thus, after all
vegetation pixels are removed by the developed algorithm, the total number of shade, shrub, veg,
sand, and withered pixels in the patch-wise label-image prediction should be equal to the number of
ground pixels in the vegetation removed label-image (Table 8).

Testing and Evaluation

The testing data AO in Fig. 3, and CNN model training data D and data G were used to evaluate the
vegetation removing algorithm. Table 8 shows the sum number of shade, shrub, veg, sand, and
withered pixels in the label-image prediction is equal to the number of ground pixels in the vegetation
removed label-image, which confirms that the developed algorithm had successfully traversed the
high-resolution patch-wise label-image in a single row-column-row loop [except the 384 veg pixels in
data G, see Fig. 17(a)].

Fig. 17(b) shows the elevation differentials between the original elevation-maps and vegetation
removed elevation-maps on ground blocks and vegetation blocks. There are larger elevation changes
appearing on the edges of the wooden platform and garbage cans, where the updated elevations fixed
the errors in the elevation-map. That is because in the elevation-map, each 32 X 32-pixel patch shared
the same elevation value even if this patch contains different objects, while each 8 X 8-pixel small-
patch in the vegetation removed elevation-map shared the same elevation value based on the object’s
class-label. Excluding these elevation corrections, the elevation differentials represent the vegetation
heights on the experimental site. In Fig. 17(b), data AO has the larger elevation differential than data D
for the same vegetation blocks, which correctly reflects the growing of the vegetation blocks from
6/5/2019 to 9/5/2019. The elevation differential in data G is larger than data AO, which also reflects
the vegetation heights on the experimental site (Fig. 8). The detailed vegetation heights (elevation
differentials) and the peak values of data D, AO, and G are shown in Fig. 18(a), where the data D has
the peak value of 0.4706 m, data AO has the peak value of 0.6275 m, and data G has the peak value of
0.9412 m (considering the single value 0.9804 m as noise point). These peak values are close to the
measured vegetation heights 0.6096 and 0.9144 m on the experimental site. Thus, any elevation
differentials larger than these three peaks in these three data were considered as the noise points
alternative to vegetation heights.

In Fig. 18(a), the point clouds were generated using the selected central points of each 8 X

8-pixel patch of the orthoimage (textures) and the elevation-differential-map (vegetation heights).
Thus, 36,864 points were generated for each data, but only 6,945 veg points, 6,679 veg points, and
15,680 veg points were retained for analysis in data D, AO, and G, respectively [see the statistics
summary in Fig. 18(b)]. That is the same as the percentage of veg pixels of the label-images in Table 8,
where 18.84%, 18.12%, and 42.53% represent veg pixels in data D, AO, and G, respectively. In addition,
three subset point clouds, named D < 0.4706, AO < 0.6275, and G < 0.9804 were created by
removing the points that have the elevation differential larger than the peak value of each data. Thus,



for outliers, most are the elevation corrections on the edges of the wooden platforms, which were
excluded from the subsets [see the boxplot in Fig. 18(b)]. In data D and AO, their differential of peak
value is 0.1569 m, the 2-sample t-Test was conducted for these two subsets, which 95% confidently
concluded that the mean of AO < 0.6275 is 0.0805 m greater than D < 0.4706. Similarly, the mean
of G < 0.9804 is 0.1402 m greater than AO < 0.6275 at the 0.05 level of significance. In Fig. 18(b),
three contour plots were crafted based on the three subset point clouds. The results indicate the
largest vegetation height in data AO was 0.6 m for the right vegetation block, and 0.42 m for the left
vegetation block; the largest vegetation height in data D was 0.45 m for the right vegetation block, and
0.25 for the left vegetation block; the largest vegetation height in data G was 0.9 m for the two isolated
vegetation blocks. Therefore, the researchers conclude that the measured elevation differentials
successfully reflect the vegetation heights on the experimental site.

In Fig. 19, the vegetation-removed point clouds were generated using the selected central points of
each 8 X 8-pixel patch of the vegetation removed orthoimage (textures) and the vegetation removed
elevation-map (elevation values), where 14,460 ground points and 11,388 ground points appeared in
data D and data AO, and account for 39.23%, 30.89% of the total generated 36,864 points, which are
the same percentages of ground pixels in the vegetation-removed label-images. Because the generated
point clouds have the similar shape visually, the contour plots confirm the ground region are similar to
each other, and the histogram shows the ground elevations have the similar distribution, the
researcher conducted the additional 2-sample tt-Test for verifying these two ground point clouds are
similar or not. The hypothesis test results indicated the difference between these two ground point
clouds (Difference=AO_GROUND-D_GROUND) has the 99% CICI of (—0.010172, 0.00072689), and the
standard deviations do not differ at the 0.01 level of significance for these two ground point clouds.
Thus, the estimated ground elevations in data AO and data D are close to each other, and the
measured vegetation heights were fully removed from the raw surveying results. Therefore, the
researchers conclude that the developed vegetation-removing algorithm is stable in estimating the
truth ground elevations, and the performance is robust under the different conditions of the covered
vegetation.

Furthermore, Fig. 20(a) shows a stitched point cloud demo of the data AO (mid), data G(right), and
data AD (left), where the vegetation were removed in three separated orthoimages and elevation-
maps. These ground points have small elevation gaps on the joints between data AD and AO, and data
AO and G. The smooth ground elevation changes on the joints could be achieved by stitching the three
orthoimages and elevation-maps at first, and then, patch-wise segmenting the stitched orthoimages
with the patch-based CNN model, and followed by the patch-wise vegetation removing.

Fig. 20(b) shows a large-scale demo, where the 4,864 X 3,648-pixel orthoimage is the original image
captured by the drone at 20m, which had a GSD of = 0.54 cm/pixel and site size of 26.26 X

19.70 m?. The patch-wise label-image was generated by the 32 X 32-pixel early stopping model. The
elevation data was generated by the elevation estimation method in Jiang and Bai (2020b). 456-row
loops and 455-column loops were conducted to remove the vegetation and estimate the ground
elevations. Because the developed patch-wise construction site segmentation and vegetation-
removing framework can be extended in these two cases, which is not limited to work with the model
training and testing dataset, the researchers conclude that the developed framework in this paper



(Fig. 1) can automatically identify the vegetation and determine the truth ground elevation covered by
vegetation on a construction site.

Conclusion and Future Research

This paper presents a deep learning-based method to identify vegetation objects on a construction site
using drone-based orthoimage and determine the truth ground surface elevations from the raw
surveying results. The keypoints of the method are outlined in Fig. 1, which includes: (1) using a drone
to acquire construction site orthoimages; (2) disassembling the high-resolution orthoimage into
overlapping small-patches; (3) using the CNN-based image classification model to generate the class-
label for each orthoimage patch; (4) assigning the class-label to each pixel of the small-patches to
generate the label-image predictions for each orthoimage patch; (5) assembling small-patch label-
image predictions to a high-resolution patch-wise label-image prediction; (6) searching and identifying
vegetation blocks in the patch-wise label-image; (7) updating vegetation block elevation values with
the surrounding grounds’ elevations in the same coordinate elevation-map; and (8) converting the
vegetation removed elevation-map to elevation data or three-dimensional (3D) point cloud of the
construction site.

The CNN-based image classification models with 8 X 8-pixel, 16 X 16-pixel, 32 X 32-pixel,

and 64 X 64-pixel patches were tested and compared. The testing results showed the 32 X

32-pixel patch (size = 17.28 X 17.28 cm?) had the best performance of 94% accuracy in identifying
the main objects’ class-label from each small-patch orthoimage on the construction site. The
developed overlapping disassembling and assembling algorithm, which runs in parallel with the CNN
model, contributes to making the workstation system more convenient to train the CNN model with
high-resolution images instead of shrinking images and losing image details. By cropping the datasets
into multiple overlapped small-patches, the model training datasets were augmented as well. The
testing results show that the developed patch-wise segmentation method, which disassembling

the 1,536 x 1,536-pixel high-resolution image into 9,025 overlapping small-patches for image
classification and assembling the label-image small-patch predictions to the 1,536 X

1,536-pixel patch-wise label-image prediction is an effective image segmentation method with an
average pixel accuracy of 92.6% and high loU for large area objects. In addition, with this suitable
small-patch size, the edges of different objects were well determined and applied to fix the elevation
errors occurred on the edges of different objects in the elevation-maps.

Additionally, after the objects on a construction site were identified in a 1,536 X 1,536-pixel patch-
wise label-image prediction, a vegetation-removing algorithm was used to divide this high-resolution
label-image into 36,864 nonoverlapping 8 X 8-pixel patches and traverse them into 192 row-loops and
191 column-loops. In each row-loop and column-loop, the developed algorithm extended search
windows in the row and column direction, respectively. It searched the sufficient surrounding ground
pixels first. Then, elevation values of the current vegetation patch in the corresponding elevation-map
were replaced with the average elevation from the searched neighbor ground pixels. The testing
results showed that vegetation blocks on the high-resolution label-image were removed and the truth
ground elevations were determined, and the measured elevation differentials reflected the
vegetations’ heights measured on the experimental site.



To fully remove the static vegetation blocks on the experimental site, the CNN-based image
classification model was trained with the datasets collected from the still experimental site, which only
contain the static objects such as the static vegetation block and static structures. The experimental
results confirm that the developed patch-wise construction segmentation and truth ground elevation
determination framework works on the experimental site, while applying it on an active excavation
construction site, and further work is required in model training dataset expansion, such as including
the top-views of all potential static and dynamic objects on construction sites. This is because an active
construction site is much more complex than the still construction site. The dynamic objects, such as
excavators, dozers, trucks, and workers on the construction site have impacts on accurately
determining the ground elevations using the remote surveying methods. For example, a dozer may be
included in an elevation-map or a drone photogrammetric point cloud to compute automatically and
correctly determine the truth ground elevation under the dozer; this equipment should be identified at
first, and then its height should be removed from the surveying result.

The success of this research project contributes to the advancement of drone application and deep
learning methods in construction site surveying. The researchers provided and verified a feasible
approach of using a CNN model to patch-wise segment a high-resolution drone-based orthoimage of
construction sites with a high pixel accuracy and acceptable loU. The developed model can be used for
automatically identifying and locating multiple categories of static objects from the raw surveying
results, which is more than identifying only vegetation or nonvegetation categories by the vegetation
index method or iterations of interpolation method. In addition, this model can be extended to
removing dynamic objects from the high-resolution orthoimaging videos. As a result, the research
project proved that it is possible to use drone technologies to make the image-based construction
surveying and measurement of ground elevations much more accurate and convenient.

Data Availability Statement

The model training and testing datasets (orthoimages and label-images appear in Fig. 3 and Fig. 9) are
available from the corresponding author upon request. The Python code of the CNN-based image
classification model (in Fig. 5 and Table 4) and vegetation-removing algorithm (in Fig. 6) are also
available from the corresponding author upon request.
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Fig. 15. (a) Mapped pixel prediction errors; (b) detailed prediction comparisons; and (c) detailed label

errors.
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Fig. 16. Vegetation identifying results.
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Fig. 17. (a) Vegetation removing in label-image; and (b) vegetation removing in elevation-map.
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Fig. 18. (a) Vegetation height in profile; and (b) vegetation height in contour plot.
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Fig. 20. (a) Results stitching demo; and (b) large-scale demo.
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