
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Civil and Environmental Engineering Faculty
Research and Publications

Civil, Construction, and Environmental
Engineering, Department of

11-2020

Determining Ground Elevations Covered by Vegetation on Determining Ground Elevations Covered by Vegetation on

Construction Sites Using Drone-Based Orthoimage and Construction Sites Using Drone-Based Orthoimage and

Convolutional Neural Network Convolutional Neural Network

Yuhan Jiang

Yong Bai

Sisi Han

Follow this and additional works at: https://epublications.marquette.edu/civengin_fac

 Part of the Civil Engineering Commons

https://epublications.marquette.edu/
https://epublications.marquette.edu/civengin_fac
https://epublications.marquette.edu/civengin_fac
https://epublications.marquette.edu/civengin
https://epublications.marquette.edu/civengin
https://epublications.marquette.edu/civengin_fac?utm_source=epublications.marquette.edu%2Fcivengin_fac%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=epublications.marquette.edu%2Fcivengin_fac%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Department of Civil, Construction, and Environmental Engineering Faculty

Research and Publications/College of Engineering

This paper is NOT THE PUBLISHED VERSION.

Access the published version via the link in the citation below.

Journal of Computing in Civil Engineering, Vol. 34, No. 6 (November 2020). DOI. This article is ©

American Society of Civil Engineers (ASCE) and permission has been granted for this version to appear

in e-Publications@Marquette. American Society of Civil Engineers (ASCE) does not grant permission for

this article to be further copied/distributed or hosted elsewhere without the express permission from

American Society of Civil Engineers (ASCE).

Determining Ground Elevations Covered by

Vegetation on Construction Sites Using

Drone-Based Orthoimage and Convolutional

Neural Network

Yuhan Jiang
Department of Civil, Construction, and Environmental Engineering Marquette University, Milwaukee, WI

Yong Bai
Department of Civil, Construction, and Environmental Engineering Marquette University, Milwaukee, WI

Sisi Han
Department of Civil, Construction, and Environmental Engineering Marquette University, Milwaukee, WI

Abstract
Three-dimensional (3D) surveying of a construction site using an image-based method may produce

incorrect ground elevation results at vegetation-covered regions, because the light rays are reflected

on the surface of vegetation in front of the “truth” ground. This paper presents a convolutional neural

http://doi.org/10.1061/(ASCE)CP.1943-5487.0000930
http://epublications.marquette.edu/

network (CNN) method to identify and locate static vegetation using drone-based high-resolution

orthoimages. The developed CNN-based image classification models are supplemented with an

overlapping disassembling algorithm to generate 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel,

or 64 × 64-pixel small-patches as model inputs. The training datasets are 10 pairs of 1,536 ×

1,536-pixel orthoimage and label-image dataset. Experimental results show that cropping a high-

resolution image into 9,025 overlapped 32 × 32-pixel small-patches (with a site size

of 17.28 × 17.28  cm2) for image classification, and assembling the small-patch label-image

predictions to a patch-wise label-image prediction, has the average pixel accuracy of 92.6% in

identifying objects on the experimental site. In addition, a vegetation-removing algorithm is designed

to divide the label-image prediction into 36,864 nonoverlapping 8 × 8-pixel patches and traverse them

in 192 row-loops and 191 column-loops. The testing results show vegetation in label-images are

modified with the “truth” ground elevation and verified with two datasets obtained on different dates.

In addition, the measured elevation differentials are close to the measured vegetation heights on the

experimental site. This research has advanced the drone-based orthoimaging method in construction

site surveying, which can automatically identify the static obstacles and determine the ground

elevations more accurately. Furthermore, an approach of using a CNN model to segment a

construction site has been proven feasible.

Introduction

Earthmoving is the primary construction activity of any new infrastructure or building project. On a

construction site, site preparation works, such as grubbing and clearing, are required to remove the

surface materials including trees and plants, stumps, and large roots, and other vegetation (Kim and

Russell 2003). After that, the earthwork operations, such as rough grading, excavating, hauling,

backfilling, compacting, and finishing works, are conducted. These operations depend on the site

elevations (Kim and Russell 2003). Surveying is an important operation to get the elevation data from a

construction site at the beginning and during the construction period. Recently, the construction

industry has started to use remote surveying methods such as laser scanning (Du and Teng 2007; Kwon

et al. 2017), drone photogrammetry (Nassar and Jung 2012; Siebert and Teizer 2014), and stereo vision

(Sung and Kim 2016). These methods are highly time efficient and do not interfere with other

construction operations. However, the performance of these noncontact surveying methods is affected

by the plants and other ground covers on construction sites when determing the ground elevations

(Westoby et al. 2012). This is because the light rays are reflected on the surfaces of vegetation instead

of the “truth” ground surfaces. In contrast, the contact surveying methods with Total Station, GPS,

Level, and Theodolite can obtain the expected ground elevations as all selected target points are

measured on the truth ground surface. On the other side, the contact surveying methods have

noticeable weaknesses because they follow a time-consuming outdoor procedure and have a high

probability of interfering with other construction operations. Therefore, to improve the effectiveness

of the remote surveying, automatically detecting and removing the vegetation and other obstacles

from their raw surveying results and determining the truth ground elevations are necessary and

important for construction professionals who heavily depend on elevation data in earthwork

operations and facility layout.

Currently, detecting vegetation points from a photogrammetric point cloud based on vegetation

indices and points’ spatial geometrical relations (Anders et al. 2019; Cunliffe et al. 2016) has limitations

because it only allows a ground point subset and nonground (vegetation) point subset to be classified.

In addition, the vegetation index methods are effective in identifying green vegetation, but ineffective

with other colors such as the withered vegetation and shaded vegetation, which also results in the

issue of treating other green texture objects as the vegetation. Previous research has shown the

feasibility of deep learning methods in object detection using image (Schneider et al. 2018), video

(Kang et al. 2018), point cloud (Engelcke et al. 2017), and image segmentation (Noh et al.

2015; Badrinarayanan et al. 2017). In general, object detection includes the task of object classification

and object localization. The results usually are marked with different colored boxes for identifying

different objects’ categories and their locations in the original image. The image segmentation is more

detailed than object detection and obtains the result of a same-sized pixelwise label-image, which uses

different pixel colors to represent the different objects’ categories.

The computer vision community has developed several hourglass-like deep learning models for

pixelwise image segmentation for road scenes and indoor scenes (Badrinarayanan et al. 2017), and

biomedical imagery (Ronneberger et al. 2015). These model architectures include, but are not limited to,

DeconvNet (Noh et al. 2015), FCN (Shelhamer et al. 2017), PSPNet (Zhao et al. 2017), RedNet (Mao

et al. 2016), SegNet (Badrinarayanan et al. 2017), and U-net (Ronneberger et al. 2015), which are given

an input image and returns a pixelwise label-image (see Table 1). These models have three common

features: (1) the encoder block starts and repeats with convolution layers and max-pooling layers

(except the RedNet) to generate feature-maps from the input image; (2) the decoder block uses up-

sampling layers (has the same number as the max-pooling layers in the encoder block) to enlarge the

feature-maps’ sizes; and (3) the end of the decoder, a convolution layer or a deconvolution layer, is

used to translate the feature-maps to the label-image as model output. When training these hourglass-

like models, due to the insufficient GPU memory, using small-sized images for model training is

required, such as resizing the ImageNet (Deng et al. 2009) down to as small as 256 × 256-pixel (Zhao

et al. 2017). Because the original purpose of these hourglass-like models is for close-range and small-

scale image segmentation, downsizing the model training datasets will not impact the model’s

prediction efficiency in road scenes and indoor scenes segmentation. Moreover, another approach is

cropping the large-size image into small-sized patches for model training, after which, in the model

prediction stage, due to the required GPU memory being much less than the model training stage, a

large-sized input image can be processed by a well-trained hourglass-like model to generate a large-

sized label-image production when the GPU memory is sufficient.

Table 1. Deep learning model architectures for pixelwise image segmentation

Models/references
Model training image

sizes
Type of model layers

DeconvNet (Noh et al. 2015) 224 × 224  pixels Convolution layer/max-pooling layer/fully

connected layer/unpooling layer/deconvolution layer

FCN (Shelhamer et al. 2017) 500 × 500  pixels Convolution layer/max-pooling layer/ up-sampling

layer /deconvolution layer

PSPNet (Zhao et al. 2017) 256 × 256  pixels Convolution layer/max-pooling layer/ pyramid pooling

layer/up-sampling layer/concatenation layer

Models/references
Model training image

sizes
Type of model layers

RedNet (Mao et al. 2016) 243 × 243  pixels convolution layer/deconvolution layer

SegNet (Badrinarayanan

et al. 2017)

360 × 480  pixels Convolution layer/max-poling layer/up-sampling layer

U-net (Ronneberger et al.

2015)

512 × 512  pixels convolution layer/max-poling layer/up-sampling layer

Additionally, the remote sensing and geoscience communities have developed some intelligent

approaches to use the machine learning method for geospatial object detection in large scale images

(Han et al. 2015), and utilize deep learning models, such as the deep convolutional neural network

(DCNN) and fully convolutional network (FCN) to assist the large-scale land cover mapping in object

classification to replace the traditional state-of-the-art classifier Random Forest and Support Vector

Machine (Kussul et al. 2017; Liu et al. 2018). Their research objectives include, but are not limited to,

landscape classification (Buscombe and Ritchie 2018), vegetation classification (Liu et al. 2018; Liu and

Abd-Elrahman 2018), and crop classification (Kussul et al. 2017). In Table 2, the listed research has two

common features: (1) the large-scale top-views were processed using either satellite imagery or aerial

imagery, or the bundle adjustment generated orthoimage; and (2) the deep learning model was used

for image patch classification, while the spatial information was given by other approaches, such as the

conditional random field (Buscombe and Ritchie 2018), object-based image analysis (Liu and Abd-

Elrahman 2018) and sliding window scheme (Kussul et al. 2017).

Table 2. Deep learning-based classifier in land cover mapping

Objectives/references Deep learning

models

Object classification/image patch classification Object

categories

Object

localization/image

segmentation

Landscape classification

(Buscombe and Ritchie 2018)

MobileNetV2

DCNN (Sandler

et al. 2018)

Classified the selected sparse patches (224 ×

224  pixels) to class-labels

7 in total Utilized conditional

random field to

predict pixelwise-label

image with the

known class-labels

from the selected

sparse patches

Vegetation classification (Liu

et al. 2018; Liu and Abd-

Elrahman 2018)

DCNN Classified each object (corresponding to a 224 ×

224-pixel patch) to a class-label

7 in total As conducted in the

object-based image

analysis, the

orthoimage was

segmented

to several objects by

Trimble’s

eCognition software

Vegetation classification (Liu

et al. 2018)

FCN Translated each object corresponding patch

(224 × 224  pixels) to a pixelwise label-image, then

assigned the majority pixel label as the object class-

label

Crop classification (Kussul et al.

2017)

DCNN Classified each window (7 × 7  pixels) to a class-

label

11 in total Slid the window with 1-

pixel step, and

assigned the returned

class-label to the

central pixel of each

sliding window

In the proposed research project, the scene scale of the drone-based top-views and object categories

in construction site segmentation tasks are different to the road scene segmentation and the land

cover mapping. The existing gaps between the proposed research project and the previous project

(using developed methods) include the following: (1) objects on a construction site are recorded as

their top-views in the drone-based orthoimages (Fig. 1), which have much less texture feature than the

side views in the road scenes; (2) for small object classification, such as cat and dog classification, the

overall shape and edges are good features (Geirhos et al. 2019; Theodorus et al. 2020), while for a large

area object, the texture is a usable feature when the whole object is not enclosed in the image; (3) one

frame drone-based orthoimages cover less area and fewer inclosing objects than the satellite imagery

and aerial imagery, and the boundaries of adjacent objects such as vegetation and shade are mixed

with each other alternative to straight lines; (4) resizing the high-resolution orthoimage to fit the

computing capacity of the hourglass-like deep learning models in Table 1 is not a good idea, while

disassembling orthoimages into several small-sized patches is necessary to avoid reducing orthoimage

size and keep the spatial information, which is referred to as the sliding window scheme (Han et al.

2015; Kussul et al. 2017) or patch-based scheme (Maggiori et al. 2016) in remote sensing and geoscience

communities; (5) using small image patches with hourglass-like models to generate a pixelwise label-

image, and then assigning the majority pixel label as the object class-label (Liu et al. 2018) is not

necessary, because the probability of multiple objects appearing in a single image patch is going down

as the patch size goes down; (6) small objects in drone-based orthoimages occupy more pixels than the

small objects in the land cover mapping, and thus using the extremely thin patch (7 × 7  pixel) and 1-

pixel step in Kussul et al. (2017) to traverse the drone-based orthoimages is not necessary, which still

can cause issues for small objects, like roads and forest stripes, being smoothed and misclassified

(Kussul et al. 2017); and (7) classifying a small-sized image patch into only seven types of objects with

the 50-layer convolutional layers and one fully connected layer model setup in Liu et al. (2018) and Liu

and Abd-Elrahman (2018) is too redundant, because the pixel-to-pixel labeling is not necessary in the

patch-based image classification, and therefore adding fully connected layers to increase the model

classifying capacity is more efficient than adding convolution layers to generate feature-maps.

Therefore, a patch-wise construction site segmentation and vegetation-removing framework is

developed in the proposed research project. At first, the patch-based Convolutional Neural Network

(CNN) approach is used to generate the patch-wise label-image for identifying vegetation on a

construction site. In detail, the high-resolution orthoimage is proposed to crop into multiple

overlapped small patches (50% in row and 50% in column); a CNN model serves as the classifier to

identify each small-patch image as a vegetation patch or other categories and mark them with the

corresponding pixel label, after which the labeled small-patches are assembled into a high-resolution

result in the recorded sequence to restore the geospatial information (see Fig. 1). Because the CNN

model is proposed to be trained with small-patch and class-label datasets, where small-patches are

cropped from the drone-based orthoimages and manually crafted pixelwise label-images (Fig. 2), class-

labels are determined by the majority pixel label in each cropped label-image small-patch. Thus, only

the main object will be extracted from each small-patch by the CNN model, and the assembled result is

a patch-wise label-image, which has the same size as the drone-based orthoimage. Furthermore, in this

research project, the construction site elevations are saved in elevation-map format, which is an 8-bit

grayscale image (Fig. 3) and each pixel value represents the elevation data for the corresponding pixel

in the orthoimage (Jiang and Bai 2020a). Thus, the elevation-map has the same pixel coordinate as the

patch-wise label-image, and the vegetation removing and ground elevation determination operations

could be easily conducted within them. In detail, the vegetation patches are searched from the patch-

wise label-image using the pixel class-label; the ground elevation for each vegetation patch is

estimated from its neighbor ground pixels’ elevations based on the assumption of ground surface

being smooth changes around and in the vegetation blocks. Moreover, experiments are conducted to

evaluate the effectiveness of the proposed patch-wise construction site segmentation method with

high-resolution orthoimage and label-image datasets and also to determine the best patch size. In

addition, experiments are conducted to determine the vegetation’s heights and the truth ground

elevations covered by vegetation from patch-wise label-images and elevation-maps. The rest of this

paper presents the research results of dataset acquisition, model training dataset creation, model

architecture, and algorithm designs, and also discusses the experimental results of model training and

testing, and vegetation identifying and removing on an experimental site.

Method Development
In this section, the scheme of construction site high-resolution orthoimage, label-image, and elevation-

map datasets acquisition and the scheme of small-patch dataset creation are presented at first. Then,

the CNN-based image classification model architecture and the overlapping small-patch disassembling

and assembling algorithm are discussed. Finally, the design of a vegetation-removing algorithm is

presented, which uses the pixel class-label information in the label-image to remove vegetation blocks

in the elevation-map.

Dataset Acquisition

Orthoimage and Elevation-Map Acquisition

A drone-based orthoimage of a construction site can be captured by yielding the camera gimble to

negative 90 degrees and stably keeping the camera lens facing the ground. The authors’ recent work

(Jiang and Bai 2020a) discussed a two-frame-image-based construction site elevations determination

method, which utilizes a small-sized drone system to capture a low-high orthoimage pair for

assembling a vertical-baseline stereo vision model; then the distances from the low-camera to the

ground surface can be determined from the stereo vision model and can easily be translated to

elevation data with a known control point. In addition, the elevation values are stored in an 8-bit

grayscale image, referred to as an elevation-map, which has equal image size and site size as the

generated orthoimage.

In this research project, the drone system, DJI Phantom 4 Pro V2, is designed to fly at 𝐻𝐻 = 10 meters

over the takeoff location to capture the construction site top-views, which have an image size

of 4,864 × 3,648  pixels, a ground sample distance (GSD) of 0.27  cm/pixel, and a site size

of 13.13 × 9.85  m2 (Fig. 1). These images (including their corresponding 20 meters images) are

proposed to resize down to half-size (2,432 × 1,824  pixels) and cut to a square shape

(1,824 × 1,824  pixels) as the inputs for generating the elevation-map by the elevations determination

method in Jiang and Bai (2020a). At that point, the generated high-resolution orthoimages and

elevation-maps have image size of 1,568 × 1,568  pixels, a GSD of 0.54  cm/pixel, and a site size

of 8.47 × 8.47  m2, because the 128-pixel blank margins (no elevation data) are removed from

the 1,824 × 1,824-pixel square shape. With the 8-bit grayscale elevation-map format, the grayscale

pixel value can be easily converted from range [0, 255] to its corresponding elevation value range

[−5−5, 5] meters by 𝑔𝑔𝑔𝑔𝑔𝑔𝑦𝑦𝑣𝑣,𝑢𝑢 = 255 × (𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝𝑣𝑣,𝑢𝑢 + 5)/10; and each 32 × 32-pixel patch in the

elevation-map shares the same elevation value, i.e., all pixels in the

patch 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[16: 48,16: 48] have the same grayscale value/elevation value as the central

pixel 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[32,32].

Label-Image Creation

Fig. 2 shows the graphical user interface of the Label-App, which is designed for labeling an orthoimage

with 8-bit values [0, 255] and programmed using Python 3.6.8 and matplotlib 3.1.1 library. The label-

image is shown in terrain colormap for better visualization. During the label-image creation, the

researchers fully mark the label-image with value 255 by default at first, and then use the cursor to

point out vertices on the orthoimage for identifying each object and the keyboard to create a new

class-label/value or select a predefined class-label/value such as “shade /240.” Like the orthoimage,

the generated label-image also has an image size of 1,568 × 1,568  pixels, a GSD of 0.54  cm/pixel,

and a site size of 8.47 × 8.47  m2. The crafted high-resolution label-images are saved in two file-

formats including a grayscale image file for visualization and a 1,568-row and 1,568-column spread

sheet file for training the deep learning model. Saving as a spread sheet file is necessary because the

interpolation value appears on the boundaries of different objects in the image file.

Small-Patch Dataset Creation

Based on the discussion in the introduction section, the collected high-resolution datasets

(the 1,568 × 1,568  pixel dataset is much larger than the 256 × 256-pixel set) cannot be directly used

for training a deep learning model. In the research project, the researchers proposed to disassemble

the high-resolution orthoimage and label-image dataset into four small-patch orthoimage and label-

image datasets, which have the image sizes of 8 × 8  pixels, 16 × 16  pixels, 32 × 32  pixels,

and 64 × 64  pixels, and site sizes of 4.32 × 4.32  cm2, 8.64 × 8.64  cm2, 17.28 × 17.28  cm2,

and 34.56 × 34.56  cm2, respectively. Fig. 3 shows a high-resolution orthoimage, a label-image, and an

elevation-map dataset. These images have a resolution of 1,536 × 1,536  pixels, which is generated by

removing 16 pixels on each margin of the 1,568 × 1,568-pixel images, after which they can be

cropped into integer numbers of 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel, or 64 × 64-pixel small-

patch side by side. Fig. 4 shows the example of these four different small-patches of orthoimages and

label-images. The smallest patch (8 × 8  pixels) is close to the thin patch (7 × 7  pixels) used in Kussul

et al. (2017), while the thin stripe objects on the satellite imagery do not appear in the high-resolution

datasets of this research project.

Additionally, when cropping these small-patches, the strides are set as 4, 8, 16, and 32 pixels,

respectively (half of the patch size), to achieve the 50% overlap in row and 50% overlap in column. The

number of small-patches can be calculated by Eq. (1) for a single high-resolution orthoimage and label-

image dataset. Moreover, in order to make the proposed CNN model more robust in different image

orientations, the high-resolution orthoimages and label-images are planned to rotate 90, 180, and

270 degrees to augment datasets by four times. Table 3 listed the number of small-patch datasets from

a 1,536 × 1,536-pixel orthoimage and label-image pair

(1)

𝑁𝑁𝑁𝑁𝑚𝑚. 𝑜𝑜𝑜𝑜 𝑆𝑆𝑚𝑚𝑔𝑔𝐸𝐸𝐸𝐸_𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃ℎ𝐸𝐸𝑒𝑒 = �2 ×
𝐼𝐼𝑚𝑚𝑔𝑔𝑔𝑔𝐸𝐸 𝐻𝐻𝐸𝐸𝐻𝐻𝑔𝑔ℎ𝑃𝑃𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃ℎ 𝑆𝑆𝐻𝐻𝑆𝑆𝐸𝐸 − 1� × �2 ×

𝐼𝐼𝑚𝑚𝑔𝑔𝑔𝑔𝐸𝐸 𝑊𝑊𝐻𝐻𝑊𝑊𝑃𝑃ℎ𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃ℎ 𝑆𝑆𝐻𝐻𝑆𝑆𝐸𝐸 − 1�

Table 3. Dataset parameters

Patch sizes Strides Rows Columns Num. Num. after 4-rotation

8 × 8 4 383 383 146,689 586,756

16 × 16 8 191 191 36,481 145,924

32 × 32 16 95 95 9,025 36,100

64 × 64 32 47 47 2,209 8,836

Patch-Wise Construction Site Segmentation

Patch-Based Scheme

Generally, a CNN model starts with a convolution layer and ends with a fully connected layer (Fig. 5).

Then for a given image input, the model output is a binary class vector (Output_0), which contains the

probability values of the predefined class-labels only. This is different to FCN models, which can

generate out the pixelwise segmentation result. Therefore, three post-processes need to be conducted

to get a high-resolution segmented label-image result using CNN model predictions. First, the Argmax

function is used to return the index of the maximum probability value of the binary class vector; this

index is the class-label/value prediction (Output_1) for the input orthoimage patch. For example, the

veg is the class-label prediction for the input orthoimage patch in Fig. 5, because it has the maximum

value of 95% among the 256 class-labels. Second, the class-label/value prediction is assigned to each

pixel of the small-patch as the label-image patch prediction (Output_2) for the corresponding input

orthoimage patch. Third, the small-patch label-image is used to assemble the high-resolution patch-

wise label-image prediction result (Output_3).

In this research project, the patch-based scheme is implemented with the high-resolution orthoimage

overlapping disassembling and high-resolution label-image assembling algorithm in Fig. 5, which makes

the CNN model work with the high-resolution image to generate the patch-wise segmentation results.

On the one hand, before the CNN model, this algorithm disassembles the orthoimage into several

overlapped small-patches and records their locations in their sequence ID. The number of small-

patches is determined by Eq. (1). On the other hand, after the CNN model and the first-two

postprocess, when using Output_2 to assemble the high-resolution label-image prediction (Output_3),

these small-patches are considered as corner patches, edge patches, or regular patches, and only the

selected region (marked as filled rectangles) of each patch will be used in the high-resolution label-

image prediction (Fig. 5). For example, 9,025 small-patches with a size of 32 × 32  pixels (95-row and

95-column) will be produced from a 1,536 × 1,536-pixel orthoimage; the CNN model outputs the

same number of 32 × 32-pixel label-image patch predictions; then, the specific regions of these label-

image patches are used to assemble a high-resolution 1,536 × 1,536-pixel label-image prediction,

where for each regular 32 × 32-pixel label-image patch, the used region is only a quarter of the

regular patch (16 × 16  pixels). Thus, in this example, each 16 × 16-pixel orthoimage patch is linked

with a 16 × 16-pixel label-image patch prediction through a class-label prediction.

Therefore, the expected result is a 4 × 4-pixel, 8 × 8-pixel, 16 × 16-pixel, or 32 × 32-pixel patch-

wise image segmentation result, after running the overlapping disassembling and assembling algorithm

paralleled with the CNN-based image classification model with 8 × 8-pixel, 16 × 16-pixel, 32 ×

32-pixel, or 64 × 64-pixel patches, respectively. This is similar to resizing a 1,536 × 1,536-pixel image

down to a 384 × 384-pixel, 192 × 192-pixel, 96 × 96-pixel, or 48 × 48-pixel image for pixelwise

image segmentation, where each pixel is a useful

4 × 4-pixel, 8 × 8-pixel, 16 × 16-pixel, or 32 × 32-pixel region in each regular patch, respectively.

Small-Patch Dataset Shape

Considering that texture is the only usable feature for classifying different objects on a construction

site when the whole object is not inclosing in the small-patch, the proposed CNN model uses the RGB

color orthoimage patches as model input data. Based on Table 3, a 1,536 × 1,536-pixel orthoimage

can produce the model training datasets

with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (586756,8,8,3), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (145924,16,16,3), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (36100,32,32,3),

or 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (8836,64,64,3), where the first number is the quantity of the small-patches, the second and

third numbers are the size of the small-patches, and the fourth number indicates these small-patches

have RGB 3-channel.

A label-image generated from the Label-App only has one channel. Disassembling a 1,536 ×

1,536-pixel label-image can produce small-patch datasets

with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (586756,8,8,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (145924,16,16,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (36100,32,32,1),

or 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (8836,64,64,1). Then, the majority (maximum frequency) pixel class-label/value in each

small-patch is determined and set as the class-label/value for each label-image patch. For example, in

Fig. 4 the “darker” region is larger than the “lighter” region of the 64 × 64-pixel label-image patch,

and thus the class-label “sand”/value 80 is assigned for that small-patch. In doing so, the small-patch

datasets are translated into class vector (integers), such

as [𝟏𝟏𝟏𝟏𝟏𝟏,𝟗𝟗𝟗𝟗, … ,𝟏𝟏𝟏𝟏𝟏𝟏] with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (586756,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (145924,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (36100,256,1),

or 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (8836,256,1). Additionally, the class vector needs to be converted to binary class matrix

with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (586756,256,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (145924,256,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (36100,256,1),

or 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (8836,256,1) as the model training datasets (Chollet 2015). For example, an integer of 130

is translated to a binary class vector [𝟏𝟏.𝟏𝟏𝟏𝟏,𝟏𝟏.𝟏𝟏𝟐𝟐, … ,𝟏𝟏.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, … ,𝟏𝟏.𝟏𝟏𝟐𝟐𝟗𝟗𝟗𝟗] with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (256,1); and, then

a class vector is translated to a binary class matrix with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (𝑁𝑁𝑁𝑁𝑚𝑚. 𝑜𝑜𝑜𝑜 𝑆𝑆𝑚𝑚𝑔𝑔𝐸𝐸𝐸𝐸_𝑃𝑃𝑔𝑔𝑃𝑃𝑃𝑃ℎ𝐸𝐸𝑒𝑒, 256,1).

CNN-Based Image Classification Model

The CNN-based image classification model architecture is presented in Fig. 5, which includes a feature

learning block and a classification block. The detailed model layers for the four different patch sizes are

shown in Table 4, where the type of layers is described in the Keras 2.3 style (Chollet 2015). In the

feature learning block, three convolution layers learn the orthoimage patches (model input) as feature-

maps (layer outputs). Three max pooling layers reduce the feature-maps’ (layer inputs) size to its half-

size as their layer outputs without losing important features. For example, the 8 × 8-pixel, 16 ×

16-pixel, 32 × 32-pixel, and 64 × 64-pixel patches are resized down to 1 × 1-pixel, 2 × 2-pixel, 4 ×

4-pixel, and 8 × 8-pixel patches, respectively, after the 3rd max pooling layer. The flatten layer

transforms the feature-map (layer input) into a feature-vector (layer output), which can be used in the

classification block. Three fully connected layers (also known as dense layers) translate feature-vectors

(layer inputs) to a binary class vector [𝟏𝟏.𝟏𝟏𝟏𝟏,𝟏𝟏.𝟏𝟏𝟐𝟐, … ,𝒔𝒔𝒊𝒊, … ,𝟏𝟏.𝟏𝟏𝟐𝟐𝟗𝟗𝟗𝟗] as the CNN model output for each

orthoimage patch input.

Table 4. Model layer parameters

Model architecture for 8 ×

8, 16 × 16, 32 × 32,

and 64 × 64-pixel patches

Output

shapes for

each patch

 Row×column

Blocks Layer (type and filter size) Stride Padding Activation 8 × 8 16 × 16 32 × 32 64 × 64 Channels

Input input_1 (Input Layer) — — — 8 × 8 16 × 16 32 × 32 64 × 64 3

Feature learning block conv2d_1 (64,Conv2D 3 × 3) 1 same ReLU 8 × 8 16 × 16 32 × 32 64 × 64 64

 max_pooling2d_1 (Max Pooling 2 × 2) 2 — — 4 × 4 8 × 8 16 × 16 32 × 32 64

 conv2d_2 (128,Conv2D 3 × 3) 1 same ReLU 4 × 4 8 × 8 16 × 16 32 × 32 128

 max_pooling2d_2 (Max Pooling 2 × 2) 2 — — 2 × 2 4 × 4 8 × 8 16 × 16 128

 conv2d_3 (256,Conv2D 3 × 3) 1 same ReLU 2 × 2 4 × 4 8 × 8 16 × 16 256

 max_pooling2d_3 (Max Pooling 2 × 2) 2 — — 1 × 1 2 × 2 4 × 4 8 × 8 256

 dropout_1 (Dropout 0.5) — — — 1 × 1 2 × 2 4 × 4 8 × 8 256

Classification block flatten_1 (Flatten) — — — 256 1,024 4,096 16,384 —

 dense_1 (Dense) — — ReLU 256 1,024 2,048 4,096 —

 dropout_2 (Dropout 0.5) — — — 256 1,024 2,048 4,096 —
dense_2 (Dense) — — ReLU 256 512 1,024 1,024 —

dropout_3 (Dropout 0.5) — — — 256 512 1,024 1,024 —

Output dense_3(Dense) — — SoftMax 256 —

Furthermore, after each convolutional layer and dense layer, there is an activation function (layer),

which performs the nonlinear transformation of the input features from the previous convolutional

layers or dense layers (Dettmers 2015). Because the model input datasets will be normalized from

value range [0,255] to [0.0,1.0] by dividing them by 255, the activation function should progressively

change from 0.0 to 1.0 with no discontinuity. Therefore, the rectified linear unit activation function

(ReLU), 𝑜𝑜(𝑥𝑥) = max(0, 𝑥𝑥), is used in hidden layers. Because the ReLU function does not always output

a nonzero value, which results in less neurons being utilized and less dependence between features

(Nair and Hinton 2010), it is faster than the Sigmoid activation functions. In addition, the SoftMax

activation function is used in the 3rd dense layer to calculate the probabilities of the 256 class-labels in

the binary class vector [𝟏𝟏.𝟏𝟏𝟏𝟏,𝟏𝟏.𝟏𝟏𝟐𝟐, … ,𝒔𝒔𝒊𝒊, … ,𝟏𝟏.𝟏𝟏𝟐𝟐𝟗𝟗𝟗𝟗]. Finally, the dropout layers are used to prevent

model overfitting, which randomly sets half of the input units to 0 during the model training (Chollet

2015).

Additionally, for compiling the proposed CNN-based model, the researchers use “adam” as the

optimizer, “categorical_crossentropy” as the loss function, and use “accuracy” as the metric. The

“validation_split” is set to 0.05, which means that 95% of small-patch datasets are used for training the

model and 5% of small-patch datasets are used for model validation. The “early stopping”

configuration is set as “EarlyStopping(monitor=‘val_accuracy’, patience=5),” which means the model

training will be stopped because the monitored quantity of validation accuracy had stopped improving

for the past five epochs (Chollet 2015).

Patch-Wise Vegetation Removing

There are two approaches for removing the vegetations’ heights from the raw surveying result

(elevation-map) and determining the truth ground elevations using the identified vegetation blocks in

the patch-wise label-image. The first approach is measuring an average height of vegetation blocks on

the construction site, and then directly subtracting this value in the elevation-map for the vegetation

blocks. This may cause irregularity elevation changes on vegetation blocks’ boundaries, where the

vegetation has a lower height than the central region. However, this approach has the advantage in

dense vegetation areas, such as the bottom of Fig. 8, where have no ground surface shows in the top-

view. The second approach is estimating an average elevation of neighbor ground surfaces in the

elevation-map, and then uses this value for updating the vegetation blocks’ elevations. This approach is

similar to the iterations of interpolation method in removing vegetation points from a point cloud,

which classifies points above the interpolated surface as vegetation, and interpolates again with a new

selection of potential ground points (Anders et al. 2019). The second approach works for sparse

vegetation areas or isolated plants, such as the marked vegetation blocks in Fig. 8, where the ground

surfaces or neighboring grounds appear in the orthoimages and elevation-maps, and searching

neighbor ground blocks with the label-image and interpolating these surroundings’ elevation values as the

estimated truth ground elevation under the vegetation is possible.

In this research project, the patch-wise vegetation removal focuses on the isolated and sparse

vegetation blocks on the construction sites (Fig. 8). The proposed vegetation-removing algorithm in

Fig. 6 is based on Approach 2, which is more convenient for automatically estimating the ground

elevation without any manual participation, and the result is more smooth at the boundaries than

Approach 1. In detail, the proposed VEG_REMOVING_IN_ROW_THEN_COL_TRAVERSE algorithm

traverse the patch-wise label-image in the row-column-row-loop shown in Fig. 7, which ends with a

row-loop. In each row-loop, the SEARCH_VEG_REPLACE_GROUND algorithm uses an adjustable

window, which can be extended in the row direction only to search the minimum required number of

ground pixels using the pixel class-label in the label-image. Similarly, in each column-loop, the

adjustable window is changed in column direction only, to search the minimum required number of

ground pixels as well. When sufficient ground pixels appear in the search window,

the SEARCH_VEG_REPLACE_GROUND algorithm replaces the current vegetation patch’s elevation

value 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[𝑔𝑔𝑜𝑜𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑔𝑔𝑜𝑜𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑃𝑃𝑔𝑔𝐻𝐻𝑊𝑊𝐸𝐸, 𝑃𝑃𝑜𝑜𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 𝑃𝑃𝑜𝑜𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑃𝑃𝑔𝑔𝐻𝐻𝑊𝑊𝐸𝐸] in the elevation-map with

the average elevation value ground_ele from the searched neighboring ground pixels. An alternative

option is only replacing any pixel 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[𝑣𝑣,𝑁𝑁] in the elevation-map when its elevation value is

higher than ground_ele. This will assist in keeping the sparse truth ground elevation in the elevation-

map, which classifies the lower pixels as the ground pixels, alternative to the vegetation pixels labeled

in the patch-wise label image. In addition, the removed vegetation patches will be marked with a new

ground class-label in the label-image, and drawn with a specific color in the orthoimage as well (see

Fig. 7).

Experiments

In this section, the patch-wise construction site segmentation method is compared in

the 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel, or 64 × 64-pixel patch-based CNN-based image

classification models (Fig. 5 and Table 4) at first. Then, the vegetation-removing and truth ground

elevation determination experiment is evaluated with the best patch-wise segmentation result of the

experimental site (i.e., a lake beach site, as in Fig. 8). In this research project, the configuration of the

software environment is Python 3.6.8, OpenCV 3.4.2, Keras 2.3.1, TensorFlow-GPU 1.14, CUDA 10.0,

and cuDNN 7.6.4.38 on a workstation system with 2×Xeon Gold 5122@3.6GHz CPUs, 96GB (8GB×12)

DDR4 2666 MHz memory, and 4×11GB memory GeForce RTX 2080 Ti GPUs.

Construction Site Segmentation

Training Dataset

Followed by the high-resolution dataset acquisition method, 10 1,536 × 1,536-pixel orthoimages

were collected during 2019 (Fig. 9), and the corresponding label-images were labeled with the 10

categories of objects and surfaces in Table 5. For the vegetation blocks, in data A and B, the vegetation

had not recovered yet; in data C and D, the vegetation was growing; and in data G, O, AD, AL, AM, and

CG, the vegetation was fully grown, and their heights were around 2–3 ft (0.6096–0.9144  m0.6096–

0.9144  m, Fig. 8).

Table 5. Class-label definitions

Class-label 8-bit grayscale value Definitions

n 255 Default value/other undefined objects

Shade 240 Shades on ground

Umbrella 220 Red umbrella surface

Can 180 Garbage cans

Shrub 150 Shrub surface

Veg 130 Vegetation surface

Withered 110 Withered vegetation surface

Class-label 8-bit grayscale value Definitions

Sand 80 Ground surface, includes sand and soil

wood 30 Wooden surface, includes platform and path

takeoff 0 Drone takeoff and landing pad

Four small-patch orthoimage datasets were generated from 10 orthoimages, which have the

following: 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (5867560,8,8,3), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (1459240,16,16,3), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (361000,32,32,3),

and 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (88360,64,64,3), respectively. Furthermore, four binary class matrixes

with 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (5867560,256,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (1459240,256,1), 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (361000,256,1),

and 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (88360,256,1) were produced for the 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel,

and 64 × 64-pixel small-patch label-image dataset, respectively. Therefore, the four small-patch

orthoimage datasets and the four binary class matrixes were assembled as the four model training

datasets for the four CNN models in Table 4, respectively.

Training and Validation

The CNN model training parameters including dataset numbers, batch sizes, and epochs are listed in

Table 6. The results of training loss, training accuracy, validation loss, and validation accuracy with

early stopping for the four different patch sizes are shown in Fig. 10, which were stopped at different

epochs (see Table 6). The 64 × 64-pixel and 8 × 8-pixel patch trials stopped at the 13th epoch and

were the earliest trials, and the 32 × 32-pixel patch stopped at the 14th epoch. The 16 ×

16-pixel patch took the most epochs for the validation accuracy to reach stable.

Table 6. Model training parameters and results

Patch size

trials
 Training epoch trials

Patch sizes
Datasets

(validation split=0.05split=0.05)

Batch

sizes

Early stopping (monitor=‘val_accuracy’,

patience=5), epochs=50

 Total No. Training Validation w/ early stopping
w/o early

stopping

8 5,867,560 5,574,182 293,378 256 13 50

16 1,459,240 1,386,278 72,962 256 24 50

32 361,000 342,950 18,050 256 14 50

64 88,360 83,942 4,418 256 13 50

Several small-patch validation samples are shown in Fig. 11, where the model training datasets of

label-image patches (class-labels, or binary class vectors in the CNN model) are compared with the

model predictions. These samples show the larger patches, i.e., the 32 × 32-pixel and 64 × 64-pixel,

were more accurate than the smaller patches, i.e., the 8 × 8-pixel and 16 × 16-pixel. Although the

large patches formed complex label-image patches with multiple objects (class-labels) in a single label-

image patch, the CNN model–generated class-labels were the same as the corresponding class-labels in

the training dataset. The overall validation accuracy of the randomly selected 5% small-patch datasets

also confirmed that the 32 × 32-pixel and 64 × 64-pixel patches were more accurate than

the 8 × 8-pixel and 16 × 16-pixel patches (Fig. 10). However, it is hard to conclude that either

the 32 × 32-pixel or 64 × 64-pixel batch has the best performance in the small-patch classification

task based on these early stopping trials.

In addition, the additional model trainings were conducted without early stopping to 50 epochs. In

Fig. 12, the 64 × 64-pixel patch model has the largest model training accuracy of 0.9908 at the 50th

epoch, but it is an overfit model because its validation accuracy of 0.9219 at the 50th epoch did not

improve as the training accuracy did. The designed three dropout layers showed the limited function in

avoiding the model overfitting issue in the 8 × 8-pixel, 16 × 16-pixel, and 32 × 32-pixel patch

models. In Fig. 12, the extra training shows a slight negative impact on the 8 × 8-pixel patch model’s

training accuracy and training loss, whereas it shows a slight improvement in the 32 × 32-pixel patch

model training accuracy and training loss. However, the extra training has neither significantly good

nor bad impact on the model validation accuracy and validation loss. For example, the 32 ×

32-pixel model has the best validation accuracy of 0.9304 at the 50th epoch, which is not much

different from the 0.9288 at the early stopping trial. The cause of overfitting can be visualized in the

assembled patch-wise validation results as well. In Fig. 13, compared to the early stopping, the 50-

epoch has the noise predictions on the wooden platform of data AM and G, but it has better model

predictions for the “withered” class-label in data A and CG, so the overall model validation accuracy

was maintained around 93% for the 32 × 32-pixel patch. Therefore, considering the 32 ×

32-pixel patch had the smallest model validation loss and the best model validation accuracy in the

small-patch image classification, the researchers conclude that the 32 × 32-pixel patch (with a site size

of 17.28 × 17.28  cm2) has the best performance in construction site patch-wise segmentation,

followed by the 64 × 64-pixel patch and 16 × 16-pixel patch. The smallest 8 × 8-pixel patch,

however, has the worst performance.

Testing and Evaluation

The trained early stopping and 50-epoch models were tested with the data AO in Fig. 3. The

orthoimage and label-image were rotated and repeatedly disassembled into four small-patch

orthoimage and binary class vector datasets, which have the numbers listed in the last column of

Table 3. For example, the created testing dataset for the 32 × 32-pixel patch was 36,100 pairs of a

small-patch orthoimage and binary class vector dataset. The best image classification testing accuracy

of 0.9435 is the 32 × 32-pixel patch with 50-epoch (overfitting), the second-best testing accuracy of

0.9433 is the 64 × 64-pixel patch with 50-epoch (overfitting), and the third-best testing accuracy of

0.9423 is the 32 × 32-pixel patch with early stopping. Thus, about 94% of the small-patch orthoimages

were assigned the correct class-labels by the CNN model. For the assembled patch-wise label-image in

Fig. 14, the 32 × 32-pixel patch with early stopping shows the best segmentation result, followed by

the 32 × 32-pixel patch with 50-epoch (overfitting). As for the results of model overfitting, the worse

“wood” and “can” prediction performance and better “withered” prediction performance appeared

after the early stopping point, which are the same as the CNN model validation results. Thus, the

researchers conducted additional testing with the CNN-based image classification model of

the 32 × 32-pixel patch with early stopping only, where orthoimage data AO, K, and Z were tested

without rotations, and each of the patch-wise segmentation results were assembled from 9,025

overlapped small-patch label image predictions.

Fig. 15(a) mapped the unmatched pixels between the manually crafted pixelwise label-image (left) and

the patch-wise segmentation results (right), where the testing data AO, K, and Z had a pixel accuracy of

93.57% (2,207,641 of 2,359,296 pixel), 93.61%, and 90.64%, respectively. There are noticeable

unmatched pixels on the boundaries of different objects, which are reasonable results because the

comparisons are between a pixel and a 16 × 16-pixel patch (a quarter of 32 × 32-pxiel). Excluding the

boundaries, the majority of unmatched pixels were between withered and veg, withered and sand, and

shade and veg, where the CNN-based image classification results were more accurate than human eyes

[Fig. 15(b)]. In this research project, the withered class-label was defined as a ground surface category

between the sand and sparse veg; the shrub class-label was defined as dense plants other than the

sparse veg; and the shade class-label was defined as the shade on the ground surface. Although the

researchers tried hard to distinguish the different objects from the orthoimages, errors had mixed in

with the manually crafted label-images somewhere. The small veg on the wooden path of data K was

mislabeled but successfully identified by the CNN model [Fig. 15(b)]. However, the mislabeled

boundaries of shrub and veg in the model training dataset resulted in the “well” trained CNN model

identifying the veg patches with highlighted leaves and dark background as the wrong shrub patches

[Fig. 15(c)]. This explains why the Intersection over Union (IoU) for shrub, shade, and withered were

worse than the other class-labels in Table 7. Moreover, in the early stage of this research project, the

researchers obtained a 0.9646 validation accuracy and 0.9673 testing accuracy in image patch

classification without adding the withered class-label. Thus, the performance of patch-wise

segmentation can be improved by considering the withered and sand as one ground surface category,

and considering the mixed veg, shrub, and shade as one vegetation category. Furthermore, the pixel

accuracy of 93.57% of data AO is not significantly different to its small-patch classification testing

accuracy of 94.23%. Thus, the developed overlapping small-patch disassembling and assembling

algorithm was efficient in the patch-wise segmentation task with an average pixel accuracy of 92.6%,

which has the good performance for the large area objects, such as the IoU 0.9827 for wood and

0.8666 for veg in the three testing datasets. The detailed IoU for each class-label of the model training

and testing datasets are summarized in Table 7.

Table 7. Model training and testing IoU

Class-label Value Model validation IoU

(intersection over union)

 Model

Testing IoU

A B C D G O AD AL AM CG Average AO K Z Average

na 255 — 0.0000a 0.0000a — — — 0.0000a — 0.0000a — — — — — —

Shade 240 — — 0.7711 0.8853 0.7782 0.7588 0.5133 0.4902 0.6808 — 0.6968 0.4950 0.1557 0.1621 0.2709

Umbrellab 220 — — — — — — 0.0000 — — 0.9682 0.4841 — — — —

Canc 180 0.0000 0.9097 — 0.8739 — — 0.8406 0.8807 0.8594 — 0.7274 0.8483 — — 0.8483

Shrubd 150 — — 0.8904 0.0000 0.0000 0.9384 0.0000 — — 0.9401 0.4615 0.0000 0.0000 0.0000 0.0000

Veg 130 0.8783 0.8426 0.9635 0.8869 0.9050 0.9501 0.9333 0.8672 0.8787 0.8663 0.8972 0.8360 0.9137 0.8502 0.8666

Witherede 110 0.5003 0.6243 0.3860 0.5040 0.4793 0.4164 0.0000 0.1989 0.1925 0.4697 0.3772 0.1840 0.0928 0.2789 0.1852

Sandf,g 80 0.7476 0.8107 0.8681 0.8980 0.8545 0.0000f 0.8353 0.8845 0.7726 0.8415 0.8348 0.6832 0.0000 0.7446 0.4759

Wood 30 0.9803 0.9939 0.9762 0.9932 0.9794 0.9544 0.9907 0.9772 0.9915 0.9874 0.9824 0.9886 0.9720 0.9875 0.9827

Takeoff 0 — — — 0.8890 — — 0.8662 0.8917 0.8748 — 0.8804 0.8757 — 0.5258 0.7007

Mean IoU 0.6213 0.6969 0.6936 0.7413 0.6661 0.6697 0.4979 0.7415 0.6563 0.8455 0.6830 0.6138 0.3557 0.5070 0.4922

Corrected mean IoUa,f

0.8362a 0.8092a

0.8036f 0.5533a

0.7501a

0.7368a,f

Pixel accuracy 0.9123 0.9477 0.9722 0.9620 0.9397 0.9662 0.9599 0.9245 0.9483 0.9680 0.9501 0.9357 0.9361 0.9064 0.9261

Note: The above two errors were excluded to get the corrected Mean IoU should refer to the errors of a and f.
a When manually crafting a label-image, all pixels were set to the default value 255 at first, which resulted in 141, 4, 8, and 58 pixels nn on Data B, C, AD, and AM.
b The small corner (337 pixels) of the umbrella in Data AD (left-bottom) was not identified by the CNN model, while the umbrella had a good performance in Data CG.
c This error occurred in Data A (left-upper) with 256 pixels, where the pixels are the ground surface on the experimental site.
d Shrub was labeled in the bottom of Data C, O, and CG and well identified, but 4,864, 1,664, 256, 256, 72,192, and 14,080-pixel errors occurred in Data D, G, AD, AO, K, and Z, respectively.
e No pixel was labeled as withered in Data AD, but the CNN model prediction was correct.
f The isolated withered block in Data O was labeled with sand in the past, which resulted in 37 pixels not being completely covered by the correct withered class-label.
g The prediction error occurred on the wooden path in Data K (left), and 103 pixels in the sand path were not covered by the correction withered while creating the label-image.

Furthermore, the vegetation index 𝐸𝐸𝑥𝑥𝐸𝐸 = 2𝐸𝐸 − 𝑅𝑅 − 𝐵𝐵 (Anders et al. 2019) was applied to identify

vegetation (𝐸𝐸𝑥𝑥𝐸𝐸 > 0.1) in the model training and testing dataset. Fig. 16 shows this vegetation index

method was only sensitive to a range of green colors and also resulted in the error at the garbage cans

in data AO. However, vegetation in data A were not identified; the sparse vegetation with dark color

were skipped in data G, AO, K, and Z; and some of the dense vegetation in data C and CG were missed

as well. Thus, the vegetation index method is not suitable for the detailed vegetation detection on a

complicatedly textured construction site with other green textured objects. Therefore, the researchers

conclude that the developed CNN-based image classification model with the 32 × 32-pixel (17.28 ×

17.28  cm2) patch has good accuracy in identifying objects on the construction site using the drone-

based high-resolution orthoimage.

Vegetation-Removing Testing

Algorithm Configuration

In this research project, the patch-wise vegetation-removing experiments were conducted with

the 32 × 32-pixel early stopping patch-wise segmentation predictions. The proposed algorithm in

Fig. 6 was programmed using Python 3.6.8, with the following parameter settings. The shade, shrub,

and veg were set as the veg_label_list (in Fig. 6), which were considered as vegetation blocks in the

label-image, and needed to be removed and replaced with class-label ground/ value 95.

The 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝒍𝒍𝒔𝒔𝒍𝒍𝒔𝒔𝒍𝒍 was set as sand, withered, and the relabeled ground, which were considered as

ground blocks to provide the elevation values for vegetation blocks. The initial search window was set

with size (𝑞𝑞𝑒𝑒𝑆𝑆𝐻𝐻𝐸𝐸 × 2𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 + 𝑒𝑒𝑃𝑃𝑔𝑔𝐻𝐻𝑊𝑊𝐸𝐸) × (𝑞𝑞𝑒𝑒𝑆𝑆𝐻𝐻𝐸𝐸 × 𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 + 𝑒𝑒𝑃𝑃𝑔𝑔𝐻𝐻𝑊𝑊𝐸𝐸), where 𝑞𝑞𝑒𝑒𝐻𝐻𝑆𝑆𝐸𝐸 is the small-patch

(32-pixel) used in the CNN-based image classification model. The stridestride is the step used for

traversing label-images, which was set as 𝑞𝑞𝑒𝑒𝐻𝐻𝑆𝑆𝐸𝐸/4 = 8-pixel; thus, a 1,536 × 1,536-pixel patch-wise

label-image was disassembled into 36,864 small-patches (192-row, 192-column) with a size

of 8 × 8  pixels, and traversed by 192 row-loop and 191 column-loop. The 𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 is the parameter

used to control the initial size of the search window and the required number of ground pixels in the

search window, which impacts on the smooth degree of estimated truth ground elevations on the

vegetation removed elevation-map. This research project used a large 𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 = 8 to get smooth

elevation changes on the boundaries of vegetation and ground surfaces, and then, the minimum

required number of ground pixels in the search window was 𝑞𝑞𝑒𝑒𝐻𝐻𝑆𝑆𝐸𝐸 × 𝑞𝑞𝑒𝑒𝐻𝐻𝑆𝑆𝐸𝐸 × 𝑔𝑔𝑔𝑔𝑃𝑃𝐻𝐻𝑜𝑜𝑞𝑞 = 32 × 32 × 8.

The maximum search windows size depends on the parameter 𝑤𝑤𝐻𝐻𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖_𝑚𝑚𝑚𝑚𝑖𝑖, which was set as half of

the image width = 768-pixel to handle the extreme condition that the ground surface only appeared

in corners or edges, such as data CG. In this case, the first row-column-row-loop was not enough to

remove the vegetation on bottom-left corner, and then, the additional row-column-row-loop

successfully removed all vegetation and marked them with the pink color in the orthoimage

[Fig. 17(a) and Table 8].

Table 8. Pixel class-label summary

Class-

label
Value

Label-image

prediction

Vegetation removed label-image

prediction

 D AO G CG D AO G CG-1a CG-2a 𝑛𝑛 255

— — — — — — — — — — — —

Shade 240 21,760 0.92% 8,192 0.35% 229,632 9.73% — — — — — — —

Umbrella 220 — — — — — — 436,224 18.49% — — — 436,224 436,224

Can 180 18,688 0.79% 73,856 3.13% — — — — 18,688 73,856 — — —

Shrub 150 4,864 0.21% 256 0.01% 1,664 0.07% 455,424 19.30% — — — 59,776 —

Veg 130 444,480 18.84% 427,456 18.12% 1,003,520 42.53% 403,840 17.12% — — 384b 103,744 —

Withered 110 75,136 3.18% 26,624 1.13% 41,216 1.75% 25,600 1.09% — — — — —

Groundc 95 — — — — — — — — 925,440 728,832 1,842,176 797,568 961,088

Sand 80 379,200 16.07% 266,304 11.29% 566,528 24.01% 76,224 3.23% — — — — —

Wood 30 1,396,480 59.19% 1,539,456 65.25% 516,736 21.90% 961,984 40.77% 1,396,480 1,539,456 516,736 961,984 961,984

Takeoff 0 18,688 0.79% 17,152 0.73% — — — — 18,688 17,152 — — —

Sum — 2,359,296 100.00% 2,359,296 100.00% 2,359,296 100.00% 2,359,296 100.00% 2,359,296 2,359,296 2,359,296 2,359,296 2,359,296
a Two row-column-row-loops were conducted to remove all vegetation.
b 384-pixel of unremoved veg at the top-left corner of data G.
c Ground = shade + shrub + veg + withered + sand.

Furthermore, a shade, shrub, or veg pixel in the label-images was updated its elevation with the

average elevation value (ground_ele) of the searched neighboring ground pixels when this vegetation

pixel’s elevation 𝐸𝐸𝐸𝐸𝐸𝐸_𝑚𝑚𝑔𝑔𝑝𝑝[𝑣𝑣, 𝑁𝑁] in the elevation-map was higher than the ground_ele. Moreover, to

get the smooth elevation changes on the boundaries of ground blocks and vegetation blocks, during

the row-column-row-loop, the sand and withered pixels in the label-image were given updated

elevations ground_ele and remarked with the class-label ground/ value 95 as well. Thus, after all

vegetation pixels are removed by the developed algorithm, the total number of shade, shrub, veg,

sand, and withered pixels in the patch-wise label-image prediction should be equal to the number of

ground pixels in the vegetation removed label-image (Table 8).

Testing and Evaluation

The testing data AO in Fig. 3, and CNN model training data D and data G were used to evaluate the

vegetation removing algorithm. Table 8 shows the sum number of shade, shrub, veg, sand, and

withered pixels in the label-image prediction is equal to the number of ground pixels in the vegetation

removed label-image, which confirms that the developed algorithm had successfully traversed the

high-resolution patch-wise label-image in a single row-column-row loop [except the 384 veg pixels in

data G, see Fig. 17(a)].

Fig. 17(b) shows the elevation differentials between the original elevation-maps and vegetation

removed elevation-maps on ground blocks and vegetation blocks. There are larger elevation changes

appearing on the edges of the wooden platform and garbage cans, where the updated elevations fixed

the errors in the elevation-map. That is because in the elevation-map, each 32 × 32-pixel patch shared

the same elevation value even if this patch contains different objects, while each 8 × 8-pixel small-

patch in the vegetation removed elevation-map shared the same elevation value based on the object’s

class-label. Excluding these elevation corrections, the elevation differentials represent the vegetation

heights on the experimental site. In Fig. 17(b), data AO has the larger elevation differential than data D

for the same vegetation blocks, which correctly reflects the growing of the vegetation blocks from

6/5/2019 to 9/5/2019. The elevation differential in data G is larger than data AO, which also reflects

the vegetation heights on the experimental site (Fig. 8). The detailed vegetation heights (elevation

differentials) and the peak values of data D, AO, and G are shown in Fig. 18(a), where the data D has

the peak value of 0.4706 m, data AO has the peak value of 0.6275 m, and data G has the peak value of

0.9412 m (considering the single value 0.9804 m as noise point). These peak values are close to the

measured vegetation heights 0.6096 and 0.9144 m on the experimental site. Thus, any elevation

differentials larger than these three peaks in these three data were considered as the noise points

alternative to vegetation heights.

In Fig. 18(a), the point clouds were generated using the selected central points of each 8 ×

8-pixel patch of the orthoimage (textures) and the elevation-differential-map (vegetation heights).

Thus, 36,864 points were generated for each data, but only 6,945 veg points, 6,679 veg points, and

15,680 veg points were retained for analysis in data D, AO, and G, respectively [see the statistics

summary in Fig. 18(b)]. That is the same as the percentage of veg pixels of the label-images in Table 8,

where 18.84%, 18.12%, and 42.53% represent veg pixels in data D, AO, and G, respectively. In addition,

three subset point clouds, named D < 0.4706, AO < 0.6275, and G < 0.9804 were created by

removing the points that have the elevation differential larger than the peak value of each data. Thus,

for outliers, most are the elevation corrections on the edges of the wooden platforms, which were

excluded from the subsets [see the boxplot in Fig. 18(b)]. In data D and AO, their differential of peak

value is 0.1569 m, the 2-sample 𝑃𝑃-Test was conducted for these two subsets, which 95% confidently

concluded that the mean of AO < 0.6275 is 0.0805 m greater than D < 0.4706. Similarly, the mean

of G < 0.9804 is 0.1402 m greater than AO < 0.6275 at the 0.05 level of significance. In Fig. 18(b),

three contour plots were crafted based on the three subset point clouds. The results indicate the

largest vegetation height in data AO was 0.6 m for the right vegetation block, and 0.42 m for the left

vegetation block; the largest vegetation height in data D was 0.45 m for the right vegetation block, and

0.25 for the left vegetation block; the largest vegetation height in data G was 0.9 m for the two isolated

vegetation blocks. Therefore, the researchers conclude that the measured elevation differentials

successfully reflect the vegetation heights on the experimental site.

In Fig. 19, the vegetation-removed point clouds were generated using the selected central points of

each 8 × 8-pixel patch of the vegetation removed orthoimage (textures) and the vegetation removed

elevation-map (elevation values), where 14,460 ground points and 11,388 ground points appeared in

data D and data AO, and account for 39.23%, 30.89% of the total generated 36,864 points, which are

the same percentages of ground pixels in the vegetation-removed label-images. Because the generated

point clouds have the similar shape visually, the contour plots confirm the ground region are similar to

each other, and the histogram shows the ground elevations have the similar distribution, the

researcher conducted the additional 2-sample tt-Test for verifying these two ground point clouds are

similar or not. The hypothesis test results indicated the difference between these two ground point

clouds (Difference=AO_GROUND–D_GROUND) has the 99% CICI of (−0.010172, 0.00072689), and the

standard deviations do not differ at the 0.01 level of significance for these two ground point clouds.

Thus, the estimated ground elevations in data AO and data D are close to each other, and the

measured vegetation heights were fully removed from the raw surveying results. Therefore, the

researchers conclude that the developed vegetation-removing algorithm is stable in estimating the

truth ground elevations, and the performance is robust under the different conditions of the covered

vegetation.

Furthermore, Fig. 20(a) shows a stitched point cloud demo of the data AO (mid), data G(right), and

data AD (left), where the vegetation were removed in three separated orthoimages and elevation-

maps. These ground points have small elevation gaps on the joints between data AD and AO, and data

AO and G. The smooth ground elevation changes on the joints could be achieved by stitching the three

orthoimages and elevation-maps at first, and then, patch-wise segmenting the stitched orthoimages

with the patch-based CNN model, and followed by the patch-wise vegetation removing.

Fig. 20(b) shows a large-scale demo, where the 4,864 × 3,648-pixel orthoimage is the original image

captured by the drone at 20m, which had a GSD of = 0.54  cm/pixel and site size of 26.26 ×

19.70  m2. The patch-wise label-image was generated by the 32 × 32-pixel early stopping model. The

elevation data was generated by the elevation estimation method in Jiang and Bai (2020b). 456-row

loops and 455-column loops were conducted to remove the vegetation and estimate the ground

elevations. Because the developed patch-wise construction site segmentation and vegetation-

removing framework can be extended in these two cases, which is not limited to work with the model

training and testing dataset, the researchers conclude that the developed framework in this paper

(Fig. 1) can automatically identify the vegetation and determine the truth ground elevation covered by

vegetation on a construction site.

Conclusion and Future Research

This paper presents a deep learning-based method to identify vegetation objects on a construction site

using drone-based orthoimage and determine the truth ground surface elevations from the raw

surveying results. The keypoints of the method are outlined in Fig. 1, which includes: (1) using a drone

to acquire construction site orthoimages; (2) disassembling the high-resolution orthoimage into

overlapping small-patches; (3) using the CNN-based image classification model to generate the class-

label for each orthoimage patch; (4) assigning the class-label to each pixel of the small-patches to

generate the label-image predictions for each orthoimage patch; (5) assembling small-patch label-

image predictions to a high-resolution patch-wise label-image prediction; (6) searching and identifying

vegetation blocks in the patch-wise label-image; (7) updating vegetation block elevation values with

the surrounding grounds’ elevations in the same coordinate elevation-map; and (8) converting the

vegetation removed elevation-map to elevation data or three-dimensional (3D) point cloud of the

construction site.

The CNN-based image classification models with 8 × 8-pixel, 16 × 16-pixel, 32 × 32-pixel,

and 64 × 64-pixel patches were tested and compared. The testing results showed the 32 ×

32-pixel patch (size = 17.28 × 17.28  cm2) had the best performance of 94% accuracy in identifying

the main objects’ class-label from each small-patch orthoimage on the construction site. The

developed overlapping disassembling and assembling algorithm, which runs in parallel with the CNN

model, contributes to making the workstation system more convenient to train the CNN model with

high-resolution images instead of shrinking images and losing image details. By cropping the datasets

into multiple overlapped small-patches, the model training datasets were augmented as well. The

testing results show that the developed patch-wise segmentation method, which disassembling

the 1,536 × 1,536-pixel high-resolution image into 9,025 overlapping small-patches for image

classification and assembling the label-image small-patch predictions to the 1,536 ×

1,536-pixel patch-wise label-image prediction is an effective image segmentation method with an

average pixel accuracy of 92.6% and high IoU for large area objects. In addition, with this suitable

small-patch size, the edges of different objects were well determined and applied to fix the elevation

errors occurred on the edges of different objects in the elevation-maps.

Additionally, after the objects on a construction site were identified in a 1,536 × 1,536-pixel patch-

wise label-image prediction, a vegetation-removing algorithm was used to divide this high-resolution

label-image into 36,864 nonoverlapping 8 × 8-pixel patches and traverse them into 192 row-loops and

191 column-loops. In each row-loop and column-loop, the developed algorithm extended search

windows in the row and column direction, respectively. It searched the sufficient surrounding ground

pixels first. Then, elevation values of the current vegetation patch in the corresponding elevation-map

were replaced with the average elevation from the searched neighbor ground pixels. The testing

results showed that vegetation blocks on the high-resolution label-image were removed and the truth

ground elevations were determined, and the measured elevation differentials reflected the

vegetations’ heights measured on the experimental site.

To fully remove the static vegetation blocks on the experimental site, the CNN-based image

classification model was trained with the datasets collected from the still experimental site, which only

contain the static objects such as the static vegetation block and static structures. The experimental

results confirm that the developed patch-wise construction segmentation and truth ground elevation

determination framework works on the experimental site, while applying it on an active excavation

construction site, and further work is required in model training dataset expansion, such as including

the top-views of all potential static and dynamic objects on construction sites. This is because an active

construction site is much more complex than the still construction site. The dynamic objects, such as

excavators, dozers, trucks, and workers on the construction site have impacts on accurately

determining the ground elevations using the remote surveying methods. For example, a dozer may be

included in an elevation-map or a drone photogrammetric point cloud to compute automatically and

correctly determine the truth ground elevation under the dozer; this equipment should be identified at

first, and then its height should be removed from the surveying result.

The success of this research project contributes to the advancement of drone application and deep

learning methods in construction site surveying. The researchers provided and verified a feasible

approach of using a CNN model to patch-wise segment a high-resolution drone-based orthoimage of

construction sites with a high pixel accuracy and acceptable IoU. The developed model can be used for

automatically identifying and locating multiple categories of static objects from the raw surveying

results, which is more than identifying only vegetation or nonvegetation categories by the vegetation

index method or iterations of interpolation method. In addition, this model can be extended to

removing dynamic objects from the high-resolution orthoimaging videos. As a result, the research

project proved that it is possible to use drone technologies to make the image-based construction

surveying and measurement of ground elevations much more accurate and convenient.

Data Availability Statement
The model training and testing datasets (orthoimages and label-images appear in Fig. 3 and Fig. 9) are

available from the corresponding author upon request. The Python code of the CNN-based image

classification model (in Fig. 5 and Table 4) and vegetation-removing algorithm (in Fig. 6) are also

available from the corresponding author upon request.

Acknowledgments

This research project was financially supported by the McShane Endowment Fund at Marquette

University. The authors are thankful for the reviewers’ valuable comments.

References
Anders, N., J. Valente, R. Masselink, and S. Keesstra. 2019. “Comparing filtering techniques for

removing vegetation from UAV-based photogrammetric point clouds.” Drones 3 (3):

61. https://0-doi-org.libus.csd.mu.edu/10.3390/drones3030061.

Badrinarayanan, V., A. Kendall, and R. Cipolla. 2017. “SegNet: A deep convolutional encoder-decoder

architecture for image segmentation.” IEEE Trans. Pattern Anal. Mach. Intell. 39 (12): 2481–

2495. https://0-doi-org.libus.csd.mu.edu/10.1109/TPAMI.2016.2644615.

Buscombe, D., and A. C. Ritchie. 2018. “Landscape classification with deep neural

networks.” Geosciences 8 (7): 244. https://0-doi-

org.libus.csd.mu.edu/10.3390/geosciences8070244.

Chollet, F. 2015. “Keras: The python deep learning library.” Accessed August 7, 2019. https://keras.io/.

Cunliffe, A. M., R. E. Brazier, and K. Anderson. 2016. “Ultra-fine grain landscape-scale quantification of

dryland vegetation structure with drone-acquired structure-from-motion

photogrammetry.” Remote Sens. Environ. 183 (Sep): 129–143. https://0-doi-

org.libus.csd.mu.edu/10.1016/j.rse.2016.05.019.

Deng, J., W. Dong, R. Socher, L. Li, K. Li, and F. Li. 2009. “ImageNet: A large-scale hierarchical image

database.” In Proc., 2009 IEEE Conf. on Computer Vision and Pattern Recognition, 248–255.

New York: IEEE.

Dettmers, T. 2015. “Deep learning in a nutshell: Core concepts.” Accessed August 7,

2019. https://devblogs.nvidia.com/deep-learning-nutshell-core-concepts/.

Du, J. C., and H. C. Teng. 2007. “3D laser scanning and GPS technology for landslide earthwork volume

estimation.” Autom. Constr. 16 (5): 657–663. https://0-doi-

org.libus.csd.mu.edu/10.1016/j.autcon.2006.11.002.

Engelcke, M., D. Rao, D. Z. Wang, T. Chi Hay, and I. Posner. 2017. “Vote3Deep: Fast object detection in

3D point clouds using efficient convolutional neural networks.” In Proc., 2017 IEEE Int. Conf. on

Robotics and Automation (ICRA), 1355–1361. New York: IEEE.

Geirhos, R., P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. 2019. “ImageNet-

trained CNNs are biased towards texture; increasing shape bias improves accuracy and

robustness.” In Proc., 7th Int. Conf. on Learning Representations (ICLR 2019). Cambridge, MA:

International Conference on Learning

Representations. https://openreview.net/forum?id=Bygh9j09KX.

Han, J., D. Zhang, G. Cheng, L. Guo, and J. Ren. 2015. “Object detection in optical remote sensing

images based on weakly supervised learning and high-level feature learning.” IEEE Trans.

Geosci. Remote Sens. 53 (6): 3325–3337. https://0-doi-

org.libus.csd.mu.edu/10.1109/TGRS.2014.2374218.

Jiang, Y., and Y. Bai. 2020a. “Determination of construction site elevations using drone technology.” In

Proc., Construction Research Congress 2020. Reston, VA: ASCE.

Jiang, Y., and Y. Bai. 2020b. “Estimation of construction site elevations using drone-based orthoimagery

and deep learning.” J. Constr. Eng. Manage. 146 (8): 04020086. https://0-doi-

org.libus.csd.mu.edu/10.1061/(ASCE)CO.1943-7862.0001869.

Kang, K., H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang, X. Wang, and W. Ouyang.

2018. “T-CNN: Tubelets with convolutional neural networks for object detection from

videos.” IEEE Trans. Circuits Syst. Video Technol. 28 (10): 2896–2907. https://0-doi-

org.libus.csd.mu.edu/10.1109/TCSVT.2017.2736553.

Kim, S., and J. S. Russell. 2003. “Framework for an intelligent earthwork system: Part I. System

architecture.” Autom. Constr. 12 (1): 1–13. https://0-doi-org.libus.csd.mu.edu/10.1016/S0926-

5805(02)00034-1.

Kussul, N., M. Lavreniuk, S. Skakun, and A. Shelestov. 2017. “Deep learning classification of land cover

and crop types using remote sensing data.” IEEE Geosci. Remote Sens. Lett. 14 (5): 778–

782. https://0-doi-org.libus.csd.mu.edu/10.1109/LGRS.2017.2681128.

Kwon, S., J. W. Park, D. Moon, S. Jung, and H. Park. 2017. “Smart merging method for hybrid point

cloud data using UAV and LIDAR in earthwork construction.” Procedia Eng. 196 (Jan): 21–

28. https://0-doi-org.libus.csd.mu.edu/10.1016/j.proeng.2017.07.168.

Liu, T., and A. Abd-Elrahman. 2018. “Deep convolutional neural network training enrichment using

multi-view object-based analysis of Unmanned Aerial systems imagery for wetlands

classification.” ISPRS J. Photogramm. Remote Sens. 139 (May): 154–170. https://0-doi-

org.libus.csd.mu.edu/10.1016/j.isprsjprs.2018.03.006.

Liu, T., A. Abd-Elrahman, J. Morton, and V. L. Wilhelm. 2018. “Comparing fully convolutional networks,

random forest, support vector machine, and patch-based deep convolutional neural networks

for object-based wetland mapping using images from small unmanned aircraft system.” GISci.

Remote Sens. 55 (2): 243–264. https://0-doi-

org.libus.csd.mu.edu/10.1080/15481603.2018.1426091.

Maggiori, E., Y. Tarabalka, G. Charpiat, and P. Alliez. 2016. “Fully convolutional neural networks for

remote sensing image classification.” In Proc., 2016 IEEE Int. Geoscience and Remote Sensing

Symp. (IGARSS), 5071–5074. New York: IEEE.

Mao, X. J., C. Shen, and Y. B. Yang. 2016. “Image restoration using convolutional auto-encoders with

symmetric skip connections.” Preprint, submitted August 7,

2019. http://arxiv.org/abs/1606.08921.

Nair, V., and G. Hinton. 2010. “Rectified linear units improve restricted boltzmann machines.” In Proc.,

27th Int. Conf. on Machine Learning (ICML 2010), 807–814. Haifa, Israel: International Machine

Learning Society.

Nassar, K., and Y. Jung. 2012. “Structure-from-motion approach to the reconstruction of surfaces for

earthwork planning.” J. Constr. Eng. Project Manage. 2 (3): 1–7. https://0-doi-

org.libus.csd.mu.edu/10.6106/JCEPM.2012.2.3.001.

Noh, H., S. Hong, and B. Han. 2015. “Learning deconvolution network for semantic segmentation.” In

Proc., 2015 IEEE Int. Conf. on Computer Vision (ICCV 2015), 1520–1528. New York: IEEE.

Ronneberger, O., P. Fischer, and T. Brox. 2015. “U-Net: Convolutional networks for biomedical image

segmentation.” In Proc., Medical Image Computing and Computer-Assisted Intervention

(MICCAI 2015), 234–241. Cham, Switzerland: Springer.

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen. 2018. “Inverted residuals and linear

bottlenecks: Mobile networks for classification, detection and segmentation.” Prepint,

submitted April 7, 2020. http://arxiv.org/abs/1801.04381.

Schneider, S., G. W. Taylor, and S. Kremer. 2018. “Deep learning object detection methods for

ecological camera trap data.” In Proc., 2018 15th Conf. on Computer and Robot Vision (CRV),

321–328. New York: IEEE.

Shelhamer, E., J. Long, and T. Darrell. 2017. “Fully convolutional networks for semantic

segmentation.” IEEE Trans. Pattern Anal. Mach. Intell. 39 (4): 640–651. https://0-doi-

org.libus.csd.mu.edu/10.1109/TPAMI.2016.2572683.

Siebert, S., and J. Teizer. 2014. “Mobile 3D mapping for surveying earthwork projects using an

Unmanned Aerial Vehicle (UAV) system.” Autom. Constr. 41 (May): 1–14. https://0-doi-

org.libus.csd.mu.edu/10.1016/j.autcon.2014.01.004.

Sung, C., and P. Y. Kim. 2016. “3D terrain reconstruction of construction sites using a stereo

camera.” Autom. Constr. 64 (Apr): 65–77. https://0-doi-

org.libus.csd.mu.edu/10.1016/j.autcon.2015.12.022.

Theodorus, A., M. Nauta, and C. Seifert. 2020. “Evaluating CNN interpretability on sketch

classification.” In Proc., 12th Int. Conf. on Machine Vision (ICMV 2019). Bellingham, WA: Society

of Photo-Optical Instrumentation Engineers. https://0-doi-

org.libus.csd.mu.edu/10.1117/12.2559536.

Westoby, M. J., J. Brasington, N. F. Glasser, M. J. Hambrey, and J. M. Reynolds. 2012. “‘Structure-from-

Motion’ photogrammetry: A low-cost, effective tool for geoscience

applications.” Geomorphology 179 (Dec): 300–314. https://0-doi-

org.libus.csd.mu.edu/10.1016/j.geomorph.2012.08.021.

Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia. 2017. “Pyramid scene parsing network.” In Proc., 2017 IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 6230–6239. New York: IEEE.

Figures

Fig. 1. Overall workflow of the proposed framework.

Fig. 2. Label-image crafting example. (Image by Yuhan Jiang.)

Fig. 3. Pair of orthoimage, label-image, and elevation-map dataset.

Fig. 4. Small-patch examples.

Fig. 5. CNN-based image classification model with 32 × 32 − 𝑝𝑝𝐻𝐻𝑥𝑥𝐸𝐸𝐸𝐸 patch.

Fig. 6. Vegetation-removing algorithm.

Fig. 7. Row-column-row-loop for traversing a label-image.

Fig. 8. Experimental site. (Image by Yuhan Jiang.)

Fig. 9. Training and validation datasets.

Fig. 10. Training and validation loss and accuracy of early stopping trials.

Fig. 11. Small-patch predictions of early stopping trials.

Fig. 12. Training and validation loss and accuracy of 50-epoch trials.

Fig. 13. Patch-wise predictions.

Fig. 14. Testing results.

Fig. 15. (a) Mapped pixel prediction errors; (b) detailed prediction comparisons; and (c) detailed label

errors.

Fig. 16. Vegetation identifying results.

Fig. 17. (a) Vegetation removing in label-image; and (b) vegetation removing in elevation-map.

Fig. 18. (a) Vegetation height in profile; and (b) vegetation height in contour plot.

Fig. 19. Estimated ground elevation comparisons.

Fig. 20. (a) Results stitching demo; and (b) large-scale demo.

	Determining Ground Elevations Covered by Vegetation on Construction Sites Using Drone-Based Orthoimage and Convolutional Neural Network
	Abstract
	Introduction
	Method Development
	Dataset Acquisition
	Orthoimage and Elevation-Map Acquisition
	Label-Image Creation
	Small-Patch Dataset Creation

	Patch-Wise Construction Site Segmentation
	Patch-Based Scheme
	Small-Patch Dataset Shape
	CNN-Based Image Classification Model

	Patch-Wise Vegetation Removing

	Experiments
	Construction Site Segmentation
	Training Dataset
	Training and Validation
	Testing and Evaluation

	Vegetation-Removing Testing
	Algorithm Configuration
	Testing and Evaluation

	Conclusion and Future Research
	Data Availability Statement
	Acknowledgments
	This research project was financially supported by the McShane Endowment Fund at Marquette University. The authors are thankful for the reviewers’ valuable comments.
	References
	Figures

