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Abstract

An analytical method is presented for determining if two ellipsoids
share the same volume. The formulation involves adding an extra
dimension to the solution space and examining eigenvalues that are
associated with degenerate quadric surfaces. The eigenvalue behavior
is characterized and then demonstrated with an example. The same
method is also used to determine if two ellipsoids appear to share the
same projected area based on an observers viewing angle. The follow-
ing approach yields direct results without approximation, iteration,
or any form of numerical search. It is computationally efficient in the
sense that no dimensional distortions, coordinate rotations, transfor-
mations, or eigenvector computations are needed.

1 Introduction

As the U.S. Satellite Catalog transitions from general perturbations to spe-
cial perturbations, the positional accuracy of each space object will be readily
available in the form of a covariance matrix. These covariances can be used
to determine probability of collision, radio-frequency interference, and/or
incidental laser illumination. Because the probability calculations can be
computationally burdensome, it is desirable to prescreen candidate objects
based on user-defined thresholds. Specifically, each object can be represented
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by a covariance-based ellipsoid and then processed to determine if its uncer-
tainty volume shares some space in common with anothers. Solid ellipsoids
(or their projections) that do not intersect can be eliminated from further
processing. This paper presents a simple analytical method to perform such
screening.

To date, all ellipsoidal prescreening methods involve numerical searches [1].
For computational efficiency such prescreening is often reduced to spheres or
“keep-out” boxes that have much larger volumes but allow for quick distance
comparisons. The drawback to such screening is that these larger volumes
cause many objects to become candidates for further (albeit unnecessary)
processing. These methods result in increased downstream computational
processing and/or increased operator workload to further assess potential
satellite conjunctions.

The following method adds an extra dimension to the solution space. The
subset of eigenvalues that are associated with intersecting degenerate quadric
surfaces are then examined. The same method is also used to determine if two
ellipsoids appear to share the same projected area based on viewing angle.
The approach yields direct results without approximation, iteration, or any
form of numerical search. It is computationally efficient in the sense that no
dimensional distortions, coordinate rotations, transformations, or eigenvector
computations are needed. This method expands the two-dimensional work of
Hill [2] in his formulation of degenerate conics (i.e., the characteristic matrix
is singular). It also furthers his work by examining the associated eigenvalue
behavior.

This approach is not limited to Satellite Catalog applications. For com-
puter graphics users such screening could be used to invoke a hidden line
removal algorithm.

2 Ellipsoidal Formulation

Rogers and Adams [3] give various representational forms for an ellipsoid.
Algebraically, the representation is

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Jz +K = 0 (1)

where A, B, C, D, E, F , G, H, J , and K are constants. In matrix form the
same ellipsoid can be written as
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XSXT = 0 (2)

where

X = [x y z 1] (3)

and

S =
1

2


2A D F G
D 2B E H
F E 2C J
G H J 2K

 . (4)

The translation of the ellipsoid’s center from the origin to [X0, Y0, Z0] can be
accomplished by the matrix

T =


1 0 0 0
0 1 0 0
0 0 1 0

−X0 −Y0 −Z0 1

 (5)

where

X T S T TXT = 0. (6)

Similarly, all points contained within the ellipsoid satisfy the constraint

X T S T TXT ≤ 0. (7)

Given a 3 × 3 covariance matrix C centered at [X0, Y0, Z0], the quadric
representation of the ellipsoid would then be

X T


Ci11 Ci12 Ci13 0
Ci21 Ci22 Ci23 0
Ci31 Ci32 Ci33 0

0 0 0 −1

 T TXT = 0 (8)

where Ci are the elements of the inverted covariance matrix.
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3 Ellipsoidal Solution

For simplicity, assume a primary object is centered at the origin. An ellip-
soid that corresponds to its positional covariance can be computed from the
preceding, resulting in the equation

X AXT = 0. (9)

In the same manner a secondary object (center not colocated) and its
ellipsoid can be appropriately translated relative to the primary object such
that

X BXT = 0. (10)

If any X exists such that it satisfies Eqs. (9) and (10), then the primary
and secondary ellipsoids intersect at that point. If some value of X satisfies
the constraint for both objects as represented by Eq. (7), then that point
lies inside both ellipsoids.

Equation (9) can be multiplied by a scalar constant λ with no loss in
generality:

X (λA)XT = 0. (11)

Subtracting Eqs. (11) and (10),

X (λA−B)XT = 0. (12)

As explained by Hill [2], λ is chosen so that the matrix (λA−B) is singular.
Because A is the characteristic matrix of an ellipsoid, it is invertible and can
be used to alter Eq. (12) to produce

X A (λI − A−1B)XT = 0. (13)

This representation is more readily recognized as an eigenvalue formula-
tion and also lends itself well to many mathematical software packages.
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Substituting selected eigenvalues into Eq. (13) will produce character-
istic matrices that represent degenerate quadric surfaces. If the X subset
assumption holds regarding overlapping objects, then these surfaces must
also pass through the points shared by the primary and secondary ellipsoids.
It can be deduced [4] that if the ellipsoids just intersect (i.e., share a single
point in common) then that solution vector must also be an eigenvector of
A−1B. The converse is not true as not all eigenvectors of A−1B will satisfy
the ellipsoidal constraints of Eqs. (9) and (10). Eigenvectors with a zero
in their last component are considered inadmissible because this formulation
has been framed in a four-dimensional space with the last dimension fixed as
shown in Eq. (3). An admissible eigenvector can be tested by simply scaling
it to produce a one in the last component and then determining if it meets
the ellipsoidal conditions as represented by matrices A and B.

When the primary and secondary ellipsoids overlap, then a family of
solutions describes the intersection. For such cases two of the eigenvalues
become complex. This is demonstrated in the Appendix and proven [4].

4 Observed Eigenvalue Behavior

To gain an understanding of the eigenvalues when the ellipsoids do not just
intersect at a single point, the locus of values is plotted for various cases by
altering size, shape, orientation, and location. Figure 1 is representative of
all cases tested. In each set of cases, the two ellipsoids are initially defined
to be completely outside each other. There are always two negative, real
eigenvalues that produce admissible eigenvectors. The vectors do not satisfy
Eqs. (9) and (10), and no point is shared in common between the ellipsoids.

The primary ellipsoid is then continually increased in size until it just
intersects the secondary. This means that only a single, unique point satisfies
Eqs. (9) and (10). The two eigenvalues move towards each other until they
meet (repeated). At this point the admissible eigenvectors give the solution
for ellipsoids intersecting at a point.

The scaling then continues so that both ellipsoids share some volume in
common. The two admissible eigenvalues become complex conjugates.The
real portion of the eigenvectors satisfies the inequality for both ellipsoids as
defined in Eq. (7). The location indicated by these vectors is always shown
to be inside both ellipsoids; therefore, they intersect.

As the primary ellipsoid continues to grow, it eventually intersects the
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Figure 1: Representative locus of admissible eigenvalues
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far side of the secondary. The two admissible eigenvalues again become real
and repeated, but are positive instead of negative. Again, those eigenvectors
define the exact point where the ellipsoids intersect.

Scaling beyond this point always gives two positive real admissible eigen-
values that move away from each other. In all cases tested it means that
some portion of the primary surface has entered and exited the secondary
ellipsoid, but does not mean that the primary has completely engulfed the
secondary (Fig. 2). A simplified mathematical explanation for eigenvalue
behavior is presented in the Appendix. The complete, n-dimensional, math-
ematical proof was done by Chan [4] to verify these observations.

Figure 2: Complete penetration of one ellipsoid by another

5 Simple Ellipsoidal Example

This example involves a primary ellipsoid that is four units long on the x axis
and two units long on the y and z axes. The secondary is six units long on
the x axis, four on the y, and eight on the z with its center at [7, 0, 0]. The
primary should just intersect the secondary on the near side when scaled by
two and just intersect the far side when scaled by five. The intersecting will
occur on the x axis.

The initial A and B matrices are

A =


0.25 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

 (14)
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B =


1 0 0 0
0 1 0 0
0 0 1 0
−7 0 0 1




0.111 0 0 0
0 0.25 0 0
0 0 0.063 0
0 0 0 −1




1 0 0 −7
0 1 0 0
0 0 1 0
0 0 0 −1


(15)

=


0.111 0 0 −0.778

0 0.25 0 0
0 0 0.063 0

−0.778 0 0 4.444

 . (16)

Scaling the primary ellipsoid by a factor of n is done by simply multiplying
the last element of A by n2 .

Table 1 shows the history of the eigenvalues and their interpretations.

Scale 1 2 3 4 5 6

Eig 1 −0.114 −0.333 −0.025 + 0.221i 0.083 + 0.114i 0.133 0.276

Eig 2 −3.886 −0.333 −0.025− 0.221i 0.083− 0.114i 0.133 0.045

Vector N/A


4
0
0
1




5.429− 2.556i
0
0
1




7.429− 2.969i
0
0
1




10
0
0
1

 N/A

Notes Outside Touch Overlap Overlap Touch Past

Table 1: Effects of scaling on eigenvalues and eigenvectors

6 Coordinate Reduction Through Projection

Although two ellipsoids might not share the same space, when viewed from
certain angles one might appear to cover or overlap the other. Analysis of
such circumstances is necessary to prevent accidental laser illumination if
a secondary object is in or near the line of sight of the primary. Equally
important is determining the possibility of radio-frequency interference on a
secondary object. For computer graphics users such analysis would indicate
when to invoke a hidden line removal algorithm. Coordinate rotations are
accomplished through the following matrix representation:

X RS RTXT = 0 (17)
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where rotation about the x axis of angle α produces

Rx =


1 0 0 0
0 cos(α) sin(α) 0
0 − sin(α) cos(α) 0
0 0 0 1

 , (18)

rotation about the y axis of angle β yields

Ry =


cos(β) 0 − sin(β) 0

0 1 0 0
sin(β) 0 cos(β) 0

0 0 0 1

 , (19)

and rotation about the z axis of angle θ is

Rz =


cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 . (20)

The individual matrices can be multiplied to produce an overall rotation
matrix R. The reader is cautioned to pay close attention to the signs of
the sine terms; this is necessary for a positive right hand rule convention.
Also, the order of multiplication is important to ensure the desired overall
coordinate rotation.

Coordinate reduction is done by means of a simple orthographic projec-
tion in the rotated space to eliminate one component. The choice of coordi-
nate for reduction is a matter of personal preference. The new z component
was chosen for this work, resulting in

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (21)

X (P RS RTP T )XT = 0. (22)
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When the projection is completed, the expression in parentheses becomes
singular. To proceed, it is necessary to reduce the dimension of the state
vector and associated formulation as will be explained in the next section.

It is still necessary to translate the resultant based on the new coordinate
frame. To do so, a new translation vector is computed and inserted into the
translation matrix

[X1 Y1 Z1 1] = [X0 Y0 Z0 1]R (23)

Tnew =


1 0 0 0
0 1 0 0
0 0 1 0

−X1 −Y1 −Z1 1

 . (24)

Combining all terms in the correct order produces

X Tnew P RS R
TP TT T

newX
T = 0. (25)

7 Elliptical Formulation and Solution

As one would expect, determining if two ellipses intersect (or if one lies en-
tirely within the other) is identical to the ellipsoidal formulation reduced by
one dimension. In matrix form the new z component resulting from coordi-
nate rotation is eliminated, and the equations are reduced by one dimension
such that

X = [x y 1]. (26)

An ellipsoid described by the rotated 4×4 A matrix is projected into the
new x− y plane by removing the third row and column to produce the 3× 3
AP matrix. The relationship

X AP XT = 0 (27)
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now describes the primary objects projected ellipse in the new, dimensionally
reduced frame. The same projection and reduction is done for the secondary
object to determine the BP matrix

X B P XT = 0. (28)

If any X exists such that it satisfies Eqs. (28) and (29), then the primary
and secondary projections intersect at that point. If some value of X satisfies
the constraint for both projections as represented by Eq. (7), then that point
lies inside both ellipses.

The evaluation is identical to the ellipsoidal one, observing the admissible
eigenvalue behavior of AP−1BP to determine if the ellipses shared the same
space. If two are negative real and different, then the ellipses share no area
in common. If two are negative real and identical, then they just intersect
on the secondarys side nearest the origin. If two are complex conjugates, the
ellipses intersect at two points. If two are positive real and identical, then
they share area and just intersect on the far side. If all are positive real, then
one penetrates or engulfs the other.

8 Conclusions

A simple analytical method has been developed to determine if two ellip-
soids share the same volume. This method can be used to alert operators
of existing or impending conjunctions. The formulation involves adding an
extra dimension to the solution space and examining the admissible eigen-
values. The admissible eigenvalues are examined to determine if any volume
is shared. If volume is shared, a subset of the eigenvalues defines degen-
erate quadric surfaces that pass through the points of intersection. The
same method is used to determine if two ellipsoids appear to share the same
projected area based on viewing angle. This approach yields direct results
without approximation, iteration, or any form of search.

Appendix: Single Dimensional Analysis

The mathematical underpinnings for the assertions of eigenvalue behavior
in two and three dimensions are proven here for a single dimension; the
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n-dimensional proof is found in Chan [4]. All objects can be scaled and
rotated so that the primary is centered at the origin with unit dimensions.
The primary ellipsoid becomes a sphere; the primary ellipse a circle. By
selecting the proper viewing geometry, two ellipsoids that do not intersect
can be projected to two ellipses that do not intersect; these ellipses can then
be projected to two lines that do not intersect. This process reduces the
problem to a single dimension.

For a single dimension the primary object is a line ranging from −1 to
+1 with its “surface” represented by the endpoints. The secondary is also a
line ranging from (x0 − a) to (x0 + a). Scaling can be accomplished so that
the only case needing consideration is when x0 > 0 and a > 0. Algebraically,
these endpoints can be expressed as

x2 = 1. (A1)

a−2(x− x0)
2 = 1. (A2)

In matrix form these become

(x 1)

(
1 0
0 −1

)(
x
1

)
= 0 (A3)

(x 1)

(
1 0

−x0 1

)(
a−2 0
0 −1

)(
1 −x0
0 1

)(
x
1

)
= 0. (A4)

The eigenvalues of (λA−B) are solved using

A =

(
1 0
0 −1

)
(A5)

B =

(
1
a2

−x0

a2

−x0

a2
(x0)2

a2
− 1

)
(A6)
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λ =
−(x0)

2 + a2 + 1 ±
√

(a+ 1 − x0)(a+ 1 + x0)(a− 1 − x0)(a− 1 + x0)

2a2
.

(A7)

Figure A1 helps in visualizing all possible values, both real and complex, of
the solution.

Figure A1: One-dimensional analysis (a > 0, x0 > 0)

Figure A1 shows that when (x0 − a) > 1 the lines do not intersect.
Placing this constraint into Eq. (A7) will always produce negative, real,
distinct eigenvalues.

Increasing the value a and/or decreasing the value x0 such that (x0−a) =
1 allows the lines to just intersect on the positive (near) side. The eigenvalues
repeat with a value of −1/a.

Continuingto increase a or decrease x0 such that −1 < (x0 − a) < 1 and
(x0 + a) > 1 causes the lines to overlap, but not completely. The eigenvalues
will always be complex conjugates under these conditions.

Should (x0 − a) = −1 and (x0 + a) > 1 then the lines overlap and just
intersect on the negative (far) side. The eigenvalues repeat with a value of
+1/a.

In the event that −1 < (x0−a) < 1 while (x0+a) ≤ 1, then the secondary
line is completely inside the primary, and the eigenvalues are positive, real,
and distinct.

For the final case (x0 − a) < −1 the primary line is completely inside the
secondary, and the eigenvalues are again positive, real, and distinct.
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