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We present the first algorithms that allow the estimation of non-negative Lyapunov exponents from an experimental time 

series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to 

the exponentially fast divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov 

exponents is defined to be chaotic. Our method is rooted conceptually in a previously developed technique that could only be 

applied to analytically defined model systems: we monitor the long-term growth rate of small volume elements in an attractor. 

The method is tested on model systems with known Lyapunov spectra, and applied to data for the Belousov-Zhabotinskii 

reaction and Couette-Taylor flow. 
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1. Introduction 

Convincing evidence for deterministic chaos has 

come from a variety of recent experiments [1-6] 

on dissipative nonlinear systems; therefore, the 

question of detecting and quantifying chaos has 

become an important one. Here we consider the 

spectrum of Lyapunov exponents [7-10], which 

has proven to be the most useful dynamical di- 

agnostic for chaotic systems. Lyapunov exponents 

are the average exponential rates of divergence or 

tPresent address: The Cooper Union, School of Engineering, 
N.Y., NY 10003, USA. 

*The reader may wish to skip the starred sections at a first 

reading. 

convergence of nearby orbits in phase space. Since 

nearby orbits correspond to nearly identical states, 

exponential orbital divergence means that systems 

whose initial differences we may not be able to 

resolve will soon behave quite differently-predic- 

tive ability is rapidly lost. Any system containing 

at least one positive Lyapunov exponent is defined 

to be chaotic, with the magnitude of the exponent 

reflecting the time scale on which system dynamics 

become unpredictable [10]. 

For systems whose equations of motion are ex- 

plicitly known there is a straightforward technique 

[8, 9] for computing a complete Lyapunov spec- 

trum. This method cannot be applied directly to 

experimental data for reasons that will be dis- 

cussed later. We will describe a technique which 

for the first time yields estimates of the non-nega- 

tive Lyapunov exponents from finite amounts of 

experimental data. 

A less general procedure [6, 11-14] for estimat- 

ing only the dominant Lyapunov exponent in ex- 

perimental systems has been used for some time. 

This technique is limited to systems where a well- 

defined one-dimensional (l-D) map can be re- 

covered. The technique is numerically unstable 

and the literature contains several examples of its 

improper application to experimental data. A dis- 

cussion of the 1-D map calculation may be found 
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in ref. 13. In ref. 2 we presented an unusually 

robust 1-D map exponent calculation for experi- 

mental data obtained from a chemical reaction. 

Experimental data inevitably contain external 

noise due to environmental fluctuations and limited 

experimental resolution. In the limit of an infinite 

amount of noise-free data our approach would 

yield Lyapunov exponents by definition. Our abil- 

ity to obtain good spectral estimates from experi- 

mental data depends on the quantity and quality 

of the data as well as on the complexity of the 

dynamical system. We have tested our method on 

model dynamical systems with known spectra and 

applied it to experimental data for chemical [2, 13] 

and hydrodynamic [3] strange attractors. 

Although the work of characterizing chaotic data 

is still in its infancy, there have been many ap- 

proaches to quantifying chaos, e.g., fractal power 

spectra [15], entropy [16-18, 3], and fractal dimen- 

sion [proposed in ref. 19, used in ref. 3-5, 20, 21]. 

We have tested many of these algorithms on both 

model and experimental data, and despite the 

claims of their proponents we have found that 

these approaches often fail to characterize chaotic 

data. In particular, parameter independence, the 

amount of data required, and the stability of re- 

suits with respect to external noise have rarely 

been examined thoroughly. 

The spectrum of Lyapunov exponents will be 

defined and discussed in section 2. This section 

includes table I which summarizes the model sys- 

tems that are used in this paper. Section 3 is a 

review of the calculation of the complete spectrum 

of exponents for systems in which the defining 

differential equations are known. Appendix A con- 

tains Fortran code for this calculation, which to 

our knowledge has not been published elsewhere. 

In section 4, an outline of our approach to estimat- 

ing the non-negative portion of the Lyapunov 

exponent spectrum is presented. In section 5 we 

describe the algorithms for estimating the two 

largest exponents. A Fortran program for de- 

termining the largest exponent is contained in 

appendix B. Our algorithm requires input parame- 

ters whose selection is discussed in section 6. Sec- 

tion 7 concerns sources of error in the calculations 

and the quality and quantity of data required for 

accurate exponent estimation. Our method is ap- 

plied to model systems and experimental data in 

section 8, and the conclusions are given in 

section 9. 

2. The Lyapunov spectrum defined 

We now define [8, 9] the spectrum of Lyapunov 

exponents in the manner most relevant to spectral 

calculations. Given a continuous dynamical sys- 

tem in an n-dimensional phase space, we monitor 

the long-term evolution of an infinitesimal n-sphere 

of initial conditions; the sphere will become an 

n-ellipsoid due to the locally deforming nature of 

the flow. The i th one-dimensional Lyapunov expo- 

nent is then defined in terms of the length of the 

ellipsoidal principal axis pi ( t ) :  

h~ = lim 1 log 2 p c ( t )  
t--,oo t pc(O) '  

(1) 

where the )h are ordered from largest to smallestt. 

Thus the Lyapunov exponents are related to the 

expanding or contracting nature of different direc- 

tions in phase space. Since the orientation of the 

ellipsoid changes continuously as it evolves, the 

directions associated with a given exponent vary in 

a complicated way through the attractor. One can- 

not, therefore, speak of a well-defined direction 

associated with a given exponent. 

Notice that the linear extent of the ellipsoid 

grows as 2 htt, the area defined by the first two 

principal axes grows as 2 (x~*x2)t, the volume de- 

fined by the first three principal axes grows as 

2 (x'+x2+x~)t, and so on. This property yields 

another definition of the spectrum of exponents: 

tWhile the existence of this limit has been questioned [8, 9, 
22], the fact is that the orbital divergence of any data set may 
be quantified. Even if the limit does not exist for the underlying 
system, or cannot be approached due to having finite amounts 
of noisy data, Lyapunov exponent estimates could still provide 
a useful characterization of a given data set. (See section 7.1.) 
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the sum of the first j exponents is defined by the 

long term exponential growth rate of a j-volume 

element. This alternate definition will provide the 

basis of our spectral technique for experimental 

data. 

Any continuous time-dependent dynamical sys- 

tem without a fixed point will have at least one 

zero exponent [22], corresponding to the slowly 

changing magnitude of a principal axis tangent to 

the flow. Axes that are on the average expanding 

(contracting) correspond to positive (negative) ex- 

ponents. The sum of the Lyapunov exponents is 

the time-averaged divergence of the phase space 

velocity; hence any dissipative dynamical system 

will have at least one negative exponent, the sum 

of all of the exponents is negative, and the post- 

transient motion of trajectories will occur on a 

zero volume limit set, an attractor. 

The exponential expansion indicated by a posi- 

tive Lyapunov exponent is incompatible with mo- 

tion on a bounded attractor unless some sort of 

folding process merges widely separated trajecto- 

ries. Each positive exponent reflects a "direction" 

in which the system experiences the repeated 

stretching and folding that decorrelates nearby 

states on the attractor. Therefore, the long-term 

behavior of an initial condition that is specified 

with any uncertainty cannot be predicted; this is 

chaos. An attractor for a dissipatiVe system with 

one or more positive Lyapunov exponents is said 

to be "strange" or "chaotic". 

The signs of the Lyapunov exponents provide a 

qualitative picture of a system's dynamics. One- 

dimensional maps are characterized by a single 

Lyapunov exponent which is positive for chaos, 

zero for a marginally stable orbit, and negative for 

a periodic orbit. In a three-dimensional continuous 

dissipative dynamical system the only possible 

spectra, and the attractors they describe, are as 

follows: ( + , 0 , - ) ,  a strange attractor; (0 ,0 , - ) ,  a 

two-toms; (0, - ,  - ) ,  a limit cycle; and ( - ,  - ,  - ) ,  

a fixed point. Fig. 1 illustrates the expanding, 

"slower than exponential," and contracting char- 

acter of the flow for a three,dimensional system, 

the Lorenz model [23]. (All of the model systems 

that we will discuss are defined in table I.) Since 

Lyapunov exponents involve long-time averaged 

behavior, the short segments of the trajectories 

shown in the figure cannot be expected to accu- 

rately characterize the positive, zero, and negative 

exponents; nevertheless, the three distinct types of 

behavior are clear. In a continuous four-dimen- 

sional dissipative system there are three possible 

types of strange attractors: their Lyapunov spectra 

are (+ ,  + , 0 , - ) ,  ( + , 0 , 0 , - ) ,  and ( + , 0 , - , - ) .  

An example of the first type is Rossler's hyper- 

chaos attractor [24] (see table I). For a given 

system a change in parameters will generally 

change the Lyapunov spectrum and may also 

change both the type of spectrum and type of 

attractor. 

The magnitudes of the Lyapunov exponents 

quantify an attractor's dynamics in information 

theoretic terms. The exponents measure the rate at 

which system processes create or destroy informa- 

tion [10]; thus the exponents are expressed in bits 

of information/s or bits/orbit for a continuous 

system and bits/iteration for a discrete system. 

For example, in the Lorenz attractor the positive 

exponent has a magnitude of 2.16 bits/s (for the 

parameter values shown in table I). Hence if an 

initial point were specified with an accuracy of one 

part per million (20 bits), the future behavior 

could not be predicted after about 9 s [20 bits/(2.16 

bits/s)], corresponding to about 20 orbits. After 

this time the small initial uncertainty will essen- 

tially cover the entire attractor, reflecting 20 bits of 

new information that can be gained from an ad: 

ditional measurement of the system. This new 

information arises from scales smaller than our 

initial uncertainty and results in an inability to 

specify the state of the system except to say that it 

is somewhere on the attractor. This process is 

sometimes called an information gain- reflecting 

new information from the heat bath, and some- 

times is called an information loss-bits shifted 

out of a phase space variable "register" when bits 

from the heat bath are shifted in. 

The average rate at which information con- 

tained in transients is lost can be determined from 
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Fig. 1 .  The short term evolution of the separation vector between three carefully chosen pairs of nearby points is shown for the 

Lorenz attractor, a) An expanding direction (~1 > 0); b) a "slower than exponential" direction (~'2 = 0); C) a contracting direction 

( X 3  < 0 ) .  

the negative exponents• The asymptotic decay of a 

perturbation to the attractor is governed by the 

least negative exponent, which should therefore be 

the easiest of the negative exponents to estimatet. 

t W e  have been quite successful with an algorithm for de- 

termiuing the dominant  (smallest magnitude) negative expo- 

nent  from pseudo-experimental data (a single time series ex- 

tracted from the solution of a model system and treated as an 

experimental observable) for systems that are nearly integer- 

dimensional. Unfortunately, our approach, which involves mea- 

suring the mean decay rate of many induced perturbations of 

the dynamical system, is unlikely to work on many experimen- 

tal systems. There are several fundamental problems with the 

calculation of negative exponents from experimental data, but 

For the Lorenz attractor the negative exponent is 

so large that a perturbed orbit typically becomes 

indistinguishable from the attractor, by "eye", in 

less than one mean orbital period (see fig. 1). 

of greatest importance is that post-transient data may not 

contain resolvable negative exponent information and per- 
turbed data must ref l~t  properties of the unperturbed system, 

that is, perturbations must only change the state of the system 

(current values of the dynamical variables). The response of a 

physical system to a non-delta function perturbation is difficult 

to interpret, as an orbit separating from the attractor may 

reflect either a locally repelling region of the attractor (a 

positive contribution to the negative exponent) or the finite rise 

time of the perturbation. 
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Table I 

The model systems considered in this paper and their Lyapunov spectra and dimensions as computed from the equations of motion 

Lyapunov Lyapunov 

System Parameter spectrum dimension* 

values (b i t s / s ) t  

H~non: [25] 

~1 = 0.603 

X. +1 = 1 - aX;. + Yn { b = 1.4 h 2 = - 2.34 

Y. + 1 = bX. = 0.3 (bits/iter.) 

Rossler-chaos: [26] 

) (  = - ( Y  + Z )  [ a = 0 . 1 5  )k 1 = 0.13 

) ' =  X +  a Y  I b = 0.20 ~2 =0.00 

= b + Z ( X -  c) c = 10.0 h 3 = - 14.1 

Lorenz: [23] 

) ( =  o ( Y -  X)  [ o = 16.0 h 1 = 2.16 

~'= X (  R -  Z ) -  Y I R=45.92  X 2 =0.00 

= X Y  - bZ b = 4.0 ;k 3 = - 32.4 

Rossler-hyperchaos: [24] 

Jr'= - ( Y +  Z )  ( a = 0.25 A t = 0.16 

) ' =  X +  a Y +  W [ b =  3.0 X 2 =0.03 

= b + X Z  | c = 0.05 h 3 = 0.00 

if" = c W  - dZ  k d = 0.5 h4 = - 39.0 

Mackey-Glass: [27] 

( a = 0.2 h t = 6.30E-3 

j (  = a X ( t  + s ) - bX( t )  / b = 0.1 )~2 = 2.62E-3 

1 + [ X ( t  + s ) ]  c ) c = 10.0 IX31 < 8.0E-6 

s = 31.8 )'4 = - 1.39E-2 

1.26 

2.01 

2.07 

3.005 

3.64 

t A  mean orbital period is well defined for Rossler chaos (6.07 seconds) and for hyperchaos (5.16 seconds) for the parameter values 

used here. For the Lorenz attractor a characteristic time (see footnote-  section 3) is about 0.5 seconds. Spectra were computed for 

each system with the code in appendix A. 

~As defined in eq. (2). 

The Lyapunov spectrum is closely related to the 

fractional dimension of the associated strange at- 

tractor. There are a number [19] of different frac- 

tional-dimension-like quantities, including the 

fractal dimension, information dimension, and the 

correlation exponent; the difference between them 

is often small. It has been conjectured by Kaplan 

and Yorke [28, 29] that the information dimension 

d r is related to the Lyapunov spectrum by the 

equation 

Ei- -  1~i 
df=J+ I?~j+il ' (2) 

where j is defined by the condition that 

j j + l  

E ) ~ i >  0 and EX,<O. (3) 
i--1 i--1 

The conjectured relation between d r (a static 
property of an attracting set) and the Lyapunov 
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exponents appears to be satisfied for some model 

systems [30]. The calculation of dimension from 

this equation requires knowledge of all but the 

most negative Lyapunov exponents. 

3. Calculation of Lyapunov spectra from differential 

equations 

Our algorithms for computing a non-negative 

Lyapunov spectrum from experimental data are 

inspired by the technique developed indepen- 

dently by Bennetin et al. [8] and by Shimada and 

Nagashima [9] for determining a complete spec- 

trum from a set of differential equations. There- 

fore, we describe their calculation (for brevity, the 

ODE approach) in some detail. 

We recall that Lyapunov exponents are defined 

by the long-term evolution of the axes of an infini- 

tesimal sphere of states. This procedure could be 

implemented by defining the principal axes with 

initial conditions whose separations are as small as 

computer limitations allow and evolving these with 

the nonlinear equations of motion. One problem 

with this approach is that in a chaotic system we 

cannot guarantee the condition of small sep- 

arations for times on the order of hundreds of 

orbital periodst, needed for convergence of the 

spectrum. 

This problem may be avoided with the use of a 

phase space plus tangent space approach. A "fidu- 

cial" trajectory (the center of the sphere) is defined 

by the action of the nonlinear equations of motion 

on some initial condition. Trajectories.of points on 

the surface of the sphere are defined by the action 

of the linearized equations of motion on points 

infinitesimally separated from the fiducial trajec- 

tory. In particular, the principal axes are defined 

by the evolution via the linearized equations of an 

initially orthonormal vector frame anchored to the 

fiducial trajectory. By definition, principal axes 

defined by the linear system are always infinitesimal 

relative to the attractor. Even in the linear system, 

principal axis vectors diverge in magnitude, but 

this is a problem only because computers have a 

limited dynamic range for storing numbers. This 

divergence is easily circumvented. What has been 

avoided is the serious problem of principal axes 

finding the global "fold" when we really only want 

them to probe the local "stretch." 

To implement this procedure the fiducial trajec- 

tory is created by integrating the nonlinear equa- 

tions of motion for some post-transient initial 

condition. Simultaneously, the linearized equa- 

tions of motion are integrated for n different ini- 

tial conditions defining an arbitrarily oriented 

frame of n orthonormal vectors. We have already 

pointed out that each vector will diverge in magni- 

tude, but there is an additional singularity-in a 

chaotic system, each vector tends to fall along the 

local direction of most rapid growth. Due to the 

finite precision of computer calculations, the col- 

lapse toward a common direction causes the tan- 

gent space orientation of all axis vectors to become 

indistinguishable. These two problems can be 

overcome by the repeated use of the Gram- 

Schmidt reorthonormalization (GSR) procedure on 

the vector frame: 

Let the linearized equations of motion act on 

the initial frame of orthonormal vectors to give a 

set of v e c t o r s  { v  1 . . . . .  Vn). (The desire of each 

vector to align itself along the ~1 direction, and 

the orientation-preserving properties of GSR mean 

that the initial labeling of the vectors may be done 

arbitrarily.) Then GSR provides the following or- 

thonormal set { ~ . . . . .  v,' }: 

1D 1 

v~ = IIv,  ll ' 

v2- <v2,~>~ 
v~= 

tlv~ - <v~, ~ > ~ l l  ' 

tShould  the mean orbital period not be well-defined, a 

characteristic t ime can be either the mean time between inter- 

sections of a Poincar6 section or the time corresponding to a 

dominant  power spectral feature. 

v. - <~., ~ ._ ,>~ ._ ,  . . . . .  < v . , ~ > ~  

(4) 
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where ( , )  signifies the inner product. The 

frequency of reorthonormalization is not critical, 

so long as neither the magnitude nor the orienta- 

tion divergences have exceeded computer limita- 

tions. As a rule of thumb, GSR is performed on 

the order of once per orbital period. 

We see that G S R  never affects the direction of 

the first vector in a system, so this vector tends to 

seek out the direction in tangent space which is 

most  rapidly growing (components along other 

directions are either growing less rapidly or are 

shrinking). The second vector has its component  

along the direction of the first vector removed, and 

is then normalized. Because we are changing its 

direction, vector v 2 is not free to seek out the most 

rapidly growing direction. Because of the manner 

in which we are changing it, it also is not free to 

seek out the second most rapidly growing direc- 

t iont .  Note  however that the vectors ~ and if2 

span the same two-dimensional subspace as the 

vectors v x and v 2. In spite of  repeated vector 

replacements,  the space these vectors define continu- 

ally seeks out the two-dimensional subspace that is 

most  rapidly growing. The area defined by these 

vectors is proport ional  to 2 (x~+x2)t [8]. The length 

of vector v t is proportional to 2 x~t so that monitor- 

ing length and area growth allows us to determine 

both  exponents. In practice, as ~ and if2 are 

orthogonal,  we may determine h 2 directly from 

the mean rate of growth of the projection of vector 

v 2 on vector 4 .  In general, the subspace spanned 

by  the first k vectors is unaffected by GSR so that 

the long-term evolution of the k-volume defined 

by  these vectors is proportional to 2 ~ where # = 

~.ki_ 1 ~ i t.  Projection of the evolved vectors onto the 

new or thonormal  frame correctly updates the rates 

of growth of each of the first k-principal axes in 

tThis is clear when we consider that we may obtain different 
directions of vector 02 at some specified time if we exercise our 
freedom to choose the intermediate times at which GSR is 
performed. That is, beginning with a specified v 1 and 02 at 
time ti, we may perform replacements at times t~+ x and ti+2, 
obtaining the vectors ~, t~ and then v~', v~' or we may 
propagate directly to time ti+ 2, obtaining vl*, v~. t~' and v~ 
are not parallel; therefore, the details of propagation and 
replacement determine the orientation of 0 2 . 

turn, providing estimates of the k largest Lyapunov 

exponents.  Thus GSR allows the integration of the 

vector frame for as long as is required for spectral 

convergence. 

For t ran code for the ODE procedure appears in 

appendix A. We illustrate the use of this procedure 

for the Rossler attractor [26]. The spectral calcula- 

tion requires the integration of the 3 equations of 

mot ion and 9 linearized equations for on the order 

of 100 orbits of model time (a few cpu minutes on 

a VAX 11/780)  to obtain each exponent to within 

a few percent of its asymptotic value. In practice 

we consider the asymptotic value to be attained 

when the mandatory  zero exponent(s) are a few 

orders of magnitude smaller than the smallest 

positive exponent. The convergence rate of zero 

and positive exponents is about the same, and is 

much slower than the convergence rate of negative 

exponents.  Negative exponents arise from the 

nearly uniform attractiveness of the attractor which 

can often be well estimated from a few passes 

around an attractor, non-negative exponents arise 

f rom a once-per-orbit  stretch and fold process that 

must  be sampled on the order of hundreds of 

times (or more) for reasonable convergence. 

The method we have described for finding 

Lyapunov  exponents is perhaps more easily under- 

s tood for a discrete dynamical system. Here we 

consider the H6non map [25] (see table I). The 

linearization of this map is 

[,sx. 
=L/By .  , (5) 

where 

10] ,6, 

and X~ is the ( n -  1)st iterate of an arbitrary 

initial condition X 1. 

An or thonormal  frame of principal axis vectors 

such as ((0,1), (1,0)) is evolved by applying the 

product  Jacobian to each vector. For either vector 
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the operation may be written in two different 

ways. For example, for the vector (0,l) we have 

or, by regrouping the terms, 

In eq. (7) the latest Jacobi matrix multiplies 

each current axis vector, which is the initial vector 

multiplied by all previous Jacobi matrices. The 

magnitude of each current axis vector diverges, 

and the angular separation between the two vec- 

tors goes to zero. Fig. 2 shows that divergent 

behavior is visible within a few iterations. .GSR 

corresponds to the replacement of each current 

axis vector. Lyapunov exponents are computed 

Fig. 2. The action of the product Jacobian on an initially 

orthonormal vector frame is illustrated for the H&non map: (1) 

initial frame; (2) first iterate; and (3) second iterate. By the 

second iteration the divergence in vector magnitude and the 

angular collapse of the frame are quite apparent. Initial condi- 

tions were chosen so that the angular collapse of the vectors 

was uncommonly slow. 

from the growth rate of the length of the first 

vector and the growth rate of the area defined by 

both vectors. 

In eq. (8) the product Jacobian acts on each of 

the initial axis vectors. The columns of the product 

matrix converge to large multiples of the eigenvec- 

tor of the biggest eigenvalue, so that elements of 

the matrix diverge and the matrix becomes singu- 

lar. Here GSR corresponds to factoring out a large 

scalar multiplier of the matrix to prevent the mag- 

nitude divergence, and doing row reduction with 

pivoting to retain the linear independence of the 

columns. Lyapunov exponents are computed from 

the eigenvalues of the long-time product matrix?. 

We emphasize that Lyapunov exponents are not 

local quantities in either the spatial or temporal 

sense. Each exponent arises from the average, with 

respect to the dynamical motion, of the local de- 

formation of various phase space directions. Each 

is determined by the long-time evolution of a 

singZe volume element. Attempts to estimate expo- 

nents by averaging local contraction and expan- 

sion rates of phase space are likely to fail at the 

point where these contributions to the exponents 

are combined. In fig. 3a we show vector vi at each 

renormalization step for the Lorenz attractor over 

the course of several hundred orbits [32]. The 

apparent multivaluedness of the most rapidly 

growing direction (in some regions of the attrac- 

tor) shows that this direction is not simply a 

function of position on the attractor. While this 

direction is often nearly parallel to the flow on the 

Lorenz attractor (see fig. 3b) it is usually nearly 

transverse to the flow for the Rossler attractor. We 

conclude that exponent calculation by averaging 

local divergence estimates is a dangerous proce- 

dure. 

+We are aware of an attempt to estimate Lyapunov spectra 

from experimental data through direct estimation of local 

Jacobian matrices and formation of the long time product 

matrix [31]. This calculation is essentially the same as ours (we 

avoid matrix notation by diagonalizing the system at each step) 

and has the same problems of sensitivity to external noise, and 

to the amount and resolution of data required for accurate 

estimates. 
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Fig. 3. A modification to the ODE spectral code (see appendix A) allows us to plot the running direction of greatest growth (vector 

v~ ) in the Lorenz attractor. In (a), infrequent renormalizations confirm that this direction is not single-valued on the attractor. In (b), 

frequent renormalizations show us that this direction is usually nearly parallel to the flow. In the Rossler attractor, this direction is 

usually nearly orthogonal to the flow. 

4. An approach to spectral estimation for 

experimental data 

Experimental data typically consist of discrete 

measurements of a single observable. The well- 

known technique of phase space reconstruction 

with delay coordinates [2, 33, 34] makes it possible 

to obtain from such a time series an attractor 

whose Lyapunov spectrum is identical to that of 

the original attractor. We have designed a method, 

conceptually similar to the ODE approach, which 

can be used to estimate non-negative Lyapunov 

exponents from a reconstructed attractor. To un- 

derstand our method it is useful to summarize 

what we have discussed thus far about exponent 

calculation. 

Lyapunov exponents may be defined by the 

phase space evolution of a sphere of states. At- 

tempts to apply this definition numerically to 

equations of motion fail since computer limita- 

tions do not allow the initial sphere to be con- 

structed sufficiently small. In the ODE approach 

one avoids this problem by working in the tangent 
space of a fiducial trajectory so as to obtain always 

infinitesimal principal axis vectors. The remaining 

divergences are easily eliminated with Gram- 

Schmidt reorthonormalization. 

The ODE approach is not directly applicable to 

experimental data as the linear system is not avail- 

able. All is not lost provided that the linear ap- 

proximation holds on the smallest length scales 

defined by our data. Our approach involves 

working in a reconstructed attractor, examining 

orbital divergence on length scales that are always 

as small as possible, using an approximate GSR 

procedure in the reconstructed phase space as 
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necessary. To simplify the ensuing discussion we 

will assume that the systems under consideration 

possess at least one positive exponent. 

To estimate X1 we in effect monitor the long-term 

evolution of a single pair of nearby orbits. Our 

reconstructed attractor, though defined by a single 

trajectory, can provide points that may be consid- 

ered to lie on different trajectories. We choose 

points whose temporal separation in the original 

time series is at least one mean orbital period, 

because a pair of points with a much smaller 

temporal separation is characterized by a zero 

Lyapunov exponent. Two data points may be con- 

sidered to define the early state of the first prin- 

cipal axis so long as their spatial separation is 

small. When their separation becomes large we 

would like to perform GSR on the vector they 

define (simply normalization for this single vector), 

which would involve replacing the non-fiducial 

data point with a point closer to the fiducial point, 

in the same direction as the original vector. With 

finite amounts of data, we cannot hope to find a 

replacement point which falls exactly along a 

specified line segment in the reconstructed phase 

space, but we can look for a point that comes 

close. In effect, through a simple replacement pro- 

cedure that attempts to preserve orientation and 

minimize the size of replacement vectors, we have 

monitored the long-term behavior of a single prin- 

cipal axis vector. Each replacement vector may be 

evolved until a problem arises, and so on. This 

leads us to an estimate of X1. (See fig. 4a.) 

The use of a finite amount of experimental data 

does not allow us to probe the desired infinitesimal 

length scales of an attractor. These scales are also 

inaccessible due to the presence of noise on finite 

length scales and sometimes because the chaos- 

producing structure of the attractor is of negligible 

spatial extent. A discussion of these points is de- 

ferred until section 7.1. 

An estimate of the sum of the two largest expo- 

nents X1 + X 2 is similarly obtained. In the ODE 

procedure this involves the long-term evolution of 

a fiducial trajectory and a pair of tangent space 

vectors. In our procedure a triple of points is 

evolved in the reconstructed attractor. Before the 

area element defined by the triple becomes com- 

parable to the extent of the attractor we mimic 

GSR by keeping the fiducial point, replacing the 

remainder of the triple with points that define a 

smaller area element and that best preserve the 

element's phase space orientation. Renormaliza- 

tions are necessary solely because vectors grow too 

large, not because vectors will collapse to indis- 

tinguishable directions in phase space (this is un- 

likely with the limited amounts of data usually 

available in experiments). The exponential growth 

rate of area elements provides an estimate of X1 

+ X 2. (See fig. 4b.) 

Our approach can be extended to as many non- 

negative exponents as we care to estimate: k + 1 

points in the reconstructed attractor define a k- 

volume element whose long-term evolution is pos- 

sible through a data replacement procedure that 

attempts to preserve phase space orientation and 

probe only the small scale structure of the attrac- 

tor. The growth rate of a k-volume element pro- 

vides an estimate of the sum of the first k 

Lyapunov exponents. 

In principle we might attempt the estimation of 

negative exponents by going to higher-dimensional 

volume elements, but information about contract- 

ing phase space directions is often impossible to 

resolve. In a system where fractal structure can be 

resolved, there is the difficulty that the volume 

elements involving negative exponent directions 

collapse exponentially fast, and are therefore 

numerically unstable for experimental data (see 

section 7.1). 

5. Spectnd algorithm implementation 

We have implemented several versions of our 

algorithms including simple "fixed evolution time" 

programs for ~'1 and X1 ÷ hE, "variable evolution 

time" programs for X I + ~ : ,  and "interactive" 

programs that are used on a graphics machinet. 

tThe interactive program avoids the profusion of input 
parameters required for our increasingly sophisticated expo- 
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In appendix B we include Fortran code and 

documentation for the h 1 fixed evolution time 

program. This program is not sophisticated, but it 

is concise, easily understood, and useful for learn- 

ing about our technique. We do not include the 

fixed evolution time code for )~x + )~2 (though it is 

briefly discussed at the end of appendix B) or our 

other programs, but we will supply them to inter- 

ested parties. We can also provide a highly effi- 

cient data base management algorithm that can be 

used in any of our programs to eliminate the 

expensive process of exhaustive search for nearest 

neighbors. We now discuss the fixed evolution 

time program for A t and the variable evolution 

time program for ~x + h2 in some detail. 

5.1. Fixed  evolution time program for )~1 

Given the time series x(t),  an m-dimensional 

phase portrait is reconstructed with delay coordi- 

nates [2, 33, 34], i.e., a point on the attractor is 

given by { x ( t ) ,  x ( t  + ~') . . . . .  x ( t  + [m - 1]~')} 

where z is the almost arbitrarily chosen 

delay time. We locate the nearest neighbor (in 

the Euclidean sense) to the initial point 

{ x ( t  o) . . . . .  X(to + [ m -  1]~)} and denote the dis- 

tance between these two points L( to) .  At a later 

time tt, the initial length will have evolved to 

length L'(tx). The length element is propagated 

through the attractor for a time short enough so 

that only small scale attractor structure is likely to 

be examined. If the evolution time is too large we 

nent  programs. This program allows the operator to observe: 

the attractor, a length or area element evolving over a range of 

times, the best replacement points available over a range of 

times, and so forth. Each of these is seen in a two or three- 

d imensional  projection (depending on the graphical output  

device) with terminal output  providing supplementary informa- 

tion about  vector magnitudes and angles in the dimension of 

the attractor reconstruction. Using this information the oper- 

ator  chooses appropriate evolution times and replacement 

points. The program is currently written for a Vector General 

3405 but  may  easily be modified for use on other graphics 

machines.  A 16mm movie summarizing our algorithm and 

showing the operation of the program on the Lorenz attractor 

has  been made by one of the authors (A.W.). 

may see L'  shrink as the two trajectories which 

define it pass through a folding region of the 

attractor. This would lead to an underestimation 

of hi- We now look for a new data point that 

satisfies two criteria reasonably well: its sep- 

aration, L(t l ) ,  from the evolved fiducial point is 

small, and the angular separation between the 

evolved and replacement elements is small (see fig. 

4a). If an adequate replacement point cannot be 

found, we retain the points that were being used. 

This procedure is repeated until the fiducial trajec- 

tory has traversed the entire data file, at which 

point we estimate 

M L , ( t k )  
Y'~ log 2 , (9) 

)k I = t M _  t o L ( t t , _x )  k = l  

where M is the total number of replacement steps. 

In the fixed evolution time program the time step 

A = tk+ 1 - - t  k (EVOLV in the Fortran program) 

between replacements is held constant. In the limit 

of an infinite amount of noise-free data our proce- 

dure always provides replacement vectors of infini- 

tesimal magnitude with no orientation error, and 

)k 1 is obtained by definition. In sections 6 and 7 we 

discuss the severity of errors of orientation and 

finite vector size for finite amounts of noisy experi- 

mental data. 

5.2. Variable evolution t ime program for  )~1 + )~ 2 

The algorithm for estimating h x + 1~2 is similar 

in spirit to the preceeding algorithm, but is more 

complicated in implementation. A trio of data 

points is chosen, consisting of the initial fiducial 

point and its two nearest neighbors. The area 

A ( t o )  defined by these points is monitored un- 

til a replacement step is both desirable and possi- 

b l e -  the evolution time is variable. This mandates 

the use of several additional input parameters: a 

minimum number of evolution steps between re- 

placements (JUMPMN), the number of steps to 

evolve backwards (HOPBAK) when a replacement 

site proves inadequate, and a maximum length or 

area before replacement is attempted. 
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Fig. 4. A schematic representation of the evolution and replacement procedure used to estimate Lyapunov exponents from 
experimental data. a) The largest Lyapunov exponent is computed from the growth of length elements. When the length of the vector 
between two points becomes large, a new point is chosen near the reference trajectory, minimizing both the replacement length L and 
the orientation change ~. b) A similar procedure is followed to calculate the sum of the two largest Lyapunov exponents from the 
growth of area elements. When an area element becomes too large or too skewed, two new points are chosen near the reference 
trajectory, minimizing the replacement area A and the change in phase space orientation between the original and replacement area 
elements. 

Evolut ion continues until a "p rob l em"  arises. In 

our  implementa t ion  the problem list includes: a 

pr incipal  axis vector grows too large or too rapidly, 

the area grows too rapidly, and the skewness of  

the area element exceeds a threshold value. 

Whenever  any  of  these criteria are met, the triple 

is evolved backwards  H O P B A K  steps and a re- 

p lacement  is at tempted.  If  replacement fails, we 

will pull the triple back another H O P B A K  steps, 

and  try again. This process is repeated, if neces- 

sary, until the triple is getting uncomfor tably  close 

to the previous replacement site. At  this point  we 

take the best  available replacement point, and 

j u m p  forward  at least J U M P M N  steps to start the 

next  evolution. At  the first replacement time, tl, 

the two points  not  on the fiducial trajectory are 

replaced with two new points to obtain a smaller 

area A( t t )  whose orientation in phase space is 

mos t  nearly the same as that of  the evolved area 

A' ( t l ) .  Determining  the set of  replacement points 

that  best  preserves area orientation presents no 

fundamenta l  difficulties. 

P ropaga t ion  and replacement steps are repeated 

(see fig. 4b) until the fiducial trajectory has 

traversed the entire data  file at which point  we 

est imate 

" 

1 _ _  E l o g 2 -  (10) 
~1 + ~2  = tM -- to A ( t k , x  ) , 

k = l  

where t k is the time of  the k th replacement step. 

It  is of ten possible to verify our  results for X~ 

th rough  the use of  the h 1 + h  2 calculation. For  
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attractors that are very nearly two dimensional 

there is no need to worry about preserving orienta- 

tion when we replace triples of points. These ele- 

ments may rotate and deform within the plane of 

the attractor, but replacement triples always lie 

within this same plane. Since X 2 for these attrac- 

tors is zero, area evolution provides a direct esti- 

mate for h 1. With experimental data that appear 

to define an approximately two-dimensional at- 

tractor, an independent calculation of df from its 

definition (feasible for attractors of dimension less 

than three [35]) may justify this approach to esti- 

mating hx. 

6. Implementation details 

6.1. Selection of embedding dimension and delay 

time 

In principle, when using delay coordinates to 

reconstruct an attractor, an embedding [34] of the 

original attractor is obtained for any sufficiently 

large m and almost any choice of time delay ~-, but 

in practice accurate exponent estimation requires 

some care in choosing these two parameters. We 

should obtain an embedding if m is chosen to be 

greater than twice the dimension of the underlying 

attractor [34]. However, we find that attractors 

reconstructed using smaller values of m often 

yield reliable Lyapunov exponents. For example, 

in reconstructing the Lorenz attractor from its 

x-coordinate time series an embedding dimension 

of 3 is adequate for accurate exponent estimation, 

well below the sufficient dimension of 7 given by 

ref. [3411". When attractor reconstruction is per- 

formed in a space whose dimension is too low, 

"catastrophes" that interleave distinct parts of the 

attractor are likely to restflt. For example, points 

fWe have found that it is often possible to ignore several 

components of evolving vectors in computing their average 
exponential rate of growth: keeping two or more components 

of the vector often suffices for this purpose. As our discussion 

of "catastrophes" will soon make clear, the search for replace- 

ment points most often requires that all of the delay coordi- 

nates be used. 

on separate lobes of the Lorenz attractor may be 

coincident in a two-dimensional reconstruction of 

the attractor. When this occurs, replacement ele- 

ments may contain points whose separation in the 

original attractor is very large; such elements are 

liable to grow at a dramatic rate in our recon- 

structed attractor in the short term, providing an 

enormous contribution to the estimated exponent. 

As these elements tend to blow up almost im- 

mediately, they are also quite troublesome to re- 

place,.  

If m is chosen too large we can expect, among 

other problems, that noise in the data will tend to 

decrease the density of points defining the attrac- 

tor, making it harder to find replacement points. 

Noise is an infinite dimensional process that, un- 

like the deterministic component of the data, flUs 

each available phase space dimension in a re- 

constructed attractor (see section 7.2). Increasing 

m past what is minimally required has the effect of 

unnecessarily increasing the level of contamination 

of the data. 

Another problem is seen in a three-dimensional 

reconstruction of the Htnon attractor. The recon- 

structed attractor looks much like the original 

attractor sitting on a two-dimensional sheet, with 

this sheet showing a simple twist in three-space. 

We expect that this behavior is typical; when m is 

increased, surface curvature increases ~. Increasing 

m therefore makes it increasingly difficult to satisfy 

orientation constraints at replacement time, as the 

attractor is not sufficiently flat on the smallest 

length scales filled out by the fixed quantity of 

data. It is advisable to check the stationarity of 

*If two points lie at opposite ends of an attractor, it is 

possible that their separation vector lies entirely outside of the 

attractor so that no orientation preserving replacement can be 

found. If this goes undetected, the current pair of points is 

likely to be retained for an orbital period or longer, until these 

points are accidentally thrown close together. 

*A simple study for the Htnon system showed that for 
reconstructions of increasing dimension the mean distance be- 

tween the points defining the attractor rapidly converged to an 

attractor independent value. The fold put in each new phase 

space direction by the reconstruction process tended to make 

the concept of "nearby point in phase space" meaningless for 

this finite data set. 
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Fig. 5. The strange attractor in the Belousov-Zhabotinskii reaction is reconstructed by the use of delay coordinates from the bromide 

ion concentration time series [2]. The delays shown are a) ~ ;  b) ½; and c) ~ of a mean orbital period. Notice how the folding region of 
the attractor evolves from a featureless "pencil" to a large scale twist. 

results with m to ensure robust exponent esti- 

mates. 

Choice of delay time is also governed by the 

necessity of avoiding catastrophes. In our data [2] 

for the Belousov-Zhabotinskii chemical reaction 

(see fig. 5) we see a dramatic difference in the 

reconstructed attractors for the choices T = 1/12,  

~" -- 1 / 2  and I" = 3 / 4  of the mean orbital period. 

In the first case we obtain a "pencil-like" region 

which obscures the folding region of the attractor. 

This structure opens up and grows larger relative 

to the total extent of the attractor for the larger 

values of ~', which is clearly desirable for our 

algorithms. We choose • neither so small that the 

attractor stretches out along the hne x = y - - z  = 

. . . ,  nor so large that m z is much larger than the 

orbital period. A check of the stationarity of expo- 

nent estimates with t- is again recommended. 

6.2. Evolution times between replacements 

Decisions about propagation times and replace- 

ment steps in these calculations depend on ad- 

ditional input parameters, or in the case o f  the 

interactive program, on the operator's judgement. 

(The stationarity of )~l values over ranges of all 

algorithm parameters is illustrated for the Rossler 

attractor in figs. 6a-6d.) Accurate exponent calcu- 

lation therefore requires the consideration of the 

following interrelated points: the desirability of 

maximizing evolution times, the tradeoff between 

minimizing replacement vector size and minimiz- 

ing the concomitant orientation error, and the 

manner  in which orientation errors can be ex- 

pected to accumulate. We now discuss these points 

in turn. 

Maximizing the propagation time of volume ele- 

ments is highly desirable as it both reduces the 

frequency with which orientation errors are made 

and reduces the cost  of the calculation consider- 

ably (element propagation involves much less 

computat ion than element replacement). In our 

variable evolution time program this is not much 

of a problem, as replacements are performed only 

when deemed necessary (though the program has 

been made conservative in such judgments). In the 

interactive algorithm this is even less of a problem, 

as an experienced operator can often process a 

large file with a very small number of replace- 

ments. The problem is severe, however, in our 

fixed evolution time program, which is otherwise 

desirable for its extreme simplicity. In this pro- 

gram replacements are attempted at fixed time 

steps, independent of the behavior of the volume 

element. 
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Fig. 6. Stationarity of ~t for Rossler attractor data (8192 points spanning 135 orbits) for the fixed evolution time program is shown 
for the input parameters: a) Tau (delay time); b) evolution time between replacement steps; c) maximum length of replacement vector 
length allowed; and d) minimum length of replacement vector allowed. The correct value of the positive exponent is 0.13 bits/s and is 
shown by the horizontal line in these figures. 

Our numerical results on noise-free model sys- 

tems have produced the expected results: too fre- 

quent replacements cause a dramatic loss of phase 

space orientation, and too infrequent replacements 

allow volume elements to grow overly large and 

exhibit folding. For  the Rossler, Lorenz, and the 

Belousov-Zhabotinskii  attractors, each of which 

has a once-per-orbit chaos generating mechanism, 

we find that varying the evolution time in the 

range ½ to 1½ orbits almost always provides stable 

exponent  estimates. In systems where the mecha- 

nism for chaos is unknown, one must cheek for 

exponent  stability over a wide range of evolution 

times. For  such systems it is perhaps wise to 

employ only the variable evolution time program 

or the interactive program. 

There are other criteria that may affect replace- 

ment times for variable evolution time programs 

such as avoiding regions of high phase space veloc- 

ity, where the density of replacement points is 

likely to be small. Such features are easily in- 

tegrated into our programs. 

In the Lorenz attractor, the separatrix between 

the two lobes of the attractor is not a good place 

to find a replacement dement.  An element chosen 

here is likely to contain points that will almost 
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immediately fly to opposite lobes, providing an 

enormous contribution to an exponent estimate. 

This effect is certainly related to the chaotic nature 

of the attractor, but is not directly related to the 

values of the Lyapunov exponents. This has the 

same effect as the catastrophes that can arise from 

too low a value of embedding dimension as dis- 

cussed in section 6.1. While we are not aware of 

any foolproof approach to detecting troublesome 

regions of attractors it may be possible for an 

exponent program to avoid catastrophic replace- 

ments. For example, we may monitor the future 

behavior of potential replacement points and re- 

ject those whose separation from the fiducial 

trajectory is atypical of their neighbors. 

6.3. Shorter lengths versus orientation errors 

With a given set of potential replacement points 

some compromise will be necessary between the 

goals of minimizing the length of replacement 

vectors and minimizing changes in phase space 

orientation. On the one hand, short vectors may in 

general be propagated further in time, resulting in 

less frequent orientation errors. On the other hand, 

we may wish to minimize orientation errors di- 

rectly. We must also consider that short vectors 

are likely t o  contain relatively large amounts of 

noise. 

In the fixed evolution time program the search 

for replacements involves looking at successively 

larger length scales for a minimal orientation 

change. In the variable evolution time program, 

points satisfying minimum length and orientation 

standards are assigned scores based on a linear 

weighting (with heuristically chosen weighting fac- 

tors) of their lengths and orientation changes. We 

have also performed numerical studies by search- 

ing successively larger angular displacements while 

attempting to satisfy a minimum length criterion. 

Fortunately, we find that these different ap- 

proaches perform about equally well. Attempts to 

solve the tradeoff problem analytically have sug- 

gested "optimal" choices of initial vector magni- 

tude, but due to the system dependent nature of 

these calculations, we cannot be confident that our 

results are of general validity. 

The problem of considering the magnitude of 

evolved or replacement vectors is complicated by 

the fact that at a given point in an attractor, the 

orientation of a vector can determine whether or 

not it is too large. If we consider a system with an 

underlying 1-D map such as the Rossler attractor, 

it is the magnitude of the vector's component 

transverse to the attractor that is relevant. In this 

case our algorithm is closely related to obtaining 

the Lyapunov exponent of the map through a 

determination of its local slope profile [13]. The 

transverse vector component plays the role of the 

chord whose image under the map provides a 

slope estimate. This chord should obviously be no 

longer than the smallest resolvable structure in the 

1-D map, a highly system-dependent quantity. 

Since the underlying maps of commonly studied 

model and physical systems have not had much 

detailed structure on small length scales (consider 

the logistic equation, cusp maps, and the Be- 

lousov-Zhabotinskii map [2]) we have somewhat 

arbitrarily decided to consider 5-10% of the trans- 

verse attractor extent as the maximum acceptable 

magnitude of a vector's transverse component. 

6.4. The accumulation of orientation errors 

The problem of the accumulation of orientation 

errors is reasonably well understood. Consider for 

simplicity a very nearly two-dimensional system 

with a ( + , 0 , - )  spectrum, such as the Lorenz 

attractor. Post-transient data traverse the subspace 

characterized by the positive and zero exponents. 

Length propagation with replacement on the at- 

tractor is clearly susceptible to orientation error 

that will mix contributions from the positive and 

zero exponents in some complex, system depen- 

dent manner. Now consider the n th replacement 

step (see fig. 4a) with an orientation change within 

the plane of the attractor of 0~. Further, let the 

angle the replacement vector makes with respect to 

the vector t¢ 1 be ~n- We make the crucial assump- 

tion that vectors are propagated for a time t that 
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is long enough that growth along directions d 1 and 

d 2 are reasonably well characterized by the expo- 

nents h 1 and h 2 respectively. Then for the new 

replacement vector 

L(t . )  = L ( ~  cos #. + t¢2 sin # . )  (11) 

and at the next replacement 

L' ( tn+l )  = L(tCx (cos ~. )2 xa, + ~(s in  ~n)2X=tr), 

(12) 

where t r is the time between successive replace- 

ment steps (tn+ 1 - t.).  The contribution to eq. (9) 

from this evolution is then 

½ log2 [COS 2 7~n22h'tr + sin E 7~.22a2',] (13) 

and the angle the next replacement vector L ( t .  + 1) 

makes with ~ is 

~n+l  = arctan (b" tan # . )  + 19.+1, (14) 

where 

b = 2 (a2-a*)tr. (15) 

If we assume all angles are small compared to 

unity and set #0 = ~90, eq. (14) implies that 

~n = ~ ~n-m bm~ (16) 
m=O 

If the orientation changes have zero mean and are 

uncorrelated from replacement to replacement then 

an average over the changes gives 

to be 

a~.l - # 2  [ b E ( I - b E N ' ) ]  

hi 2(ln 2)NtAltr Nt 1 b E ' 

(18) 

where N t is the total number of replacement steps. 

If there is no degeneracy, i.e., bE<< 1, eqs. (17) 

and (18) show that orientation errors do not accu- 

mulate, i.e, there is no N t dependence, and our 

fractional error in h I is 

a>,l - # 2  

~'1 = 2(ln2)~.ltr" (19) 

For  the Lorenz attractor, b 2 has a value of about 

0.33 for an evolution time of one orbit, so an 

orientation error of about 19 degrees results in a 

10% error in X1. If we can manage to evolve the 

vector for two orbits, the permissible initial orien- 

tation error is about 27 degrees, and so on. We see 

that a given orientation error at replacement time 

shrinks to a value negligible compared to the next 

orientation error, provided that propagation times 

are long enough. Orientation errors do not accu- 

mulate because there is no memory of previous 

errors. 

This calculation may be generalized to an at- 

tractor with an arbitrary Lyapunov spectrum and 

a similar result is obtained. The ease of estimating 

the i th exponent depends on how small the quan- 

tity 2 (x'*~-x,)tr is. Problems arise when successive 

exponents are very close or identical. Hyperchaos, 

with a spectrum of [0.16, 0.03, 0.00, = - 40] bi ts /s  

and an orbital period of about 5.16 s, has an easily 

determinable first exponent, but distinguishing ~ 2 

from A 3 is more difficult. 

( ~ff)= O~(1-  bE"+ z) 
1 - b 2 ' (17) 

where 0 M is an angular change on replacement on 

the order of  the A N G L M X  parameter in the fixed 

evolution time program of appendix B. From eqs. 

(9), (13), and (17) we find the fractional error in 2k 1 

7. Data requirements and noise 

7.1. Probing small length scales 

As we have already pointed out, the infinitesi- 

mal length scales on which the definition of 

Lyapunov exponents rely are inaccessible in ex- 
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Fig. 7. Experimental data for two different Belousov-Zhabotinskii  systems shows chaos on large and small length scales respectively. 

In the Texas attractor [2] a), the separation between a single pair of  points is shown for one orbital period. In the French attractor 

[36]; b), the separation between a pair of  points is shown for two periods. Estimation of  Lyapunov exponents is quite difficult for the 

latter system. 

perimental data. There are three somewhat related 

reasons why this is so: (1) a finite amount of  

attractor data can only define finite length scales; 

(2) the stretching and folding that is the chaotic 

element of  a flow may  occur on a scale small 

compared to the extent of  the attractor; and (3) 

noise  defines a length scale below which sep- 

arations are meaningless. We discuss each of  these 

problems in turn and then consider whether expo- 

nent est imation is possible in spite of  them. 
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The finiteness of a data set means that the fixed 

evolution time program undoubtedly allows prin- 

cipal axis vectors to grow far too large on occasion 

and also to completely lose the proper phase space 

orientation, yet we almost invariably obtain accu- 

rate exponent estimates for noise-free model sys- 

tems defined by small data sets. This is because on 

the time scale of several orbital periods, orbital 

divergences may be moderately well characterized 

by Lyapunov exponents in sufficiently chaotic sys- 

tems. Averaging many such segments together in 

our algorithms is therefore likely to mask infre- 

quent large errors. 

The problem of "chaos on a small length scale" 

is a system dependent one. Consider a system such 

as the Rossler attractor in which chaos generation 

occurs on a relatively large length scale. Here it is 

quite easy to distinguish between true exponential 

divergence of nearby orbits and a temporary diver- 

gence due to local changes in the attractor's shape. 

If, however, the Rossler attractor were "crossed" 

with a periodic motion of sufficiently large ampli- 

tude, we would lose the ability to detect the mech- 

anism for chaos as it would manifest itself only on 

length scales that we must regard as suspiciously 

small. For such a system it is difficult to conceive 

of any means of recovering exponents from experi- 

mental data. 

We have observed this problem to some degree 

for the Couet te-Taylor  system, which makes a 

transition from motion on a 2-torus to chaos. In 

such a system chaos can arise from small stretches 

and folds on the torus. When we use the interac- 

tive program to monitor the evolution of lengths in 

the Couet te-Taylor  attractors, we seem to observe 

this effect; that is, the separation vectors do not 

exhibit dramatic growth but instead oscillate in 

magnitude. Such an oscillation could indicate a 

stretching and folding so that we might wish to 

at tempt a replacement, or it could simply indicate 

a variation of the attractor's shape, which should 

be ignored. In figs. 7a and 7b we show experimen- 

tal data for attractors of the large scale [2] and 

small scale [36] varieties, both arising from the 

Belousov-Zhabotinskii  system. Exponent estima- 

tion in the latter case is quite difficult. The pres- 

ence of external noise on length scales as small as 

the chaos generation mechanism will of course 

further complicate exponent calculations. 

Even though infinitesimal length scales are not 

accessible, Lyapunov exponent estimation may still 

be quite feasible for many experimental systems. 

The same problem arises in calculations of the 

fractal dimension of strange attractors. Fractal 

structure does not exist in nature, where it is 

truncated on atomic scales, nor does it exist in any 

computer  representation of a dynamical system, 

where finite precision truncates scaling. In these 

calculations we hope that as the smallest accessible 

length scales are approached, scaling converges to 

the zero length scale limit. Similarly, provided that 

chaos production is nearly the same on infinitesi- 

mal and the smallest accessible length scales, our 

calculations on the small scales may provide accu- 

rate results. A successful calculation requires that 

one has enough data to approach the appropriate 

length scales, ignores anything on the length scale 

of the noise, and has an attractor with a macro- 

scopic stretching/folding mechanism. 

7.2. Noise 

The effects of noise in our algorithms fall into 

two categories which we have named the "statisti- 

cal" and the "catastrophic". The former category 

deals with such problems as point-to-point jitter 

that cause us to estimate volumes inaccurately; 

this was the motivation for avoiding highly skewed 

replacement elements. Catastrophes can arise even 

in the absence of noise either from too low an 

embedding dimension (section 6.1), or from too 

little data compounded with high attractor com- 

plexity (section 6.2), In the presence of noise, 

catastrophes occur because noise drives a faraway 

data point into the replacement "arena." Noise in 

physical systems can he broken into two cate- 

gories: measurement noise, i.e., simple lack of 

resolution, and dynamical noise, i.e., fluctuations 

in the state of the system or its parameters which 

enter into the dynamics. In the former case it is 
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clear that the system possesses well defined expo- 

nents that are potentially recoverable. Strictly 

speaking, in the latter case Lyapunov exponents 

are not well defined, but some work [37] has 

suggested that a system may be characterized by 

numbers that are the Lyapunov exponents for the 

noise-free system averaged over the range of 

noise-induced states. 

Our first study of the effects of noise on our 

algorithms involved adding dynamical noise to the 

Hrnon attractor, that is, a small uniformly distrib- 

uted random number was added to each coordi- 

nate as the map was being iterated. These data 

were then processed with the fixed evolution time 

program. For noise of sufficiently large amplitude, 

hi could not be accurately determined. Specifi- 

cally, the average initial separation between re- 

placement points grew with the noise level (noise 

causing diffusion of the 1.26-dimensional attractor 

into the two-dimensional phase space) and the 

large final separations were not much affected by 

the noise. The result was an underestimate of the 

positive exponent. A nearly identical result was 

obtained for the addition of measurement noise 

(addition of a random term to each element of the 

time series, after the entire series has been gener- 

ated) to the Hrnon attractor. 

It is ironic that measurement noise is not a 

problem unless large amounts of data are available 

to define the attractor. Noise is only detectable 

when the point density is high enough to provide 

replacements near the noise length scale. This sug- 

gests a simple approach to the noise problem, 

simply avoiding principal axis vectors whose mag- 

nitude is smaller than some threshold value we 

select. If this value is chosen to be somewhat larger 

than the noise level, the fractional error in de- 

termining initial vector magnitudes may be re- 

duced to an acceptable level. Avoiding noisy length 

scales is not a trivial matter, as noise may not be 

of constant amplitude throughout an attractor and 

the noise length scale may be difficult to de- 

termine. Again, this approach can only work if 

scales larger than the noise contain accurate infor- 

mation about orbital divergence rates in the zero 

length scale limit. In fig. 6d we confirm that a 

straightforward small distancg cutoff works in the 

case of the Rossler attractor by showing stationar- 

ity of the estimated exponent over a broad range 

of cutoff values. 

7.3. Low pass filtering 

Another approach to reducing the effects of 

noise, closely related to the use of a small distance 

cutoff, involves low pass filtering of the data be- 

fore beginning exponent estimation. Rather severe 

filtering may be possible for systems with a once- 

per-orbit chaos producing mechanism-the filter 

cutoff approaching (orbital period)- x. Filtering can 

be expected to distort shapes, eliminate small scale 

structure, and scramble phase, but we do not 

expect the divergent nature of the attractor to be 

lost. 

A demonstration of the use of filtering for the 

Belousov-Zhabotinskii attractor is shown in fig. 8. 

Filtering dramatically altered the shape of the 

reconstructed attractor, but the estimated values of 

hi differed by at most a few percent for reasonable 

cutoff frequencies. A similar calculation for the 

Rossler attractor indicated that the low-frequency 

cutoff could be moved all the way down to the 

attractor's sole large spectral feature before the 

exponent estimate showed any noticeable effect. 

Results for the Lorenz attractor, with its much 

more complicated spectral profile, are not quite as 

impressive. An analytical proof of the low pass 

filtering invariance of Lyapunov exponents (with 

conditions on the cutoff frequency relative to the 

orbital period and the replacement frequency) has 

proved elusive. Of course, low pass filtering fails to 

help with exponent estimation if there is substan- 

tial contamination of the data at frequencies lower 

than the filter cutoff. In a simple study of multi- 

periodic data with added white noise [3] the esti- 

mated exponent returned (very nearly) to zero for 

a sufficient amount of filtering. It thus appears 

that in some cases external noise can be dis- 

tinguished from chaos by this procedure. 
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Fig. 8. a) Unfiltered experimental data for the Belousov-Zhabotinskii reaction [2]; b) the same data, low-pass filtered with a filter 

cutoff of 0.046 Hz, compared to the mean orbital frequency of 0.009 Hz. Our estimate of X1 for these data was only 5% lower than the 

estimate from the unfiltered data. Replacement frequencies in the region of stationarity for these results were approximately 0.005 Hz. 

c) the data are over-filtered at 0.023 H_z. h 1 differs by only 20% from the exponent estimate for unfiltered data. 

7.4. Data requirements 

We now address the important questions of the 

quality and quantity of experimental data required 

for accurate exponent calculation. The former 

question is more easily disposed of-resolution 

requirements are so highly system dependent that 

we cannot make any general statements about 

them. In one study with the fixed evolution time 

program, the largest exponent was repeatedly com- 

puted for Rossler and Lorenz attractor data, the 

resolution of which was decreased one bit at a 

time from 16 bits. In each case the estimates 

were reasonably good for data with as few as 5 

bits resolution. In fig. 9 we show the results of 

bit chopping for these systems as well as for 

Belousov-Zhabotinskii data. As a conservative rule 

of thumb we suggest a minimum of 8 meaningful 

bits of precision be used for exponent calculations. 

We strongly suggest that the resolution of experi- 

mental data be artificially lowered as we did for 

the model systems. If a plot of ht versus resolution 

does not show an initial plateau for at least one or 

two bits, the initial data are suspect for the pur- 

pose of exponent calculations. 

The amount of data required to calculate 

Lyapunov exponents depends on three distinct 

factors: the number of points necessary to provide 

an adequate number of replacement points, the 

number of orbits of data necessary to probe 

stretching (but not folding) within the attractor, 

and the number of data points per orbit that allow 

for proper attractor reconstruction with delay co- 

ordinates. 

We first estimate how many points are required 

to "fill out" the structure of an attractor to pro- 

vide replacement points. A simple minded esti- 

mate of this factor depends on the following 

factors: the fractal dimension of the attractor, the 

number of non-negative exponents in the system, 

the number of exponents we are attempting to 

compute (the dimension of each volume element), 

and the geometric requirements for acceptable re- 

placement points. A more accurate calculation of 

this number will depend on such detailed informa- 

tion as the attractor's fractal structure and its 

probability density, which are not typically avail- 

able for experimental data and the effective noise 

level in the system (which depends on both the 

actual level of contamination and the dimension of 

the reconstructed attractor). We assume that our 

data are uniformly distributed over a d-dimen- 

sional attractor of extent L and ignore noise- 

induced diffusion of the data. Thus, the density of 
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Fig. 9. The results of bit chopping (simulated measurement 
noise) for the a) Lorenz; b) Rossler; and c) Belousov- 

Zhabotinskii systems. For each system at least 5 bits of preci- 
sion in the data are required for accurate exponent estimates. 

points, p, is 

N 
p = ~ - ~ .  (20) 

The mean number of replacement points located 

in a region of length e (SCALMX) and angular 

size 0 (ANGLMX) is given by 

N r = Vd(e, ~ )p  (21) 

where V a, the volume of a d-dimensional search 

cone, is proportional to ed~ d- t, with d the (nearest 

integer) dimension of the attractor. N r may be set 

to 1 for ~1 estimation. Combining these expres- 

sions and solving for N, we obtain 

(22) 

A nearly identical calculation for the number of 

points required for area replacement results in 

N ( X l  + }k2) cc dl---~_2 , (23)  

and in general, 

(,) 
N i~=l~ki od_ j  

We have ignored several prefactors that might 

modify these estimates by at most an order of 

magnitude. Also, the variance of the density of 

points is so high that the data requirement should 

probably be substantially increased to ensure that 

replacements are almost always available when 

needed, not just on the average. Perhaps surpris- 

ingly, the number of points required for estimating 

hl "[-~2 is not significantly larger than N(~.I )  (our 

estimate actually predicts it to be smaller). While 

we must double the number of points in the attrac- 

tor to have a good chance of finding a pair of 

replacement points rather than a single one, the 

search volume for  area replacement is actually 

larger (a larger solid angle of a potential replace- 

ment sphere is acceptable) than the search volume 

for length replacement. For area evolution there 

are pairs of points that define highly skewed re- 

placement elements, but these are sufficiently un- 

likely that we can ignore their effect on N(h z + ~ 2). 

For  calculation of exponents past ~ 2, the required 

point density does not change significantly. In our 

numerical work, in a best case scenario L / e  ~-5, 

and the maximum value of ~ is about 0.6 radians. 

In a worst case calculation L / e  is about 10, and 0 

is about 0.3 radians. From these values eq. (24) 

predicts to first order that between = 10 d and 

- 30d points are necessary to fill out a d-dimen- 

sional attractor, independent of how many non- 

negative exponents we are calculating. 



A. l¥olf et al. / Determining Lyapunoo exponents from a time series 307 

0 

O,l 

o,2 
258 

Q_ 

>,- 
,.J 

o,o 

m 

512 

J 

L L 

1024 

TINE ,' 

Fig. 10. The temporal convergence of ~'x is shown as a function of the number of data points defining the Rossler attractor. The 

sampling rate is held constant; the longer time series contain more orbits. Note that lengthening the time series not only allows more 

time for convergence but also provides more replacement candidates at each replacement step. (Here the embedding dimension was 3, 

the embedding delay (~) was a sixth of an orbit, and the evolution time-step was three-quarters of an orbit.) 

The next factor we consider is the number of 

orbits of data required. The analysis is simplest if 

chaos arises through a once per orbit stretching 

and folding mechanism, which may be represented 

by a discrete mapping in one or more dimensions 

(as, for example, in the Lorenz, Rossler, hyper- 

chaos, and Belousov-Zhabotinskii attractors). Ex- 

ponent  convergence requires that volume elements 

be operated on many times by the mapping until 

the dement  has sampled the slope profile of the 

map, suitably weighted by the map's probability 

density. The Lorenz and Rossler attractors have 

simple underlying 1-D maps; on the order of 10 to 

100 map points are required for adequate slope 

profiles [13]. For  these attractors, we expect be- 

tween 10 and 100 orbits worth of data will be 

required for estimating X1 or for confirming that 

2 = 0. No additional orbits are required for area 

propagation in a system defined by a 1-D map. If 

the system had an underlying 2-D map as hyper- 

chaos does, we might expect, depending on the 

complexity of the map, that roughly the square of 

this number of orbits would be required. This 

would provide the same sampling resolution for 

the slope profile of the map (see ref. 13) in each 

dimension. In general, for a system defined by an 

n-D map, the number of orbits of data required to 

estimate any non-negative exponent is given by a 

constant, C, raised to a power which is the number 

of positive exponents. The number of positive 

exponents is approximately the dimension of the 

attractor minus one, thus the required number of 

orbits is about C d-x. C is a system dependent 

quantity depending on the amount of structure in 

the map, perhaps in the range 10 to 100. 

The last and simplest point we consider is the 

required number of points per orbit, P. There is 

no benefit to choosing P any larger than is ab- 

solutely necessary. We might try to choose P so 

small that in an evolution of a single step, the 

average replacement vector would grow to as large 

a separation as we care to allow. In the Lorenz 

attractor, for example, we might decide to allow 

the average replacement vector to grow by a factor 

of 32 in a single time step, so that we would have 

one data point per 6 orbits. The problem is that 

with data this sparse we are unlikely to obtain a 

good reconstruction of our attractor. Often, the 

relationship m ~ =  1 is used in reconstructions, 

where m is the embedding dimension and T is the 

delay in units of orbital periods. We assume that 

reconstruction is performed in an approximately 
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d-dimensional space, and the delay corresponds to 

a single sample time, so that z = 1 / P .  We then 

obtain a requirement of about d points per orbitt.  

When the number of points per orbit is multi- 

plied by the number of orbits, we obtain a re- 

quired number of points ranging from d x 10 d-1 

to d × 100 a- 1, which we can compare to the point 

density requirement of between 10 d and 30 d 

points. Since all three requirements must be met, 

the larger of these two quantities determines the 

amount  of data required. In each of these two 

ranges of values the complexity of the underlying 

map (if any) determines which end of the range is 

appropriate. Therefore we may conclude that for 

up to about a 10-dimensional system the required 

number of data points ranges from 10 d to 30 d. We 

compute this range for several systems: H6non 

attractor (d  = 1.26), 30-100 points; Rossler attrac- 

tor (d  = 2.01), 100-1000 points; hyperchaos (d = 

3.005), 1000-30000 points; delay differential equa- 

tion ( d =  3.64), 4000-200000 points. We see that 

the amount  of data required to estimate non- 

negative exponents rises exponentially fast with 

the dimension of the attractor, the identical prob- 

lem with calculations of fractal dimension by all 

algorithms of the distance scaling variety [35]. Fig. 

10 shows the convergence of o u r  ~k 1 estimate as the 

number of points used is increased for the Rossler 

attractor. It is important to note that while it may 

take 32000 points to define an attractor, it is 

generally not necessary to evolve completely 

through the data before the exponent estimate 

converges. For  example, see fig. 10. 

8. Results 

We now present our results for the various 

model and experimental systems on which our 

t W e  note that d points per orbit is a very small number  

compared to the sampling rate required for hi estimation with 

an underlying 1-D map. Construction of a map requires that 

orbital intersections with the Poincar6 section be determined 

with high accuracy, often necessitating 100 or more points per 

orbit. Our  technique thus allows a factor of about 10 times 

more orbits for a given size data file. 

algorithms have been tested. We emphasize that 

no explicit use was made of the differential equa- 

tions defining the model systems, except to pro- 

duce a dynamical observable (the x-coordinate 

time series) which was then treated as experimen- 

tal data. For  the equations that define each system 

see table I. The quoted uncertainty values for each 

system were calculated either from the known 

values of the exponents or from the variation of 

our results with changes in parameters. 

Hbnon attractor 

For  the Hrnon  map, we obtained the positive 

exponent to within 5% with only 128 points defin- 

ing the attractor. 

Rossler attractor 

For the Rossler attractor, we found the first 

exponent with a 5% error using 1024 points. The 

second exponent was measured as less than 6% of 

the first with 2048 points defining the attractor. 

Six points per mean orbital period were used to 

define the attractor. 

Lorenz attractor 

The Lorenz system was the most difficult test of 

the fixed evolution time program because its ill- 

defined orbital period made it difficult to avoid 

catastrophic replacements near the separatrix. In 

using the interactive program the operators simply 
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Fig. 11. Stationarity of  ~1 with evolution time is shown for 

Belousov-Zhabot inski i  data [2] (compare to fig. 6b). 



A. Wolf et al./ Determining Lyapunoo exponents from a time series 309 

avoided that region at replacement time. The inter- 

active runs determined the positive exponent to 

within 3%, and measured the second exponent as 

less than 5% of the first, using 8192 points. The 

fixed evolution time code measured the first expo- 

nent to within 5% and found the second exponent 

to be less than 10% of the first, using 8192 points 

in both cases. 

Hyperchaos 

For  this system we obtained the largest expo- 

nent to within 10% using 8192 points and the sum 

of the two positive exponents to within 15% using 

16384 points. 

Delay differential equation 

Using 65536 points, we computed the largest of 

the two positive exponents to within 10% and 

found the sum of the first two exponents to within 

20%. 

Belousov-Zhabotinskii reaction 

In fig. 11 we show the result of our algorithm 

used on a time series of 65536 points spanning 

400 orbital periods. The system was in a chaotic 

regime near a period-three window. The exponent 

calculated by the algorithm is stable over a range 

of parameter  values. We also calculated the expo- 
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Fig. 12. The largest Lyapunov exponent for experimental 
Couette-Taylor data is shown as a function of Reynolds num- 
ber. The shape of this curve (but not its absolute magnitude, 
see reference [3]) was independently verified by the calculation 
of the metric entropy h~-which is equal to X 1 if there is a 
single positive exponent [38]. 

nent using 1-D map analysis [2] as a comparison. 

Our algorithm gives a result in the plateau region 

of 0.0054 + 0.0005 bits/s,  while the 1-D map 

estimation yiclds a result of 0.0049 + 0.0010 bits/s.  

Thus the estimates are in agreement. 

Couette- Taylor 

For  the Couet te-Taylor  experiment we com- 

puted the largest Lyapunov exponent as a func- 

tion of Reynolds number from data sets (at each 

Reynolds number) consisting of 32768 points 

spanning about 200 mean orbital periods. Our 

results are given in fig. 12. Earlier studies of power 

spectra and phase portraits had indicated that the 

onset of chaos occurred at R / R  c = 12, where Rc 

marks the transition to Taylor vortex flow. This 

onset of chaos is confirmed and quantified by the 

calculation of ~1. 

9. Conclusions 

The algorithms we have presented can detect 

and quantify chaos in experimental data by accu- 

rately estimating the first few non-negative 

Lyapunov exponents. Moreover, our numerical 

studies have shown that deterministic chaos can be 

distinguished in some cases from external noise (as 

in the Belousov-Zhabotinskii attractor) and topo- 

logical complexity (as in the Lorenz attractor). 

However, this requires a reasonable quantity of 

accurate data, and the attractor must not be of 

very high dimension. 

As with other diagnostics used in chaotic dy- 

namical systems, the calculation of Lyapunov ex- 

ponents is still in its infancy, but we believe that 

the approach to exponent estimation that we have 

described here is workable. We encourage experi- 

mentation with our algorithms. 
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Appendix A 

Lyapunov spectrum program for systems of dif- 

ferential equations 

This program computes the complete Lyapunov 

spectrum of a nonlinear system whose equations of 

motion and their linearizations are supplied by the 

user in the routine FCN. The program is set up 

here for the three variable Lorenz system but is 

easily modified for any other system of equations. 

C 

C 

C 

C 

C 

C 

C 

PROGRAM ODE 

N = # OF NONLINEAR EQTNS., NN = TOTAL # OF EQTNS. 

PARAMETER N=3 

PARAMETER NN=I2 

EXTERNAL FCN 

DIMENSION Y(NN),ZNORM(N),GSC(N),CUM(N),C(24),W(NN,9) 

INITIAL CONDITIONS FOR NONLINEAR SYSTEM 

Y(1) -- I0.0 

Y(2) -- 1.0 

Y(3) = 0.0 

INITIAL CONDITIONS FOR LINEAR SYSTEM (ORTHONORMAL FRAME) 

DO I0 1 = N+I,NN 

Y(1) -- 0.0 

i0 CONTINUE 

DO 20 I = I,N 

Y((N+I)*I) -- 1.0 

CUM(I) = 0.0 

20 CONTINUE 

INTEGRATION TOLERANCE, # OF INTEGRATION STEPS, 

TIME PER STEP, AND I/O RATE 

TYPE*, "TOL, NSTEP, STPSZE, IO ?" 

ACCEPT*, TOL, NSTEP p STPSZE, I0 

INITIALIZATION FOR INTEGRATOR 

NEQ = NN 

X=O.O 

IND -- 1 
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C 

C 

C 

C. 

C 

C 

C 

C 

30 

40 

50 

60 

70 

80 

DO I00 I = I,NSTEP 

XEND = STPSZE*FLOAT(1) 

CALL ANY ODE INTEGRATOR - THIS IS AN LMSL ROUTINE 

CALL DVERK (NEQ,FCN,X,Y,XEND,TOL, IND,C,NEQ,W,IER) 

CONSTRUCT A NEW ORTHONORMAL BASIS BY GRAM-SCHMIDT METHOD 

NORMALIZE FIRST VECTOR 

ZNORM(1) = 0.0 

DO 30 J = I,N 

ZNORM(1) = ZNORM(1)+Y(N*J+I)**2 

CONTINUE 

ZNORM(1) = SQRT(ZNORM(1)) 

DO 40 J = I,N 

Y(N*J+I) = Y(N*J+I)/ZNORM(1) 

CONTINUE 

GENERATE THE NEW ORTHONORMAL SET OF VECTORS. 

DO 80 J = 2~N 

GENERATE J-1 GSR COEFFICIENTS. 

DO 50 K = l,(J-l) 

GSC(K) = 0.0 

DO 50 L = I,N 

GSC(K) = GSC(K)+Y(N*L+J)*Y(N*L+K) 

CONTINUE 

CONSTRUCT A NEW VECTOR. 

DO 60 K = I,N 

DO 60 L = l,(J-l) 

Y(N*K+J) = Y(N*K+J)-GSC(L)*Y(N*K+L) 

CONTINUE 

CALCULATE THE VECTOR'S NORM 

ZNORM(J) = 0.0 

DO 70 K = IjN 

ZNORM(J) = ZNORM(J)+Y(N*K+J)**2 

CONTINUE 

ZNORM(J) = SQRT(ZNORM(J)) 

NORMALIZE THE NEW VECTOR. 

DO 80  K = I , N  

Y(N*K+J) = Y(N*K+J)/ZNORM(J) 

CONTINUE 
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C 

C 

C 

C 
C 

C 

C 

C 

C 

C 

UPDATE RUNNING VECTORMAGNITUDES 

90 

DO 90 K -- I,N 

CUM(K) = CUM(K)+ALOG(ZNORM(K) )/ALOG(2. ) 

CONTINUE 

NORMALIZE EXPONENT AND PRINT EVERY IO ITERATIONS 

IF (MOD(I,IO).EQ.0) TYPE*,X,(CUM(K)/X,K = I,N) 

I00 CONTINUE 

CALL EXIT 

END 

SUBROUTINE FCN (N,X,Y,YPRIME) 

USER DEFINED ROUTINE CALLED BY IMSL INTEGRATOR. 

DIMENSION Y(12),YPRIME(12) 

LORENZ EQUATIONS OF MOTION 

YPRIME(1) = 16.*(Y(2)-Y(1)) 

YPRIME(2) = -Y(1)*Y(3)+45.92*Y(1)-Y(2) 

YPRIME(3) = Y(1)*Y(2)-4.*Y(3) 

3 COPIES OF LINEARIZED EQUATIONS OF MOTION. 

DO I0 I = 0,2 

YPRIME(4+I) = 16.*(Y(7+I)-Y(4+I)) 

YPRIME(7+I) = (45.92-Y(3))*Y(4+I)-Y(7+I)-Y(1)*Y(IO+I) 

YPRIME(10+I) = Y(2)*Y(4+I)+Y(1)*Y(7+I)-4.*Y(IO+I) 

I0 CONTINUE 

RETURN 

END 

See section 3 and refs. 8, 9 for a discussion of the 

O D E algorithm. 

Appendix B 

Fixed  evolution time program for )h 

A time series (of length NPT) is read from a 

data file, along with the parameters necessary to 

reconstruct the attractor, namely, the dimension of 

the phase space reconstruction (DIM), the recon- 

struction time delay (TAU), and the time between 

the data samples (DT), required only for normal- 

ization of the exponent. Three other input parame- 

ters are required: length scales that we consider to 

be too large (SCALMX) and too small (SCALMN) 

and a constant propagation time (EVOLV) be- 

tween replacement attempts. SCALMX is our 

estimate of the length scale on which the local 

structure of the attractor is no longer being probed; 

SCALMN is the length scale on which noise is 

expected to appear. We also supply a maximum 

angular error to be accepted at replacement time 

(ANGLMX),  but  we do not consider this a free 

parameter as its selection is not likely to have 

much effect on exponent estimates. It is usually 

fixed at 0.2 or 0.3 radians. 
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The calculation is initiated by carrying out an 

exhaustive search of the data file to locate the 

nearest neighbor to the first point (the fiducial 

point), omitting points closer than SCALMNt. 

The main program loop, which carries out re- 

peated cycles of propagating and replacing the 

first principal axis vector is now entered. The 

current pair of points is propagated EVOLV steps 

through the attractor and its final separation is 

computed. The log of the ratio of final to initial 

separation of this pair updates a running average 

rate of orbital divergence. A replacement step is 

then attempted. The distance of each delay coordi- 

nate point to the evolved fiducial point is then 

determined. Points closer than SCALMX but fur- 

ther away than SCALMN are examined to see if 

the change in angular orientation is less than 

ANGLMX radians. If more than one candidate 

point is found, the point defining the smallest 

angular change is used for replacement. If no 

points satisfy these criteria, we loosen the larger 

distance criterion to accept replacement points as 

far as twice SCALMX away. If necessary the large 

distance criterion is relaxed several more times, at 

which point we tighten this constraint and relax 

the angular acceptance criterion. Continued failure 

will eventually result in our keeping the pair of 

points we had started out with, as this pair results 

in no change whatsoever in phase space orienta- 

tion. We now go back to the top of the main loop 

where the new points are propagated. This process 

is repeated until the fiducial trajectory reaches the 

end of the data file, by which time we hope to see 

stationary behavior of Ar See section 6 for a 

discussion of how to choose the input parameters. 

The fixed evolution time code for Ax + A2 esti- 

mation is too long to present here (350 lines of 

Fortran) but we discuss its structure briefly. This 

program begins by reading in a dynamical ob- 

servable and many of the same input parameters 

as the code for ~1 estimation. A number of param- 

eters are also required to evaluate the quality of 

"['Such an exhaustive search is very inefficient for large arrays; 

then more efficient algorithms should be employed. See, for 
example, ref. 39. 

replacement triples: the maximum allowed triple 

"skewness", the maximum angular deviation of 

each replacement vector from the plane defined by 

the last triple, and weighting factors for the rela- 

tive importance of skewness, size of replacement 

vectors, and angular errors in choosing replace- 

ment vectors. 

The structure of this program is very similar to 

the program for hi: locate the two nearest neigh- 

bors of the first delay coordinate point, determine 

the initial area defined by this triple, enter the 

main program loop for repeated evolution and 

replacement. Triples are evolved EVOLV 

steps through the attractor and replacement is 

performed. Triple replacement is a more com- 

plicated process than pair replacement, which in- 

volved minimizing a single angular separation and 

a length. Our approach to triple replacement is a 

two step process; first we find a small set of points 

which, together with the fiducial trajectory, define 

small separation vectors and lie close to the re- 

quired two-dimensional subspace. We then de- 

termine which of all of the possible pairs of these 

points will make the best replacement triple. In the 

first step, the qualifications of up to 20 potential 

replacement points are saved. Separation and 

orientation requirements of replacement points are 

varied so that a moderate number of candidates is 

almost always obtained. In the secorid step every 

possible pair of these points is assigned a score 

based on how close the replacement triple is to the 

old two-dimensional subspace and how numeri- 

cally stable the orientation of the triple is believed 

to be. (It is possible that the individual replace- 

ment vectors lie very close to the old two-dimen- 

sional subspace but that the replacement area 

element is nearly orthogonal to the same subspace!) 

The relative importance of replacement lengths, 

skewness, orientation changes, etcetera, are 

weighted by the user chosen factors. The highest 

scoring pair of points is used in the replacement 

triple. The calculations in this program involve dot 

products and the Gram-Schmidt process and so 

are independent of the dimension of the recon- 

structed attractor-  no complicated geometry is re- 

quired in the coding. 
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PROGRAM FETI 

INTEGER DIM~TAU,EVOLV 

DIMENSION X(16384) ,PTI(12) ,PT2(12) 

C 

C **DEFINE DELAY COORDINATES WITH A STATEMENT FUNCTION** 

C **Z(I,J)=JTH COMPONENT OF ITH RECONSTRUCTED ATTRACTOR POINT** 

C 

Z(I,J) -- X(I+(J-I)*TAU) 

C 

OPEN (UNIT==1 ,FILE--"INPUT." ~TYPE='OLD" ) 

C 

TYPE*, "NPTDDIM,TAU,DT~SCAI~,SCALMN,EVOLV ?" 

ACCEPT*, NPT j DIM, TAU, DT, S CALMX ~ S CALMN, EVOLV 

C 

C **IND POINTS TO FIDUCIAL TRAJECTORY** 

C **IND2 POINTS TO SECOND TRAJECTORY** 

C **SUM HOLDS RUNNING EXPONENT ESTIMATE SANS I/TIME** 

C **ITS IS TOTAL NUMBER OF PROPAGATION STEPS** 

C 

IND = 1 

SUM = 0.0 

ITS = 0 

C 

C **READ IN TIME SERIES** 

C 

DO I0 I = I,NPT 

READ (1,*) X(1) 

I0 CONTINUE 

C 

C **CALCULATE USEFUL SIZE OF DATAFILE 

C 

NPT = NPT - DIM*TAU - EVOLV 

C 

C **FIND NEAREST NEIGHBOR TO FIRST DATA POINT** 

C 

DI r- I.E38 

C 

C **DONT TAKE POINT TOO CLOSE TO FIDUCIAL POINT** 

C 

DO 30 I = II,NPT 

C 

C **COMPUTE SEPARATION BETWEEN FIDUCIAL POINT AND CANDIDATE** 

C 

D-- 0.0 

DO 20 J = I~DIM 

D = D+(Z(IND,J)-Z(I,J))**2 

20 CONTINUE 

D ~ SQRT(D) 

C 

C **STORE THE BEST POINT SO FAR BUT NO CLOSER THAN NOISE SCALE** 

C 

IF (D.GT.DI.OR.D.LT.SCAI~N) GO TO 30 

DI=D 

IND2 = I 

30 CONTINUE 
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C 

C 

C 

**GET COORDINATES OF EVOLVED POINTS** 

40 DO 50 J = 1,DIM 

FTI(J) = Z(IND+EVOLV,J) 

FT2(J) = Z(IND2+EVOLV,J) 

50 CONTINUE 

**COMPUTE FINAL SEPARATION BETWEEN PAIR, UPDATE EXPONENT** 

60 

DF = 0.0 

DO 60 J = 1,DIM 

DF = DF+(PTI(J)-PT2(J))**2 

CONTINUE 

DF = SQRT(DF) 

ITS = ITS+I 

SUM = S UM+ALOG(DF/D I) / (FLOAT (EVOLV) *DT*ALOG(2. ) ) 

ZLYAP = SUM/FLOAT(ITS) 

TYPE*, ZLYAP, EVO LV* ITS, D I, DF 

**LOOK FOR REPLACEMENT POINT** 

**ZMULT IS MULTIPLIER OF SCAIFaX WHEN GO TO LONGER DISTANCES** 

INDOLD -- IND2 

ZMULT = I. 0 

ANGI/~X = 0.3 

70 THMIN = 3.14 

**SEARCH OVER ALL POINTS** 

DO i00 1 = I,NPT 

**DONT TAKE POINTS TOO CLOSE IN TIME TO FIDUCIAL POINT** 

III = IABS(I-(IND+EVOLV)) 

IF (III.LT.10) GO TO I00 

**COMPUTE DISTANCE BETWEEN FIDUCIAL POINT AND CANDIDATE** 

80 

DNEW = 0.0 

DO 80 J = 1,DIM 

DNEW = DNEW+(PTI(J)-Z(I,J))**2 

CONTINUE 

DNEW = SQRT(DNEW) 

**LOOK FURTHER AWAY THAN NOISE SCALE, CLOSER THAN ZMULT*SCAI/~X** 

IF (DNEW.GT.ZMULT*SCAI~X.OR.DNEW.LT.SCAINN) GO TO I00 

**FIND ANGULAR CHANGE OLD TO NEW VECTOR** 

90 

DOT = 0 ° 0  

DO 90 J = 1,DIM 

DOT = D O T ÷ ( P T I ( J ) - Z ( I , J ) ) * ( P T I ( J ) - P T 2 ( J ) )  

CONTINUE 
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100 

110 

120 

CTH = ABS(DOT/(DNEW*DF)) 

IF (CTH.GT.I.0) CTH = 1.0 

TH = ACOS(CTH) 

**SAVE POINT WITH SMALLEST ANGULAR CHANGE SO FAR** 

IF (TH.GT.THMIN) GO TO I00 

THMIN = TH 

DII= DNEW 

IND2 = I 

CONTINUE 

IF (THMIN.LT.ANGIFuX) GO TO ii0 

**CANT FIND A REPLACEMENT - LOOK AT LONGER DISTANCES** 

ZMULT = ZMULT+I. 

IF (ZMULT.LE.5.) GO TO 70 

**NO REPLACEMENT AT 5*SCALE, DOUBLE SEARCH ANGLE, RESET DISTANCE** 

ZMULT = 1.0 

ANGIMX = 2.*ANGIMX 

IF (ANGIMX.LT.3.14) GO TO 70 

IND2 = INDOLD + EVOLV 

DII = DF 

CONTINUE 

IND = IND+EVOLV 

**LEAVE PROGRAMWHEN FIDUCIAL TRAJECTORY HITS END OF FILE** 

IF (IND.GE.NPT) GO TO 120 

DI = DII 

GO TO 40 

CALL EXIT 

END 
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