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ABSTRACT 

EEG analysis has played a key role in the modeling of the brain's cortical dynamics, but 

relatively little effort has been devoted to developing EEG as a limited means of com

munication. If several mental states can be reliably distinguished by recognizing pat

terns in EEG, then a paralyzed person could communicate to a device such as a wheel

chair by composing sequences of these mental states. EEG pattern recognition is a 

difficult problem and hinges on the success of finding representations of the EEG signals 

in which the patterns can be distinguished. In this article, we report on a study compar

ing three EEG representations, the unprocessed signals, a reduced-dimensional repre

sentation using the Karhunen-Loewe transform, and airequency-based representation. 

Classification is performed with a two-layer neural network implemented on a CNAPS 

server (128 processor, SIMD architecture) by Adaptive Solutions, Inc. Execution time 

comparisons show over a hundred-fold speed up over a Sun Spare 10. The best classifi

cation accuracy on untrained samples is 73% using the frequency-based representa

tion. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Physically disabled people who have no control 

over their motor responses have no means of com

municating to the outside world. Is there a wav for 

such people to use their mental capabilities t<; af

fe.ct their environment? This question drives the 

search for patterns in EEG signals that are related 

to.a person's mental state. A device that can reli

ably and quickly discriminate between several 
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mental states could be used, for example, to gen

erate commands to control a wheelchair. 

Computerized analysis of EEG signals has 

evolved over the past three decades [ 6], with 

much of the effort directed towards a better un

derstanding of the functioning of the brain. The 

work reported here has a different goal, to extract 

information from EEG signals with which we can 

discriminate mental states. Primarily two ap

proaches have been taken towards this goal. 

The first approach is based on the discovery 

that a characteristic signal appears in the EEG 

approximately 300 ms following the occurrence of 

a relatively rare, but expected, stimulus. Such sig

nals are referred to as event-related potentials 

(ERPs ). An example of how ERPs can be used to 

communicate with a computer is the work of 
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Farwell and Donchin [4], who used ERP's to de

tect which letter of the alphabet a human subject 

wished to select. The letters of the alphabet were 

displayed in a matrix form on the visual display of 

a computer. The subject selected a row and 

column by observing a marker step through the 

rows and columns. ~chen the correct row and 

column were marked the subject's EEG contained 

a recognizable ERP. 

This kind of interaction between a person and 

stimulus device would be too cumbersome and 

probably too slow to be useful in a real-time con

trol application. Much more practical would Le a 

system for detecting patterns in normal EEG with

out the aid of an external stimulus de,·ice. 

Thi,; is the second approach. often rt>ferred to 

as spatial analysis, because patterns are sought in 

EEG signals simultaneously recordt>cl from multi

ple electrodes. A number of studies hm·e found 

differences in the power of the alpha hand (8-13 

Hz) in signals recorded from left and right hemi

spheres, depending on the tasks [2, 5. 13]. Asym

metries were most reliably found for motor ta;;ks. 

Ehrlichman and ~-iener [3] found verbal tasks 

produced greater hemispheric differences than 

did visual tasks. 

The detection of patterns in EEG produced 

from normal mental states is a wry difficult prob

lem. EEG signals are recorded by surface elec

trodes and can contain noise as a result of electri

cal interference and movement of the electrodes 

on the scalp. Another problem is that EEG signals 

can be corrupted by eye blinks and other muscu

lar activity that produce signals of greater magni

tude than produced by cortical activity. Other 

problems are more cognitive in nature. For exam

ple, the concentration of a person can vary while 

the person is supposedly performing a single men

tal task. 

The work described in this article is ba,.ed on 

previous work by Keirn and Aunon [9, 10]. Keirn 

and Aunon recorded EEG from seven subjects 

while the subjects performed each of five mental 

tasks. A simple Bayesian classifier was applied to 

data collected from pairs of tasks. A frequency

based representation was found to result in 70% 

to 100% correct classification. 

This is an encouraging result, but the study was 

limited in several ways. A single quarter-second or 

2-second segment was selected from each 1 0-sec

ond recording session. The segment was chosen to 

be devoid of eye blinks and near the middle of the 

session, assuming during that period the subject 

was most likely concentrating on the requested 

mental task. Another limitation is the use of a 

quadratic Bayesian classifier. which assumes the 

classes have a Gaussian distribution and thus 

would not be able to represent complex. nonlinear 

relation:;hips. Also, in the previous study c:lassifi

ers were constructed and tested on data from sin

gle subjects and pairs of tasks. Questions remain 

regarding generalization across subjects and more 

than pair-wise discriminations. This i:; not ad

dressed here. 

These questions led us to extend the pre\·iou:-; 

studv in three wavs. . . 

1. \\"e replaced tht> Baye,-ian cla,-~ilier with a 

neural network and ntriPd the n umlwr of 

hidden units. thu,., tht> complexity of tht> 

classifier; 

2. \\·e extracted ovt>rlappin;r quarter ;,ecnnd 

,.,egments that to!!etlwr cover the 10 ,;ec

ond period of every rt>cordin;r session (no 

artifacts were removed): 

3. \\·e compared the classification accuracy 

of the neural network using different rep

resentations of the EEG signals. 

The objective of these experiments was to deter

mine which of the three representations results in 

the best classification accuracv. If the information 

needed to discriminate mental state can be ex

tracted from the unprocessed EEG signals. or at 

most preprocessed by projecting to a relati,·ely 

small number of principal components. then we 

can dispense with other forms of preprocessin!!. 

such as the frequency analysis used by Keim and 

Aunon [10]. 

In one other study. by Lin. Tsai, and Liou [ L) J. 
neural networks were applied to classify EEG sig

nals collected in a paradigm similar to that of 

[10]. Lin et al. used Kohonen·,- algorithm [12] to 

train a matrix of units to identify clusters of :-;imilar 

patterns and associate each cluster with a particu

lar mental task. Thev trained their classifier on 

data for all tasks performed by one subject in one 

recording session and tested the resulting classi

fier on data from other sessions and other sub

jects. "1ost tests showed very poor classification 

accuracy, though the accuracy tended to be 

higher for some tasks, particularly the mental 

arithmetic task (see Section 2.1 ). 

The remaining sections are organized as fol

lows. In Section 2, we describe the methods and 

algorithms used to collect, process, and classify 

the data. The implementations of the processing 

and classification algorithms are described in Sec-
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tion 3. Results of da:;;sification experiments are 

discu:osed in Section -f. and conclusion:-; are pre

sented in Section 5. 

2 DATA COLLECTION, PREPROCESSING, 
AND NEURAL NETWORK ALGORITHM 

2.1 Mental Tasks 

All data used in this study were recorded previ

ouslv by Keirn and Aunon. Their selection of the 

set of mental tasks was l!uided by Galin and Om
stein [5]. whose results showed detectable hemi

spheric differences in some tasks. The followin~ 

tasks were studied in [10]: 

Baseline-Alpha Wave Production The 

subject is asked to open and close their eyes at 

approximately .5-second intervals. \\"ith their 

eyes clo:oed the subject is to relax a:-; much as 

possible. This is considered the baseline ses

sion for alpha wave production. and other 

asymmetries. 1'\ontask associated leYels of 

alpha wave production and asymmetries pro

duced across different electrodes and across 

EEG bands are thus obtained. 

Mental Arithmetic The subject is giYen a non

trivial multiplication problem to solve and. as in 

all of the tasks, is instructed not to vocalize or 

make overt movements while solving the prob

lem. An example of such a task is to multiply 

the numbers 49 and 78. The problems are 

nonrepeating and are designed so that an im

mediate answer will not be apparent. The sub

ject verifies at the end of the task whether or not 

thev arrived at a solution. 

Geometric Figure Rotation The subject is 

given 30 seconds to study a drawing of a com

plex 3-dimensional block figure after which the 

drawing is removed and the subject is in

structed to visualize the object being rotated 

about an axis . 

. Mental Letter Composing The subject is in

structed to compose a letter to a friend or rela-

. tive mentally without vocalizing. Since the task 

is repeated several times, the subject will be 

told to try to pick up where he or she left off in 

the previous task. 

Visual Counting The subject is asked to 

imagine a blackboard and to visualize numbers 

being written on the board sequentially, with 

the previous number being erased before the 

next number is written. The subject is further 

instructed not to verbally read the numbers but 

to visualize them, and to pick up counting from 

the previous task rather than to start over each 

time. 

The experiments reported here used only the data 

recorded from a single subject performing the 

baseline task and the mental arithmetic task. 

2.2 Recording of EEG Signals 

Subjects were seated in a sound-proof dimly lit 

room. As shown in Figure 1, electrodes were 

placed at 0 1 , 02, P:i, P-+, C:3 , and C-+, standard 

electrode locations in the 10-20 System [8]. The 

electrodes were connected to Grass 7P511 amplifi

ers that bandpass filtered the signals at 0.1-100 

Hz. The EEG signals were sampled at 2.50 sam

ples per second and digitized with 12 bits of accu

racy. Data were recorded from each subject for a 

duration of 10 seconds while the subjects were 

performing a single task with their eyes open. 

Each session resulted in 250 samples/ second X 

10 seconds X 6 channels, or 15,000 values. 

2.3 Unprocessed Data Representation 

Keirn and Aunon found that quarter-second seg

ments of the 10-second data resulted in classifica

tion accuracy approximately the same as that ob

tained from 2-second segments. Therefore, for the 

experiments reported here, we divided the data 

into quarter-second segments. Segments were ac

tually 62 samples long, slightly less than one 

quarter second. Ideally, we would like to use all 

quarter-second segments to train the classifier. 

This would result in 2,-t38 (i.e., 2,500-62) over-

FIGURE 1 Location of the six surface electrodes used 

to record EEG signals. 
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FIGURE 3 EEG signals recorded from ;;ix channels as subject peformed the ba;-;eline 

or mental arithmetic tasks. 
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2.4 K-L Representation 

It i,.; po,;,.;iblt· that the larw· numlwr of componPnts 

in each pattern i,; many more than actually 

rwPded. OftPtL whPn da,.;,.;ifyinl! high-dinwn,;;ional 

data. equiYalPnt accuracy can lw achit•Yt>d by 

cla,;;,;ifyinl! data obtained by projectinl! the oril!inal 

data onto the fir,.;t 11 eil!en\ector,.;. wht•re n i,.; much 

smallPr than the dimetbiouality of tlw oril!inal 

data. Thi,.; i,.; u,.;ually rPfPrn·d to a,.; the Karhunen

Loe\·e decompo,;ition. called tlw K-L repre,;enta

tion hen~. 

To perform the K-L dPt'omprhition. the coYar

iance matrix of tlw mean-,;ubtracted ,.;et uf L-580 

T:":Z-dimeH,.;io!lal pattern,.; wa,; calculated. The ei

genvalue,; and eil!ellYPctor,.; of the contriance ma

trix wen· calculated u,;illl! tlw Jacol1i method. Thi,.; 

invoh·e,; performinl! a O'it'qtwnce of ,.,imilarity traJl,.;

formations in order to redw·p rlw oiT-dial!onal ele

ment:-; to ZPro .. -\ ,.;erip,; of plane rotation:-. are 
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graphed in Figure -i as six curves corre,;ponding to 

the six electrode channel,;. 
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FIGURE 4 First four eigenvectors of mean-subtracted data for baseline and mental 

arithmetic tasks. 



176 ANDERSO:"J, DEVL'LAPALLI, Al\'D STOLZ 

0.3 !\ 
II 

0.2-1 

Normalized I 
Eigenvalue I 

0.1-j 

I 

,-~------------r· 

0 50 

Eigenvalue Index 

FIGURE 5 First 50 eigenvalues for mean-suLtracted 

data from subject 3 for baseline and math tasks. 

50 eigenvalues normalized by the total sum of the 

372 eigenvalues. 

The K-L representation was formed by pro

jecting each 372-dimensional pattern onto the 

first ,'jQ eigenvalues. Examples of patterns in this 

representation that correspond to the raw patterns 

in Figure 3 are shown in Figure 6. 
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2.5 Frequency-Band Representation 

In [10] features were extracted from spectral den

sity estimates using asymmetry ratios given by 

(R - L )I (R + L ), where R is the area under the 

spectral density curve of a right hemisphere chan

nel for a specific frequency band and L is defined 

similarly for the corresponding left hemisphere 

channel. These asymmetry ratios were calculated 

for each possible right-to-left combination of 

channels and for each of four frequency bands: 

delta (0-3 Hz), theta (4-7Hz), alpha (8-13Hz), 

and beta (14-20 Hz). This resulted in 36 asym

metry ratios. In addition the 24 power values 

themselves (R and L) were added for a total of 60 

features. 

In the current study, the spectral density was 

estimated from autoregressive (AR) parameters 

calculated using the Burg method [ 1 9]. This 

method is based on the minimization of forward 

and backward linear prediction errors, subject to 

satisfying the Levinson-Durbin recursions. The 

spectral density is given by 

0 
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FIGURE 6 K-L representations of the first and last quarter second of data from the 

baseline task (top graphs) and the mental arithmetic task (bottom graph). 
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FIGURE 7 Frequency-based representations of th~ first and last quarter second of 

data from the baseline task (top l!raph~l and the mental arithmetic task (bottom graph). 

I [ 
\I ]2 

P(f) = 2a- 2 1 - '.2: a"e-J2rr"r 
n=l 

where a,. are the estimated AR coefficients. An AR 

model of order 6 ( M = 6) was used here since it 

yielded good results in [ 10 ]. 

Example patterns in the frequency-based rep

resentation are shown in Figure 7. These were de

rived from the same data as the graphs in Figures 

3 ·and 6. 

2.6 Neural Network 
Classification Algorithm 

In their previous work, Keirn and Aunon used a 

quadratic Bayesian classifier. This Bayesian clas-

sifier assumes a Gaussian shape to the probability 

densitv function of data from each class and a 

linear .discrimination between these density func

tions is determined. 

l\"eural networks have the capability of finding a 

nonlinear transformation of the pattern in order to 

classify with greater accuracy. However, the in

creased complexity of a neural network can result 

in large computation times to train the network. 

The quantity of data involved in our experiments 

prompted our implementation of the neural net

works on a SIMD parallel computer, described in 

the next section. 

The network architecture used for our experi

ments is shown in Figure 8. The circles represent 

the computational units of the network. The inter

connections represent scalar values passed as in

put to each unit. Each unit has a unique vector of 
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FIGURE 8 Two-layered neural network u;,ed in all experinwnh n·p1111ed lwre. Only 

the number of hidden units and the input representation were ntried. 

weights corresponding to its input vector. The 

computation performed by the units is a weighted 

sum of their inputs and a nonlinear squashing 

function that restricts the range of the output to be 

between 0 and 1. We used the typic;Il sigmoid 

squashing function. Let the inputs to a unit be .r1• 

the weights be W;, and the output of the unit bey. 

The weighted sum and sigmoid function are com

bined to produce the unit's output: 

1 
y = 1 + e-I,.r,u·, 

The network consists of two lavers of units. The 

units in the first laver are called hidden units. be

cause the outputs of these units are used internal 

to the network to transform the input into another 

representation for the output unit. The output of 

the output unit is taken as the classification of the 

current input pattern. 

To train the network, a set of training patterns 

and corresponding correct outputs is repetitively 

presented to the network. After each pass through 

the training data, called an epoch, the weights are 

adjusted to reduce the error between the correct 

output and the actual output of the network. To 

determine how to adjust each weight, we applied 

the error backpropagation algorithm [21 J. This 

algorithm calculates the gradient of an error func

tion with respect to each weight, then adjusts the 

weights in the negative gradient direction to re

duce the error. The error function is the squared 

error summed over all training patterns: 

E = 2: (z'l'! - y 1')2 
p 

where p is an index into the set of training pat

terns, zl'• is the correct output for pattern p, and 

y F" is the output of the network for pattern p. For 

the experiments reported here.::;" is set to 0.1 for 

the baseline task and 0. 9 for the mental arithmetic 

task. This determines how we interpret the output 

of the network as a classification: if y !'· > O .. S. 

pattern p is said to be classified as being from a 

mental arithmetic task: ifyP· < 0.5. the pattern is 

classified as a baseline task. 

The gradient of E with respect to the weights 

results in the following expressions. Let h/' signify 

the output of hidden unit i when the network re

ceives input pattern p. To change the weights of 

the output unit. we sum the following !::..w/s 

l::..w/' = c(z I' - y I' )h/' 

over all training patterns and, at the end of the 

epoch. add the result to the weights in the output 

unit. The constant cis a scale factor that is chosen 

empirically to produce weight changes that are not 

too large or too small. If too large, the network 

would converge quickly to a suboptimal local min

imum: if too small, the time required for the net

work to converge would be impractically long. 

Similarly, we sum the !::..wj's for hidden unit j. 

given by 

c1 r~ I' - l'" \h 1' (1 - h "):1._.,, 
I\- • ) j jj I 

where x;": is a component of the input pattern 

given to the network. The hidden units have their 

own scale factor, c11 • 
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2.7 The OverfiHing Problem 

Although this algorithm is designed to n11mmize 

the squared error over a training set, the true goal 

of this procedure is to find a set of weights for 

which the squared error is minimized over a novel 

set of data, i.e., data to which the network was not 

trained. Only if the algorithm is able to find a 

model (the network and weights) that generalizes 

well to this test set can we say that the model cap

tures the regularities present in the data. This 

problem has been called the overfitting problem

the network too closely matches the training data 

and does not interpolate and extrapolate well to 

novel data. This is usually tested by dividing the 

data into a training and a testing set. The network 

is trained to com·ergence on the training set. after 

which the error on the testing set is calculated and 

used as an estimate of how well the network will 

perform on novel data. 

To limit the amount of overfitting. one may de

crease the complexity of a trained network 

through pruning, or by limiting the growth in com

plexity during training, or by terminating the 

training when the network begins to overfit. Each 

is described below. 

A trained network that overfits may be pruned 

by removing weights and units that have minimal 

effect on the network's error. This may be per

formed by sequentially setting each weight to zero 

and testing the error of the resulting network. 

Methods that require less computation rely on 

measures of utility for each weight. For example. 

the Hessian of the error with respect to the weights 

for a given input pattern is the sensitivity of the 

error with respect to each wei~dH [1-t l. ~lozer and 

Smolensky [ 16 J and Ramachandran and Pratt 

[20] describe other measures of utility. 

The complexity of the function leanwd by a 

neural network is related to the number uf hidden 

units and the number of weights of magnitude sig

nificantly different from zero. One way to limit the 

growth of complexity during training is to add an 

error term that biases the gradient search for 

weight values to regions in weight space of low

magnitude weights. Weigend et al. [2-t] developed 

a term that penalizes large-magnitude weights 

and applied this to several time-series prediction 

problems. 

The third method for controlling overfitting is 

more dependent on the data than the previous 

two. The data are divided into three parts. two for 

training and testing, and the third for determining 

when the network is overfitting. The third part is 

called the validation set. After each pass through 

the training data, the error on the validation set is 

calculated. Initially, the error on the training and 

validation set decreases. As the network begins to 

overfit, the error on the validation set begins to 

increase. At this point, prior to convergence on the 

training data, training is halted and the error on 

the testing set is calculated as a measure of the 

network's performance. Weigend [23] used this 

technique on a time-series prediction problem 

and found it to be useful even for very small net

works. 

For the experiments described here, we applied 

the validation set method for early stopping. We 

divided the data into 10 distinct subsets, corre

sponding to the 10 recording sessions for one sub

ject performing two tasks. One subset was selected 

to be the validation set, another subset was the 

testing set, and the remaining eight subsets com

prised the training data. Thus, there are 90 possi

ble combinations of training, validation. and test

ing sets. Notice that training, validation, and 

testing were always performed on data from dis

tinct recording sessions. All 90 combinations were 

used and classification performance (on the test

ing sets) was averaged over the 90 runs. 

3 PROGRAMMING TECHNIQUE 

The data windowing, K-L transform, and fre

quency analysis were performed with a comb ina

tion of Unix shell scripts and C code and run on a 

Sun Spare 10. The eigenvector and frequency 

analysis were performed using implementations as 

described by Press et al. [ 18 J . 

The classification experiments were performed 

on a CNAPS Server II from Adaptive Solutions. 

Inc. Our CNAPS system is a parallel. SniD archi

tecture with 128, 20 MHz processors, upgradable 

to 512 processors. It can be programmed at three 

levels, using assembly language, C with parallel 

programming extensions, or a library of routines 

that implements error backpropagation. Assembly 

language can be used to write highly efficient 

code, but the library of backpropagation routines 

is by far the most efficient in terms of development 

time. The C language level is intermediate, giving 

the programmer the ability to write efficient code 

in a familiar language. w·e chose to use the exist

ing library to implement the error backpropaga

tion algorithm. Specifically, we used Adaptive So

lutions' BPfolded routine, which distributes the 

load even when the network is larger than the 

number of processors. 



180 A:\IDERS0:\1, DEYCLAPALLI. A:\"D STOLZ 

The library consists of routines to set algorithm 

parameters, to identify the source of the data, and 

to execute the algorithm. The following is an out

line of the C program that we used to call the 

backpropagation routines. All steps, except ;;tep 

9, were performed on the Cl'\APS server; step 9 

was implemented in C. The C program was com

piled and run on a Sun Spare 10. 

1. Connect to CNAPS server and specify the 

training algorithm. 

2. Specify the algorithm· s parameters, m

cluding the number of inputs. output~. 

and hidden units, the number of traininl! 

and validation patterns and the name" of 

files containing them. the maximum num

ber of epochs to train. the error criterion at 

which to terminate traiuiug. the leamin!! 

rate constants for output and hidden 

layers. 

3. Specify names of training and validation 

data files. 

4. Set control modes of C:\"APS to log the \ al

idation error by epoch. 

u. Generate random initial weight ~·alues be

tween -0.2 and 0.2. 

6. Initiate execution on the C:'\APS. L~pon 

completion, results are returned in a pre

defined C structure. 

7. Identify epoch number at which error on 

validation set was lowest. 

8. Retrain, starting with same initial weights. 

stopping at epoch found in previou:-; step. 

9. Using the weights found in the previous 

step, calculate the mean square error over 

the testing set. 

10. Sa,·e results to a file and repeat afwr 

changing the learning rates, number of 

hidden units, or training and validation 

sets or input repre:-;entation (by specifying 

different data files). 

All data for a given representation is stored in a 

file with one pattern per line and alternating be

tween baseline and mental arithmetic tasks. To 

produce the training, validation, and te:-;ting data 

files, this file is split into 10 equally sized pieces 

and each piece is converted into the binarv format 

required by the CNAPS server. This ster~ is per

formed using the conversion tool cv from Adap

tive Solutions. The assembly from these 10 part:-; 

into training, validation, and testing sets was im

plemented in the Tel scripting language. The Tell 

Tk toolkit and shell is a public domain, interactive 

programming environment for creating graphical 

user interfaces [17] and general utilities. We 

chose T cl to implement this for two reasons. First. 

we plan to de,·elop a graphical user interface to 

facilitate the development aud visualization of dif

ferent representations of EEG ~ignals. "ce will also 

add components to the CCI to allow us to control 

the nmning of the Cl'\APS server and analyzf the 

results. The second rea;;on we chose Tel is the 

ease of programming in its interactive eiwiron

ment. 

4 Results 

Table 1 shows the results of all classification 

experiments a:-; the a\·erage percent of te,;t pat

terns clas:-;ilied correctly, out of 1;)8 patterns. This 

table include;; 90% confidence iuten ak Lased on 

90 repetitions (see Section 2. "7). 
Clearly the best classification accuracy is 

achieved with the freyuency-band representation. 

giving an average accuracy of about "7-i% for a 

network with -±0 hidden units. thou~h the accu

racy varies little for other network size:-;. including 

a network with a single hidden unit. Performance 

with the other representations is significantly 

lower, ranging from ;)0% to 53%. The effect of the 

number of hidden units is slightly more significant 

for the unprocessed and K-L representations 

than for the frequency-band representation. 

These results suggest that the energy within stan

dard frequency bands is more useful in discrimi

nating the two mental tasks than is the unproc

essed data. or dimensionallv-reduced data. This 

hypothesis must be tested by further experimenta

tion. It appears that the performance of the un

proces:-;ed and K-L repre,;entations is increasinl! 

with network size. but the differences are not sta

tistically significant. We ha,·e not yet tried net

works with more than 80 hidden unit;;. 

To determine which frequency Lands or asym

metry ratios were most usefuL the weights to 

which the neural network converged must be ex-

Table 1. Percent of Test Patterns Classified 

Correctly for Different Sized l\'etworks and 

Different Signal Representations 

Hidden Unprocessed 

l'nits (250Hz) 

40 
5 

1 

53.2 ± 0.6 

52.8 ± 0.6 

52.1 ± 0.5 

K-L 

51.7 ± 0.6 

51.8 ± 0.7 

50.4 ± 0.5 

Frequency

Bands 

73.9 ± o.: 
?2.9 ± 0.6 

?3.1 ± 0.6 
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amined. The weight magnitudes prm·ide some in

formation about which inputs are most relevant. 

More informative would be the partial derivatives 

of the network output with respect to each input 

component, showing which input components 

have the greatest effect on the output for a given 

input pattern. 

4.1 Benefit of Parallel Implementation 

To obtain the results reported here, each network 

was trained a number of times to approximately 

optimize the training algorithm's parameters-the 

learning rates for the output and hidden layer. Af

ter finding good parameter values, 90 runs of 

1,000-5,000 epochs were made with each net

work to calculate the averages in Table 1. The use 

of the parallel Ci'APS server made the scope of 

this study practical. 

To estimate the actual benefit of using the 

Cl\"APS server. we observed the execution time of 

training various sized networks for 1 ,000 epochs 

using the unprocessed data representation. 

Results are graphed in Figure 9 as the minutes of 

execution time versus number of hidden units. 

Execution time increases approximately linearly 

in the number of hidden units for the serial Spare 

10, but the execution time for the parallel Ci'APS 

server increases from 3.8 minutes for two hidden 

units to only 4.1 for 80 hidden units. A network of 

80 hidden units takes about 2-tO times longer on 

the Spare 10 than on the Cl\"APS server. Running 

Minutes 
of 

Execution 
Time 

16.5 hours 

Sun Spare 10 . 

500-1 .. 
I 

/' 

I 
I 

l ()() ' ;• 4.1 minutes l/ 128-Node CNAPS / 
0 -~··---,----. ---------, 

2 10 20 40 80 

Number of Hidden Units 

FIGURE 9 Minutes of execution time for increasin!! 

network size for the parallel C~APS ~erver and a serial 

Sun Spare 10. All runs were for 1,000 epochs. 

90 repetitions of the training procedure for a -tO 

hidden unit network took approximately 6 hours 

on the Cl\'APS Server; on the Spare 10 this would 

require 37 days. 

4.2 Program Development Effort 

~lost of the implementation effort for this study 

was devoted to extracting the binary EEG data 

from tape, separating and gathering the data for 

each experiment, dividing the data into segments, 

then normalizing and converting to the binary for

mat for the Ci'APS machine. Writing the pro

grams for running on the Cl\'APS server took one 

graduate student approximately one month to 

learn how to use the library. This effort is detailed 

below: 

Retrieving data from tape: This required 

discussions with Keirn to fully understand the 

format of the data on the tape. One graduate 

student wrote a C program to convert the data 

to ASCII and extract the data we needed to run 

each program. Effort: 2 weeks. 

Generating training and testing data: The 

data had to be segmented into quarter-second 

intervals, assigned a correct classification 

value, normalized, divided into training and 

testing sets, and converted into the binary form 

required by the Ci'APS machine. Two gradu

ate students worked on this phase. Effort: 3 

weeks. 

Implementing the eigenvector analysis: 

The 1.\"umerical Recipes algorithm [19] was em

bedded into a C program that performed the 

eigenvector decomposition and projected all 

data vectors onto the highest ranked eigenvec

tors. Effort: 1 week. 

Implementing the frequency analysis: A C 

program was written to compute the Burg AR 

coefficients using the evlrnen and rnerncof C 

described by Proakis and Manolakis [19]. Ef

fort: 1 week. 

Implementing backpropagation: One stu

dent taught himself how to program the CNAPS 

machine using the library of backpropagation 

routines. He wrote a C program that accepts a 

number of command line arguments, calls the 

appropriate Ci'APS routines to initialize the 

machine and the backpropagation algorithm, 

and then calls the routines to perform the train

ing and saving of results. Effort: 1 month. 

Interpretation of results: Awk [ 1] scripts 

were written to calculate means and standard 
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deviations of the results from multiple runs. Ef

fort: 1 dav. 

5 CONCLUSIONS 

Two conclusions can be drawn from this work. 

The first is related to the results, the second to the 

method. The results strongly suggest that the fre

quency-based representation produces signifi

cantlv more accurate classification than do the 

unprocessed or K-L representations. The size of 

the neural network appears to have little effect on 

the classification accuracv. This means that the 

signal representations we have considered do not 

bear >-ignificant relation,.;hips much beyond the 

near-linear relationships that are possible with 

networks having a sinl!le hidden unit. 

This conclusion must be supported by further 

experimentation. \\~e are currently investigating 

the effect of awraging the output of the network 

over successive quarter-second segments. Prelim

inary results show that by doing so the classifica

tion accuracy can be increased up to 90% correct 

by awraging owr segments from the full 1 0-sec

ond recording period. This, of course, would be 

impractical for the real-time control of a wheel

chair. \\~e are also considering other representa

tions, such as wavelets. \\~avelets represent both 

frequency and time features of a signal. For this 

reason, periods over which a signal is nonsta

tionary are more accurately represented with 

wavelets than with a strictly frequency-based rep

resentation. 

The second conclusion from this study is the 

utility of the parallel implementation of the error 

back propagation algorithm. A much greater num

ber of network sizes and initial weight vectors 

could be evaluated on the Cl'APS server than 

could be completed in a comparable amount of 

time on a serial machine. The experiments re

ported here would have required over 1 month to 

complete on a Sun Spare 10. 

The utility of this parallel implementation for a 

portable real-time EEG pattern recognizer is cur

rently not known. If networks with only one or two 

hidden units suffice, then a parallel implementa

tion of the neural network classifier may be un

necessary. However, a parallel implementation of 

the Burg algorithm for computing the frequency

based representation might significantly reduce 

the overall response time. Parallel algorithms for 

computing the FFT (Fast Fourier Transform) on 

SI\1D architectures are well known, [7, 11, 22], 

but the Burg method. based on an AH model. pro

duces a smoother spectrum than does the FFT 

when applied to noisy signals. such as EEC. In

cremental methods. based on Kalman filter tech

niques. exist for cakul<.~ting the coefficient,; of an 

AH model as new samples are received. \'re are 

investigating parallel implementations of the;;e al

gorithms as efficient means for computing th~ fre

quency-based representations. However. the pri

mary bottleneck we currenth· face in a real-tinw . . 
implementation is the apparent requirenwnt of 

averaging o\·er a number of successive time ;;eg

ments to gain sufficient cla,.;sifieation accuracy. 

Even if the clas,.,ifier pro\·id1·s a real-time rP

sponse. ,.;en-ral seconds of EEG samples must lw 

processed before a confident ta,.;k idPntification 

can be made. Thus. funher experimentation with 

diffPrent rPpresentation~ is required. 
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