
Determining Neural Network Connectivity
using Evolutionary Programming zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

John R. McDonnell and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADon Waagen

NCCOSC, RDT&E Div.
San Diego, CA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA92152-50

ABSTRACT

mis work investigates the application of evolutionary
programming, a stochastic search technique, for
determining conneniviry in feedforward neural networks.
m e method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis capable of simultaneously evolving both
the connection scheme and the network weights. ?%e
number of synapses are incorporated into an objective
function so that network parameter optimization is done
with respect to a connectivity cost zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well as mean
pattern error. Experimental results are shown using
feedforward network for simple binary mapping
problems.

INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The neural network design process is largely based on
heuristics. Previous experience (or the work of other
researchers) often dictates an initial network
configuration for the problem at hand. If the network
can be trained to achieve the designer’s goals, the design
process is terminated. If success is not attained, a
testing phase ensues and is largely trial and error. The
result can often be a network with excess parameters and
little regard for computational costs.

In this research, a connectivity cost associated with the
neural network configuration is incorporated into the
optimization procedure in an effort to reduce the number
of synapses. An optimized architecture offers increased
throughput for real-time signal processing applications as
well as decreased memory requirements.

Simultaneously determining both network parameters and
structure requires a search procedure which is amenable
to combinatorial optimization. The more successful
algorithms for these types of problems have generally
been stochastic search techniques such as simulated
annealing‘, genetic algorithms2, and simulated evolution3.

The simulated evolution, or evolutionary programming
(EP), paradigm has been shown to have the desired
attributes: combinatorial optimization capabilitied, the
ability to determine model structure’, and the ability to
train neural networks6.

The premise of the current research is that near minimal
size neural network architectures can be evolved under an
objective function which incorporates both neural network
connectivity and weight parameters. Further, the
proposed approach takes advantage of computational
resources during the designltraining phase thereby
removing the burden of evaluation by trial-and-error from
the designer. For purposes of discussion, Fig. 1
illustrates the structure of a hypothetically evolved neural
network where the connectivity between neurons is
determined via a multi-agent stochastic search technique.
Nodes which are not connected can be pruned. This work
extends previous research in evolving neural network
architectures (where both the number of neurons and
connectivity are stochastically determined using EP’) by
investigating an alternative strategy to evolving neural
network connectivity.

Similar work has been undertaken by Bornholdt and
Grauded using genetic algorithms to determine both
network structure and parameters. Due to the generality
of their implementation, recurrent networks can result
requiring multiple sweeps to reach a stable state. The
approach investigated in this work is limited to
feedforward networks. The EP paradigm is outlined in
the next section along with its application to training
neural networks. This training method is then augmented
so that the connectivity between layers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be randomly
determined to yield a structure similar to that shown in
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Finally, training results are given for simple
binary mapping problems.

I86
U.S. Government Work Not Protected by US. Copyright

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
inputs A

variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
connectivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

outputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3gwe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. A hypothetically evolved network structure

with variable connectivity.

APPLYING EP TO NEURAL NETS

Evolutionary Programming

Evolutionary programming is a neo-Darwinian search
paradigm suggested by Fogel et al.3 This stochastic
search method is typically utilized as a global optimizer.
EP has been successfully applied to a variety of
optimization problems including the traveling salesman
problem4, parameter estimation and system
identification', and neural net training.

The EP optimization algorithm can be described by the
following steps:

1. Form an initial population Puy-,(x) of size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2N. The
parameters x associated with parent element P, are
randomly initializedfrom a user spec$ed search domain.
2. Assign a fitness score S,(x) to each element Pi@) in
the population.
3. Reorder the population based on the number of wins
generated from a stochastic competition process.
4. Generate oflspring (PN Pur.,) of the highest
ranked N elements (Po PNJ in the population by
perturbing x.
5. Loop to step 2.

In addition to providing a systematic means of stochastic
search, the generality of the EP optimization algorithm
lends power to its implementation. The user is not
bound to any particular coding structure nor mutation
strategy. EP is used in this investigation since it is well
suited for simultaneously evolving both model structure
and parameters.

Determining Network Weights with EP

Evolutionary programming can be used for training neural
networks. The selected objective function is the same as
that used in backpropagation: minimize the sum-squared
error function E = -oJ2 over all patterns p for
k output neurons. The EP algorithm given in the previous
section is applied to determining neural network weights
and then results are shown for sample training zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAruns using
various scaling factors on the XOR mapping problem.

Initially, a population consisting of 2N feedforward
networks is generated. Each network in the population is
represented by a multidimensional weight array 9, with
weights initially chosen from a Ur-0.5, 0.51 distribution.
Next, a cost is assigned to each network in the population.
This cost is typically the mean of the sum-squared pattern
error E previously discussed. The "best" N members of
the population generate offspring (perturbed weight sets)
according to Wo=W,+SW, where SW, is N(0, with
a scaling coefficient S, and mean sum-squared pattern
error E,, for each parent network. The scaling factor is a
probabilistic analog to the stepsize used in gradient
descent methods and may also be treated as a random
variable within the EP search strategy'. The effect of the
scaling factor is shown in Fig. 2 for the XOR mapping.
The variance of the weight perturbations is bound by the
total system error in this application. To emulate the
probabilistic nature of survival, a pairwise competition is
held where individual elements compete against randomly
chosen members of the population. For example, if
network 9j is randomly selected to compete against
network 9i, a win is awarded to network iPi if Et < E,.
The N networks with the most "wins" are kept and the
process is repeated.

0.1 2

0.1 0

0.08

$0.06

0.04

w

0.02

Figure 2. EPtraining of a 2-2-1 XOR mapping network
for various scaling factors.

EVOLVING CONNECTIVlTY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsection investigates structural level adaptation within
the EP search. The objective function has been
modified to be a linearly weighted combination of the
number of connections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, and the mean sum-squared
pattem error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= aE + PN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A heuristic which might be employed would be to let
J n; d J N - thereby incorporating the desired training
error and the maximum possible number of connections
N, to reasonably weight the cost associated with the
evolved number of connections.

Analogous to the weight array, a connectivity array has
been specified where (one of its elements) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = I if a
connection exists or c = 0 if no connection is present.
A connectivity array that has all of its elements set to 1
yields a fully-connected feedforward network. The
designer must specify the number of hidden neurons over
which the search is conducted. This determines the
maximum number of connections. In previous work', a
synapse was randomly chosen from the range of possible
connections and modified based on its current state.
That is, disconnected synapses were connected and
connected synapses were disconnected. The number of
connections which may be affected at each mutation is
arbitrarily set by the designer or may even be determined
in a random fashion. The connectivity array is
incorporated in the neuron output dot product term
thereby nulling any signals between disconnected
neurons. Weights are continually modified in the event
that a neuron pair is reconnected.

In order to place an emphasis on signal propagation
through the network, a strategy for connection and
modification has been developed based on the activity
levels of a neuron. This strategy assigns a probability of
connection P, to the connection between neuron j in
layer 1 and neuron k in layer 1 + I, C,,, based upon the
variance in neuron j 's output over all of the patterns np
in the training set

i c I

where the variance for neuron j in layer I , U&, is
determined from the activation or output levels ay over
the number of pattems np

Neurons which have high variance on their activation
levels will tend to be connected to other neurons. This
may also be viewed as promoting connections from
neurons (which are essentially hyperplanes) that provide
a measure of discrimination on the feature space.
Neurons which have low variance on their activation
levels correspond to hyperplanes which separate few data
points, and thereby provide little information to the
network.

Synapses are randomly chosen as candidates for
modification. If a chosen synapse is not connected then
it's probability of becoming connected is evaluated.
Conversely, the probability of disconnection is calculated
if the synapse is Connected. If all of the synapses were
candidates for mutation during each generation, this would
be a self-fulfilling strategy where a single neuron would
dominate. However, only a small number of randomly
chosen synapses are evaluated for mutation when
generating an offspring network. The probabilities of
connection or disconnection are determined according to
the neuron's class. The three classes are self-evident with
the corresponding connection strategies as follows:

hidden unif neuron: The probability of connection is
Pc(Cg& as calculated above, and the probability of
disconnection is determined as Pd(CvJ = (I - Pc(CJ)

input neuron: For the binary mappings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused in these
studies, the variance on the input units is constant and the
strategy used for the input neurons reduces to a uniform
probabilistic connection strategy previously used'. To
promote coupling effects between neurons, the connection
probabilities are multiplied yielding the probability of
connection P,'(C#J = Pc(C&*PC(C,+,,J. The
disconnection probability is determined in a similar
fashion according to Pd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'(eu& = Pd(Cu J * Pd(Cn+lJ.

bias neuron: Since the bias neurons are invariant, the
probability of Connectkg to any neuron is contingent upon
the variance in the activation levels of that neuron. As a
result, the probability of connecting to a given neuron is
simply the probability of that neuron connecting to the
next layer. Thus the connection probability of a bias
neuron can be given by P,(C& = P&,+ J J) . Likewise,
its disconnection probability is given by Pd(CvJ =

pdfc(l+l)b)'

788

RESULTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Experiments were conducted with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN=IO parent
networks, ar= I , j ?=O.001 , andSF=100fortheX0Rand
3-bit parity mappings using the probabilistic connection
criteria discussed above. The networks were initialized
with a random connection strategy as opposed to initially
being fully connected. Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-6 show the results of
using this criteria for the XOR mapping with 8 hidden
units. Figures 7 and 8 show an example of an evolved
network for the 3 bit parity problem with 16 hidden
units. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As a measure of the sparseness of a network's
connectivity, a dilution ratio has been defined' as
D=S/Nz where S is the total number of synapses and N
is the number of neurons. The dilution ratio for the
evolved networks is given in Figures 4,6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 8,
respectively. The stochastic nature of the search process
makes the advent of two exact evolved configurations
highly unlikely. This is not to say that, once the unused
neurons are discarded, the networks will always be
dissimilar.

When compared to the purely random selection process
previously implemented7, the probabilistic approach
developed in this investigation tends to yield networks
with fewer connections at the expense of requiring
knowledge of the network structure (the activation-level
based connection scheme must know what class of
neuron is being connected). The cost function can be
modified7 to incorporate the additional cost associated
with the number of neurons. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CONCLUSIONS

Evolutionary programming can be used to simultaneously
determine both network architecture and parameters.
The results indicate that EP has high potential for
automating the design of neural networks.

This method for reducing the number of redundant
connections based on the variance of a neuron's
activation level also appears promising. Some
applications may be hindered by the excess memory
required by multi-agent searches or the training time
necessary to obtain adequate convergence. If the design
process for a specific problem cannot be fully automated,
this technique may provide a designer with insight as
well as a reasonable starting point for further
investigations.

Since only binary mapping problems were investigated, it
is not clear how the approach given in this study will
work on classification or continuous mapping problems.
Nevertheless, stochastic training techniques are becoming
prevalent in neurocomputing (especially in hardware
implementations?. During these investigations, issues in
orthogonal leaming (search) and population dynamics
became prevalent. These topics are being addressed in
future work".

REFERENCES

1. E. Aarts and J. Korst, Simulated Annealing and
Boltman machines: a Stochastic Approach to
Combinatorial Optimization and Neural Computing, John
Wiley & Sons, 1989.

2. J. H. Holland, Adaptation in Natural and Artipcial
Systems, University of Michigan Press, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnn Arbor, 1975.

3. L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial
Intelligence through Simulated Evolution, John Wiley and
Sons, 1966.

4. D. B. Fogel, "An evolutionary approach to the
traveling salesman problem", Biological Cybernetics, Vol.
60, No. 2, 1988.

5. D. B. Fogel, System Identijication through Simulated
Evolution: a Machine Learning Approach to Modeling,
Ginn Press, Needham, MA., 1991.

6. D.B. Fogel, L.J. Fogel and V.W. Porto, "Evolving
neural networks", Biological Cybernetics, Vol. 63, 1990.

7. J. R. McDonnell and D. Waagen, "Evolving neural
network architecture", SPIE Proc., Vol. 1766, Neural and
Stochastic Methods in Image and Signal Processing, San
Diego, 1992.

8. S. Bornholdt and D. Graudenz, "General asymmetric
neural networks and structure design by genetic
algorithms", Neural Networks, Vol. 5 , 1992.

9. B. W. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALee and B. J. Shen, "Analysis and design of
analog VLSI neural networks", in Neural Networks for
Signal Processing, B. Kosko (Ed.), Prentice-Hall, 1992.

10. J. R. McDonnell and D. Waagen, "Issues in evolving
neural networks: orthogonal learning and population
dynamics", submitted to SPIE Conf. on Science of
Artificial Neural Networks 11, 1993.

Figure 3. Evolving connectivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXOR
mapping. See zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJinal architecture at right. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TOW C& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.
USE

- _ _ _ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo &mecUor.i

"
8 0075 - ',
4 . I .

--..

I

-35

M

. 2 5

. 2 0

15

10

5

Figure 5. Evolving the connectivity for the XOR
mapping. See final architecture at right. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0

Figure 4. The final evolved connectivity for the XOR
mapping network, D = 0.111.

0

Figure 6. The final evolved connectiviry for the XOR
mapping network, D = 0.129.

Figure 8. The final evolved connectivity for the 3 bit
parity mapping network, D = 0.066.

790

