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ABSTRACT 

mis  work investigates the application of evolutionary 
programming, a stochastic search technique, for  
determining conneniviry in feedforward neural networks. 
m e  method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis capable of simultaneously evolving both 
the connection scheme and the network weights. ?%e 
number of synapses are incorporated into an objective 
function so that network parameter optimization is done 
with respect to a connectivity cost zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well as mean 
pattern error. Experimental results are shown using 
feedforward network for simple binary mapping 
problems. 

INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The neural network design process is largely based on 
heuristics. Previous experience (or the work of other 
researchers) often dictates an initial network 
configuration for the problem at hand. If the network 
can be trained to achieve the designer’s goals, the design 
process is terminated. If success is not attained, a 
testing phase ensues and is largely trial and error. The 
result can often be a network with excess parameters and 
little regard for computational costs. 

In this research, a connectivity cost associated with the 
neural network configuration is incorporated into the 
optimization procedure in an effort to reduce the number 
of synapses. An optimized architecture offers increased 
throughput for real-time signal processing applications as 
well as decreased memory requirements. 

Simultaneously determining both network parameters and 
structure requires a search procedure which is amenable 
to combinatorial optimization. The more successful 
algorithms for these types of problems have generally 
been stochastic search techniques such as simulated 
annealing‘, genetic algorithms2, and simulated evolution3. 

The simulated evolution, or evolutionary programming 
(EP), paradigm has been shown to have the desired 
attributes: combinatorial optimization capabilitied, the 
ability to determine model structure’, and the ability to 
train neural networks6. 

The premise of the current research is that near minimal 
size neural network architectures can be evolved under an 
objective function which incorporates both neural network 
connectivity and weight parameters. Further, the 
proposed approach takes advantage of computational 
resources during the designltraining phase thereby 
removing the burden of evaluation by trial-and-error from 
the designer. For purposes of discussion, Fig. 1 
illustrates the structure of a hypothetically evolved neural 
network where the connectivity between neurons is 
determined via a multi-agent stochastic search technique. 
Nodes which are not connected can be pruned. This work 
extends previous research in evolving neural network 
architectures (where both the number of neurons and 
connectivity are stochastically determined using EP’) by 
investigating an alternative strategy to evolving neural 
network connectivity. 

Similar work has been undertaken by Bornholdt and 
Grauded using genetic algorithms to determine both 
network structure and parameters. Due to the generality 
of their implementation, recurrent networks can result 
requiring multiple sweeps to reach a stable state. The 
approach investigated in this work is limited to 
feedforward networks. The EP paradigm is outlined in 
the next section along with its application to training 
neural networks. This training method is then augmented 
so that the connectivity between layers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be randomly 
determined to yield a structure similar to that shown in 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Finally, training results are given for simple 
binary mapping problems. 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
inputs  A 

variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
connectivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

outputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3gwe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. A hypothetically evolved network structure 

with variable connectivity. 

APPLYING EP TO NEURAL NETS 

Evolutionary Programming 

Evolutionary programming is a neo-Darwinian search 
paradigm suggested by Fogel et al.3 This stochastic 
search method is typically utilized as a global optimizer. 
EP has been successfully applied to a variety of 
optimization problems including the traveling salesman 
problem4, parameter estimation and system 
identification', and neural net training. 

The EP optimization algorithm can be described by the 
following steps: 

1. Form an initial population Puy-,(x) of size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2N. The 
parameters x associated with parent element P, are 
randomly initializedfrom a user spec$ed search domain. 
2. Assign a fitness score S,(x) to each element Pi@) in 
the population. 
3. Reorder the population based on the number of wins 
generated from a stochastic competition process. 
4. Generate oflspring (PN .... Pur.,) of the highest 
ranked N elements (Po .... PNJ in the population by 
perturbing x. 
5. Loop to step 2. 

In addition to providing a systematic means of stochastic 
search, the generality of the EP optimization algorithm 
lends power to its implementation. The user is not 
bound to any particular coding structure nor mutation 
strategy. EP is used in this investigation since it is well 
suited for simultaneously evolving both model structure 
and parameters. 

Determining Network Weights with EP 

Evolutionary programming can be used for training neural 
networks. The selected objective function is the same as 
that used in backpropagation: minimize the sum-squared 
error function E = -oJ2 over all patterns p for 
k output neurons. The EP algorithm given in the previous 
section is applied to determining neural network weights 
and then results are shown for sample training zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAruns using 
various scaling factors on the XOR mapping problem. 

Initially, a population consisting of 2N feedforward 
networks is generated. Each network in the population is 
represented by a multidimensional weight array 9, with 
weights initially chosen from a Ur-0.5, 0.51 distribution. 
Next, a cost is assigned to each network in the population. 
This cost is typically the mean of the sum-squared pattern 
error E previously discussed. The "best" N members of 
the population generate offspring (perturbed weight sets) 
according to Wo=W,+SW, where SW, is N(0, with 
a scaling coefficient S, and mean sum-squared pattern 
error E,, for each parent network. The scaling factor is a 
probabilistic analog to the stepsize used in gradient 
descent methods and may also be treated as a random 
variable within the EP search strategy'. The effect of the 
scaling factor is shown in Fig. 2 for the XOR mapping. 
The variance of the weight perturbations is bound by the 
total system error in this application. To emulate the 
probabilistic nature of survival, a pairwise competition is 
held where individual elements compete against randomly 
chosen members of the population. For example, if 
network 9j is randomly selected to compete against 
network 9i, a win is awarded to network iPi if Et < E,. 
The N networks with the most "wins" are kept and the 
process is repeated. 
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Figure 2. EPtraining of a 2-2-1 XOR mapping network 
for various scaling factors. 



EVOLVING CONNECTIVlTY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsection investigates structural level adaptation within 
the EP search. The objective function has been 
modified to be a linearly weighted combination of the 
number of connections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, and the mean sum-squared 
pattem error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= aE + PN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A heuristic which might be employed would be to let 
J n; d J N -  thereby incorporating the desired training 
error and the maximum possible number of connections 
N, to reasonably weight the cost associated with the 
evolved number of connections. 

Analogous to the weight array, a connectivity array has 
been specified where (one of its elements) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = I if a 
connection exists or c = 0 if no connection is present. 
A connectivity array that has all of its elements set to 1 
yields a fully-connected feedforward network. The 
designer must specify the number of hidden neurons over 
which the search is conducted. This determines the 
maximum number of connections. In previous work', a 
synapse was randomly chosen from the range of possible 
connections and modified based on its current state. 
That is, disconnected synapses were connected and 
connected synapses were disconnected. The number of 
connections which may be affected at each mutation is 
arbitrarily set by the designer or may even be determined 
in a random fashion. The connectivity array is 
incorporated in the neuron output dot product term 
thereby nulling any signals between disconnected 
neurons. Weights are continually modified in the event 
that a neuron pair is reconnected. 

In order to place an emphasis on signal propagation 
through the network, a strategy for connection and 
modification has been developed based on the activity 
levels of a neuron. This strategy assigns a probability of 
connection P, to the connection between neuron j in 
layer 1 and neuron k in layer 1 + I, C,,, based upon the 
variance in neuron j 's output over all of the patterns np 
in the training set 

i c  I 

where the variance for neuron j in layer I ,  U&, is 
determined from the activation or output levels ay over 
the number of pattems np 

Neurons which have high variance on their activation 
levels will tend to be connected to other neurons. This 
may also be viewed as promoting connections from 
neurons (which are essentially hyperplanes) that provide 
a measure of discrimination on the feature space. 
Neurons which have low variance on their activation 
levels correspond to hyperplanes which separate few data 
points, and thereby provide little information to the 
network. 

Synapses are randomly chosen as candidates for 
modification. If a chosen synapse is not connected then 
it's probability of becoming connected is evaluated. 
Conversely, the probability of disconnection is calculated 
if the synapse is Connected. If all of the synapses were 
candidates for mutation during each generation, this would 
be a self-fulfilling strategy where a single neuron would 
dominate. However, only a small number of randomly 
chosen synapses are evaluated for mutation when 
generating an offspring network. The probabilities of 
connection or disconnection are determined according to 
the neuron's class. The three classes are self-evident with 
the corresponding connection strategies as follows: 

hidden unif neuron: The probability of connection is 
Pc(Cg& as calculated above, and the probability of 
disconnection is determined as Pd(CvJ = ( I  - Pc(CJ) 

input neuron: For the binary mappings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused in these 
studies, the variance on the input units is constant and the 
strategy used for the input neurons reduces to a uniform 
probabilistic connection strategy previously used'. To 
promote coupling effects between neurons, the connection 
probabilities are multiplied yielding the probability of 
connection P,'(C#J = Pc(C&*PC(C,+,,J. The 
disconnection probability is determined in a similar 
fashion according to Pd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'(eu& = Pd(Cu J * Pd(Cn+lJ. 

bias neuron: Since the bias neurons are invariant, the 
probability of Connectkg to any neuron is contingent upon 
the variance in the activation levels of that neuron. As a 
result, the probability of connecting to a given neuron is 
simply the probability of that neuron connecting to the 
next layer. Thus the connection probability of a bias 
neuron can be given by P,(C& = P&,+ J J ) .  Likewise, 
its disconnection probability is given by Pd(CvJ = 

pdfc(l+l)b)' 
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RESULTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Experiments were conducted with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN=IO parent 
networks, ar= I , j ?=O.001 ,  andSF=100fortheX0Rand 
3-bit parity mappings using the probabilistic connection 
criteria discussed above. The networks were initialized 
with a random connection strategy as opposed to initially 
being fully connected. Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-6 show the results of 
using this criteria for the XOR mapping with 8 hidden 
units. Figures 7 and 8 show an example of an evolved 
network for the 3 bit parity problem with 16 hidden 
units. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As a measure of the sparseness of a network's 
connectivity, a dilution ratio has been defined' as 
D=S/Nz where S is the total number of synapses and N 
is the number of neurons. The dilution ratio for the 
evolved networks is given in Figures 4,6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 8, 
respectively. The stochastic nature of the search process 
makes the advent of two exact evolved configurations 
highly unlikely. This is not to say that, once the unused 
neurons are discarded, the networks will always be 
dissimilar. 

When compared to the purely random selection process 
previously implemented7, the probabilistic approach 
developed in this investigation tends to yield networks 
with fewer connections at the expense of requiring 
knowledge of the network structure (the activation-level 
based connection scheme must know what class of 
neuron is being connected). The cost function can be 
modified7 to incorporate the additional cost associated 
with the number of neurons. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CONCLUSIONS 

Evolutionary programming can be used to simultaneously 
determine both network architecture and parameters. 
The results indicate that EP has high potential for 
automating the design of neural networks. 

This method for reducing the number of redundant 
connections based on the variance of a neuron's 
activation level also appears promising. Some 
applications may be hindered by the excess memory 
required by multi-agent searches or the training time 
necessary to obtain adequate convergence. If the design 
process for a specific problem cannot be fully automated, 
this technique may provide a designer with insight as 
well as a reasonable starting point for further 
investigations. 

Since only binary mapping problems were investigated, it 
is not clear how the approach given in this study will 
work on classification or continuous mapping problems. 
Nevertheless, stochastic training techniques are becoming 
prevalent in neurocomputing (especially in hardware 
implementations?. During these investigations, issues in 
orthogonal leaming (search) and population dynamics 
became prevalent. These topics are being addressed in 
future work". 
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Figure 3. Evolving connectivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXOR 
mapping. See zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJinal architecture at right. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

TOW C& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
USE 
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Figure 5. Evolving the connectivity for the XOR 
mapping. See final architecture at right. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 4. The final evolved connectivity for the XOR 
mapping network, D = 0.111. 

0 

Figure 6. The final evolved connectiviry for the XOR 
mapping network, D = 0.129. 

Figure 8. The final evolved connectivity for the 3 bit 
parity mapping network, D = 0.066. 
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