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Abstract 

In this study we consider a pick-to-pack orderpicking system, in which batches of orders are picked 

simultaneously from different (work) zones by a group of order pickers. After picking, the orders are 

transported by a conveyor to the next station for packing. Our aim is to determine the optimal number 

of zones such that the overall (picking and packing) time to finish a batch is minimized. We solve this 

problem by optimally assigning items to pick routes in each zone. We illustrate the method with data 

taken from a distribution center of one of the largest online retailers in the Netherlands.  
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1. Introduction and literature review 

Within a logistics chain, products need to be physically moved from one location to another, from 

manufacturers to end users. During this process, they may be buffered or stored at certain places 

(warehouses) for a certain period of time. Many activities are carried out in a warehouse. Among 

them, orderpicking - the process of retrieving products from storage (or buffer area) in response to a 

specific customer request - is the most critical one. It has long been identified as a very labor 

intensive operation in manual systems, and a very capital intensive operation in automated systems 

(Goetschalckx and Ashayeri, 1989).  It may consume as much as 60% of all labor activities in the 

warehouse, and for a typical warehouse, the cost of orderpicking is estimated to be as much as 55% 

of the total warehouse operating expense (Tompkins et al., 2003). For these reasons, warehousing 

professionals consider orderpicking as the highest-priority activity for productivity improvements.  

 
Several recent trends both in manufacturing and distribution have made the orderpicking become 

more and more important and complex. In manufacturing, there is a move to smaller lot-sizes, point-

of-use delivery, order and product customization, and cycle time reductions. In distribution logistics, 

companies tend to accept late orders while providing timely delivery within tight time windows (thus 

the time available for orderpicking becomes less). Small warehouses are being replaced by larger 

ones to realize economies of scale. There is also a trend of collecting products, materials, and product 

carriers from customers back to the warehouse. These new trends make today’s orderpicking 

operations become even more complex. 

 
We can make a distinction between two types of warehouses: conventional (manual picking) and 

automated warehouses. In this research we focus on the conventional warehouse type. At operational 

level, there are four issues that have received attention from researchers.  
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• Storage assignment. This is a rule used for assigning stock keeping units (SKUs) to storage 

locations. The main storage policies mentioned in the literature are randomized, class-based and 

dedicated storage. The easiest storage method is to randomly allocate incoming products to 

available storage locations. However, we can reduce the expected travel time of a picking tour 

by locating high-demand products near the input/ output (I/O) point (depot) of the warehouse. 

There are two ways of doing that: either on group or on item basis. In practice, class-based 

storage strategy (see for example, Hausman et al., 1976) is most popular. This strategy divides 

products and locations into classes, ranks them in decreasing order of ordered frequency, and 

then assigns in that order to the locations nearest to the I/O point. The dedicated storage strategy 

(see for example Caron et al., 1998, 2000) rank the items individually and then assigns them in 

that order to the locations nearest to the I/O point. The cube-per-order index (COI) rule, which 

is attributed to Heskett (1964), is an example of such a dedicated storage strategy. The COI is 

the ratio of the space requirement (cube) of a SKU to its turnover rate. 

• Layout problem. This is the problem of finding a good aisle configuration (i.e. the optimal 

number and length of aisles) minimizing orderpicking time. Little research has been done in this 

area. Recently, Roodbergen (2001) proposes a non-linear objective function (i.e. average travel 

time in terms of number of picks per route and pick aisles) for determining the aisle 

configuration for random storage warehouses (including single and multiple blocks) that 

minimizes the average tour length. Also considering minimization of the average tour length as 

the major objective, Caron et al. (2000) consider 2-block warehouses (i.e., one middle cross 

aisle) under the COI-based storage assignment. For small (up to 2-block) class-based storage 

warehouses, Le-Duc and De Koster (2005a,b) propose a travel time model and a local search 

procedure for determining optimal  storage zone boundaries as well as the number of storage 

aisles. 
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• Routing order pickers. This is the problem of determining the optimal sequence of visits to pick 

up a number of requested items as quickly as possible. Optimal methods to route (order) pickers 

depend on the warehouse layout and the location of the depot. Optimal methods for simple 

warehouse layouts (single or two blocks) are mentioned by Ratliff and Rosenthal (1983), 

Goetschalckx and Ratliff (1988), De Koster and Van der Poort (1998), Roodbergen and De 

Koster (2001b) . The disadvantage of the exact algorithm is that it depends on the layout and 

depot location and that the resulted routes may be too complicated for pickers to follow. For 

large and more complicated layouts (more than two blocks) several heuristics are documented. 

The best routing heuristic known so far is probably the combined heuristic (Roodbergen, 

2001a). This method combines two basis methods: either traversing a visited aisle from one end 

to the other or entering and leaving the aisle from the same aisle’s end. The choices are made by 

using a dynamic programming method.  

• Batching and zoning. Batching determines which orders are released together (in batch picking, 

multiple orders are picked together in one pick tour and need later sorted by order). Batching is 

designed to reduce the average travel time per order by sharing a pick tour with other orders. 

There are basically two criteria for batching: the proximity of pick locations and the time 

window. Proximity batching, the clustering of orders based on retrieval locations, is studied in, 

for example, Hwang et al. (1988), Gibson and Sharp (1992), Elsayed et al. (1993), Rosenwein 

(1994), Elsayed and Lee (1996), De Koster et al. (1999), Gademann et al. (2001) and 

Gademann and van de Velde (2005). With time-window batching the number of orders per 

batch can be fixed or variable. Variable time-window batching groups all orders that arrive 

during the same time interval or window. With fixed-number-of-orders time-window batching, 

a time window is the variable length until a batch has a predetermined number of orders (Le-

Duc and De Koster, 2003a,b). Zoning is closely related to batching; it divides the pick area into 

sub-divisions (or zones), each will be dedicated to, normally, one or few pickers. The major 
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advantages of zoning are: reduction of the travel time (because of the smaller traversed area and 

also the familiarity of the picker with the zone) and of the traffic congestion. Depending on the 

process sequence, zoning can be further classified as progressive zoning or synchronized 

zoning. With progressive zoning, orders are picked zone by zone sequentially (this system is 

also called pick-and-pass); a batch is finished until all (order) lines of the orders in the batch are 

picked. In contrast, in synchronized (or parallel) zoning, pickers in all zones can be working on 

the same batch at the same time. Choe and Sharp (1991) notice that zoning has received little 

attention in the literature despite its important impact on the performance of OPS. Mellema and 

Smith (1988) examine the effects of aisle configuration, stocking policy and batching and 

zoning rules by using a simulation model. They suggest that a combination of batching and 

zoning can significantly increase the productivity (pieces per man-hour). Choe et al. (1993) 

study the effects of three strategies for OP in an aisle-based system: single-order-pick, sort-

while-pick, and pick-and-sort. They propose analytical tools for planner to quickly evaluate 

various alternatives without using simulation. Petersen (2002) uses simulation to show that the 

zone size, the number of items on the pick list, and the storage policy have a significant effect 

on the zoning configuration (i.e. the aisle’s length is a variable).  

 
A critical problem associated with zoning is to define the zone storage capacity (or zone borders). 

More specifically, for a given layout, operational policies (routing, batching method) and a storage 

assignment policy, it is the problem of how to divide the picking area into zones such that a certain 

objective is maximized or minimized. Example objectives include the system throughput time 

(Petersen, 2002) and the load balance between zones (Jane and Laih, 2005). If we assume that all 

aisles are identical and all zones are of the same size (an equal number of identical aisles), then the 

zone partitioning problem becomes the problem of determining the optimal number of aisles 

constituting a zone. It should be mentioned here that this problem has not been studied in the 

literature. The most related publication is Petersen (2002), where the effects on the travel distance in 
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a zone of the number of aisles in the zone, of storage assignment methods, and of the number of items 

in the pick list are investigated. However, the zone storage capacity is fixed (i.e. aisle length is a 

decision variable). Therefore, the problem essentially differs with the problem of determining the 

number of zone (or zone storage capacity). In this study, we will consider the problem of finding the 

optimal number of zones to minimize the system throughput time for an orderpicking system, where 

orders are picked in groups and after picked they are sorted and packed per order (synchronized zone 

picking). This system type is commonly observed in many mail-order companies (e.g., Amazon - 

Germany, Wehkamp - the Netherlands). The paper is organized as follows. In the next section, we 

describe the orderpicking operation. Then, we present a mathematical model for the problem of 

optimally assign items-to-routes in each zone in Sections 3. Next, we apply the model to find the 

optimal number of zones for a mail-order company in Section 4. Finally, we conclude and propose 

outlooks for further research in Section 5. 

2.   Orderpicking system  

The schematic layout of the OP system that we consider is sketched in Figure 1. Basically, we have 

two functional areas: one area for picking and one for packing. Items are stored in rectangular bin-

shelving storage racks. Batched orders are picked simultaneously from different zones in the picking 

area by a group of order pickers. After an order picker has completed a pick tour, the picked items are 

deposited on a conveyor and transported to the buffer area. When all items of an order have been 

picked, they are sorted and picked. 

• Batch generation: orders (requests from a customer consist of one or several items1) arriving 

within a predetermined interval are grouped together in one batch for joint release to the order 

pickers. Within a batch, orders are spread over the zones based on the storage locations of their 

items. They are consolidated later at the packing area.  

                                                 
1 ‘Item’ here means stock keeping unit (SKU), in the literature it is also called ‘order-line’ 
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• Picking operation: all batched items from the same zone are picked by one order picker or a 

group of order pickers designated to the zone. Each order picker can only be assigned to at most 

one zone (zone picking). As each order picker can only pick a limited number of items (e.g. due 

to the capacity limitation of the picking cart) in one pick route, the batched items from a zone 

may require t pick shifts to be completed, where 1 t τ≤ ≤  with { }max
zones

tτ = . (In the case of a 

single order picker per zone, the number of pick shifts required is the number of pick routes.) 

The order picker starts a batch by obtaining a picking cart and pick lists (each is a list of items 

to be picked in one pick route) from a central location. The order picker then goes to the left-

most aisle in the zone to start a pick route. After picking all requested items, the order pickers 

place them on the transportation conveyor, and go back to the left-most aisle to start a new pick 

route. The transportation conveyor runs continuously to move all picked items to the buffer 

area. For each batch of orders, it is assumed that the order picker receives all pick instructions at 

the beginning of the batch. For the ease of discussion later on, we divide the throughput time of 

a batch into periods from 1 to τ +1, where periods are defined as follows. Period 1 is the time 

lapse between the starting time (to pick the batch) and the moment when all the order pickers 

(from all zones) have finished the first pick route. Period 2 starts from the end of the period 1 

and ends when all the second pick routes in all zones have been completed, and so on. The last 

period starts from the moment when all last pick routes have been completed, and ends when all 

items are sorted (no picking operation is carried out, only the packing). 

• Packing operation: a conveyor runs continuously in the buffer area for buffering incomplete 

orders (an order is called incomplete if not all of its items are picked). Orders only enter the 

sorter when they are complete. It means that newly-picked items enter the sorter if and only if 

all the items in the orders they belong to either have been picked or were previously picked 

(waiting in the buffer area). The complete orders are sorted to sorter exits (see Figure 1) 
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according to destinations (e.g. each shipping lane is assigned to a group of proximity 

destination postcodes). A group of packers manually pack the orders. After packing, orders are 

transported to the shipping docks for delivery to the customers. 

 
[Insert Figure 1 here] 

 
With a given work force level (the number of workers at both picking and packing stages), the 

objective of our study is to minimize the total time to complete a batch of orders (throughput time). 

There are two decision problems that may impact the overall time to complete an order batch.  

• At the operational level, the problem is how to assign items to different routes in each zone 

(recall that completion of a batch in one zone may require more than one pick route to be 

completed). The item assignment and sequence in which we pick routes in each zone has an 

important impact on the latter stage when the items are consolidated. Let us consider a simple 

example. We have two picking zones A and B, each with one order picker, with pick capacity 

of one unit per pick route. In a batch, we have to complete two orders: order1=A1+B1, 

order2=A2+B2. For this situation, we have four possible pick sequences: (A1 A2, B1 B2), 

(A1 A2, B2 B1), (A2 A1, B1 B2) and (A2 A1, B2 B1). It is clear that the second and 

third sequence result in the longest throughput time, as there is no order to pack after the first 

pick shift. In the general case, when we have a set of orders, a given layout (number of zones, 

the size of zone), and a work force level at both the picking and packing area, we can formulate 

this problem as a mixed integer-linear program. We will discuss this in the next section. 

• At the tactical level, we have to decide the number of zones into which the overall picking area 

should be divided (or in other words, how large the zone size should be). When the zone size 

increases, the route time (to pick a given number of items) also increases. And consequently, 

the throughput time may also increase. However, on the other hand, large zones reduce the 

consolidation problem, as orders are spread over fewer zones. This makes it simpler to arrange 
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the pick sequence (item-to-route assignment in each zone) in such a way that the number of 

complete orders arriving at the packing area (per time unit) increases. And thus, the throughput 

time may be shorter. The best zoning scheme is the one that brings the best compromise 

between these two opposite effects.  

 
In practice, the number of aisles in a warehouse is limited. Therefore, when we assume that zones are 

identical, we can choose from only a limited number of possible zone sizes (number of aisles per 

zone). For example, if we have 20 aisles then we have the following zone-size possibilities: 1, 2, 4, 5, 

10 and 20 aisles (with 20, 10, 5, 4, 2 and 1 zones respectively). Because of that, our solution strategy 

is as follows. For each zoning scheme, we first solve the item-to-route assignment problem. In a next 

step, we vary the zone sizes and choose the zone size that provides the shortest overall throughput 

time. In the next section we will step by step formulate a mathematical model for the item-to-route 

assignment problem and discuss a solution approach.  

3.   Mathematical model for item-to-route assignment problem 

In the model, the following assumptions are made: 

• (Storage) aisles are identical.  

• A zone is a set of adjacent entire aisles (i.e. one aisle can not belong to more than one zone). All 

zones have the same number of aisles; this assumption is made to keep the workforce balanced 

among zones.  

• The picking capacity per pick route is determined by the number of items to be picked in one 

pick route. 

• Order pickers always start from the left-most aisle (of the assigned zones). Within a zone, the 

average route length depends only on the number of items per route, the zone size, the storage 

assignment and the routing method used.  
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• The travel time between from one side of the aisle to the other is negligible. It means that an 

order picker can pick items from both sizes of the aisles in a single pass. No additional time is 

needed to reach the higher-level storage locations in an aisle. 

• Multiple order pickers can work in one zone at the same time (i.e. traffic congestion is 

negligible).  

• The item transportation time (µ ) between the picking and packing area is a constant. 

• Routes between order pickers in different zones are synchronized. Synchronized zoning usually 

gives a shorter response time than progressive zoning (at the expense of order integrity).  

• Only complete orders can enter the sorter, incomplete orders are buffered. The buffer capacity 

is sufficiently large to buffer all order needed. 

 
Data 

q   the maximum number of items that an order picker can pick in a pick route. We assume 

that this is identical for all order pickers as the pick capacity of an order picker mainly 

depends on the picking vehicle or cart.  

a  number of aisles per zone 

L   length (in travel time unit) of a storage aisle 

bw  centre-to-centre distance (in travel time unit) between two consecutive storage aisles 

st  set-up time of a pick route 

µ  transportation (conveyor) time  

pir  picking rate (number of units per time unit that an order picker can pick). It is assumed to 

be identical for all order pickers. 

par  overall packing rate (number of orders per time unit). This rate depends on the average 

order size (number of items per order) and the average packing time per unit. 
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kN  number of order pickers in zone k 

, , ,t i o k   indices of period, item, orders and zones 

K  set of zones 

O  set of all orders 

oI  set of all items in order o  

kI  set of all items in zone k 

I   set of all items, o k
o O k K

I I I
∈ ∈

= =U U  

Intermediate variables 

τ  the maximum number of required pick shifts in the zones, max k

k K
k

I
qN

τ
∈

⎧ ⎫⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎩ ⎭

. 

( ),q aℜ  time needed to finish a pick route of q items (or picks) in a zone containing a aisles and 

return to the left-most aisle of the assigned zone. It consists of four components: travel 

time, setup time, picking time and correction time. (It has to note that the number of items 

in the last pick route (in each zone) can be less than the route’s capacity.) If the random 

storage assignment and the S-shape routing method are used, then it can be calculated by 

(see details in Appendix A):  

( ) ( ) ( )
1

1 1, 1 1 2 1 ,
q q qa

b s
i pi

i i qq a La w i CR q a t
a a a r=

⎡ ⎤ ⎡ ⎤−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ℜ = − − + − − + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑  (1) 

Decision variables 

( )
⎩
⎨
⎧ =

=
otherwise  0

1 periodin  picked is  item if1 ..τtti
tix  

1 if order  has been completely picked in or before period ( 1.. )
0 otherwiseto

o t t
y

τ=⎧
= ⎨
⎩

  

toTL   total number of items of order o completely picked at the end of period t 
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tNCO  number of newly complete orders in period  t ( 1.. )t τ=  

tUCO  number of complete (but unpacked) orders transferred from period t ( 1.. )t τ= to period  t+1. 

This is because in a period of length ( ),q a µℜ + , we can only pack a limited number of 

complete orders: ( ), . paP q a rµ⎢ ⎥= ℜ +⎡ ⎤⎣ ⎦⎣ ⎦ . 

1 if =0
0 otherwise

t
t

UCO
z

⎧
= ⎨
⎩

 ( )1..t τ∀ =  

 
The whole batch is completed only when all orders have been packed. Therefore, the throughput 

time, the overall time (ψ ) to complete a batch, is the summation of time required to pick all items 

(the total picking time), the transportation (for all pick shifts) and the time needed to pack all 

remaining unpacked orders after the last pick shift. The throughput time can be calculated by: 

( ) ( ){ } ( ){ } { }11 , ,M paq a q a NCO UCO rτ τψ τ µ µ −= − ℜ + + ℜ + + +  (2) 

where ( ),Mq aℜ  is the longest pick-route time in period τ ; Mq  is the maximum number of items 

which need to be picked from some zone in period τ . Having mentioned all assumptions and 

variables, we now can formulate the item-to-route assignment problem as follows. 

 
MODEL 

Objective  Min ψ  

Such that 

1
1ti

t
x

τ

=

=∑  ( ), kk K i I∀ ∈ ∈  (3) 

k

ti k
i I

x qN
∈

≤∑  ( ), 1..k K t τ∀ ∈ =  (4)  

1 o

t

to ji
j i I

TL x
= ∈

=∑∑   ( ), 1..o O t τ∀ ∈ =  (5) 

( ) ( )1 1 0o to toI TL y⎡ ⎤− − − ≤⎣ ⎦  ( ), 1..o O t τ∀ ∈ =  (6) 
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1o to toI TL y− + ≤ −  ( ), 1..o O t τ∀ ∈ =  (7) 

1

1 1

t t

t jo j
o O j j

NCO y NCO
−

∈ = =

= −∑∑ ∑  ( )1..t τ∀ =   (8)  

( ) ( )1 1 0t t t t tNCO UCO P UCO NCO UCO P− −+ − − + − ≤⎡ ⎤⎣ ⎦  ( )1..t τ∀ =   (9) 

( )11 0t t tUCO NCO UCO P−− + − ≤⎡ ⎤⎣ ⎦  ( )1..t τ∀ =   (10)  

( )1t t tUCO NCO UCO P−≥ + −  ( )1..t τ∀ =   (11) 

0 0NCO =    (12) 

0 0UCO =    (13)  

0tUCO ≥ ( )1..t τ∀ =     (14) 

{ }, , 0,1ti to tx y z ∈  ( ), 1.. , ,ko O t i I k Kτ∀ ∈ = ∈ ∈   (15) 

 
In the objective function, we minimize the throughput time to finish a batch of q orders. Constraint 

(3) ensures that each item is assigned to exactly one pick route. Constraint (4) is the capacity 

constraint. It indicates that the maximum number of items that can be picked from zone k by kN  

order pickers in one period cannot exceed the total capacity of the kN  order pickers. Constraints (5)-

(7) indicates that 1toy =  if order o  is completed by the end of period t (meaning that all items belong 

to order o are picked in pick shift t), and 0toy =  otherwise. Constraint (6) can be linearized by using 

the big-M method: ( )1 1o to toI TL M y− ≤ − ( ), 1..o O t τ∀ ∈ = , where 1M  is the smallest possible 

constant, it would equal to { }max oo O
I

∈
. Constraints (8)-(14) imply that tUCO = ( 1t tNCO UCO −+  )P−  

( )1..t τ∀ =  if tNCO + 1tUCO − 0P− > , and tUCO  = 0 otherwise. In words, it means the number of 

complete orders left over period t+1 equals the number of newly complete order during period t plus 

the number of complete orders left over from period t-1 minus the number of orders that have been 

packed in period t. Constraints (9) and (11) can also be linearized by the big-M method: 
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( )1t t tUCO NCO UCO P−− + − ≤ ( )2 1 tM z−  ( )1..t τ∀ =  and ( ) ( )1 2 1..t t tNCO UCO P M z t τ−+ − < ∀ = , 

respectively. 2M  equals the number of orders O . The last constraint defines the nonnegative and 

binary property of variables ,ti tox y  and tz . 

 
The model is a mixed integer-linear program. The most difficult constraints are (3) and (4). 

Constraints (5)-(16) are used just for keeping track of the ‘inventory’ level after each period. If we 

have only one zone, then our problem can be interpreted as a vehicle routing problem (VRP) with 

minimizing the ‘inventory’ level after the last period as the objective function. When we have k 

zones, our problem is a type of multiple VRP. The VRP is an NP-hard problem. Therefore, our 

problem also belongs to this class.  

 
Our computational experience with this model was that the running time of the model mainly 

depends on four factors: the total number of items, the order size (average number of items per 

order), and the number of periods and zones. For a problem size of 6 zones, 1000 items to be picked 

in 4 periods, 10 items per order on average, the time required to run the model to optimality was 

about 15 seconds (using LINGO release 8.0, 2.4 GHz CPU). However, for larger instances the 

running time went up very rapidly; it increased to more than 41 hours when the number of periods 

increased to 7. For real-life warehouses, the number of periods (per batch) in each zone can be rather 

few. However, the number of items per order and the number of zones can be large. A heuristic 

approach is needed for solving large instances. 

4.   Case study and numerical experiments 

In this section, we first introduce the case we have investigated. Then we discuss the results obtained 

by using the model that proposed in Section 3. 
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4.1 Introduction 

The case we consider is based on the distribution center of Wehkamp, one of the largest online 

retailers in the Netherlands. Its mission is “being an innovative home-shopping organization with a 

wide assortment of consumer products against competitive prices and recognizable better service”. 

The company uses a pick and pack system (which was simplified and sketched in Figure 1). About 

15000 orders have to be picked per day, each containing 1.6 items (in total 2.3 units per order) on 

average. Since the picking and packing department have a limited capacity, orders received from 

customers are processed several times (in batches) a day; each batch contains about 1000 items in 

total. The picking process is described in Section 2. The order picker starts a batch by picking up a 

picking cart and obtaining pick lists from the central location. Pick routes always start from the left-

most aisle in the zone. The picked items are dropped on the transportation conveyor, which conveys 

them to the packaging area. At the packaging area, complete orders are sorted by packing destination 

station (automatically) and then per order (manually), while incomplete orders (i.e. items) are 

buffered until they are complete (see Figure 1). In this case, all the buffering takes place at the 

packing station. When an order at packing station is complete, a light indicator turns on to signal the 

packers that packaging can start. 

 
As previously discussed, the zone size may strongly influence the system throughput time. Therefore, 

it is a crucial decision for the manager to decide how large zones should be, or, equivalently, the 

number of zones the pick area should be divided into, such that the system throughput of the system 

is minimized. In the next section, we will use the model of Section 3 to answer this question for the 

case. 

4.2 Numerical experiments and results 

Table 1 shows the current operational data as well as the size of the picking area. The company has 

36 storage aisles and uses 18 order pickers. Therefore, there are 6 possible zoning schemes (see Table 
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2). The packing rates depend on the average order size (average number of items per order); they are 

8, 3, 1 and 0.5 order(s) per minute for order sizes of 1.6, 5, 10, and 20 items respectively.  

 
[Insert Table 1 here] 

 
In order to determine the optimal number of zones, we carried out a number of experiments. We 

considered four pick-list sizes (10, 20, 30 and 40 items per pick route), and four order sizes (1.6, 5, 

10, and 20 items per order on average). Combining this with 6 zoning schemes, we have 96 scenarios 

in total, including the current situations (1.6 items per order, maximum 40 items per pick route). An 

order batch was generated as follows. We fixed the number of items per batch. For each item, a 

storage location (in one of the 36 aisles) and an order (to which the item belongs, from 1 toκ ) were 

randomly drawn from a uniform distribution (implying that random storage assignment is used). The 

average order size was controlled by adjusting κ : ( )#items#orders 1 1κ κ= − . For each scenario we 

generated 5 order batches, and after solving the item-to-route assignment problem mentioned in 

Section 3, we calculated the average throughput time value. The average travel time per pick route 

can be calculated, based on the zone size, the number of items per route, and the routing method 

used. In our case, the S-shape method is used and the route time is calculated by using formulation 

(1). The route times for the different pick-list and zone sizes are tabulated in Appendix B. 

 
[Insert Table 2 here] 

 
We used LINGO (version 8.0) to solve the item-to-route assignment problem (discussed in Section 

3). It turns out that we can find the optimal solution for 78 among 96 scenarios within 10 seconds (2.4 

MHz Pentium CPU). For the other scenarios, we could not find the optimal solution within 1 hour. 

However, we observed that the gap between the feasible solution and the best lower bound provided 

by LINGO after about 5 minutes of running is very small (less than 5% for small, medium and large 

order sizes, and less than 10% for very large order sizes). For this reason, we decided to use the 
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truncated solution for the problem. The results of the experiments are presented in Table 3, where the 

truncated solutions are printed in bold and italic. 

 
[Insert Table 3 here] 

 

The results in Table 3 show that for the current situation (1.6 items per order on average and 40 items 

per route) the 18-zone configuration gives the shortest throughput time for the system. Given the 

pick-list size varies between 10 and 40, when the order size increases, this configuration is still the 

best for not very large orders (i.e., less than 20). It means that for not very large order sizes, the 

configuration that minimizes the picking time (i.e. the 18-zone configuration) also minimizes the 

system throughput time. It is because, when orders are small, the reduction in picking time is 

dominant the increase in packing time. Furthermore, the 18-zone option would be more favorable if 

we take aisle congestion into account (in the 18-zone configuration, each zone has only one order 

picker, thus it is free from the travel congestion). For very large orders, it appears that the 6-zone 

configuration outperforms the other zoning schemes. It shows the effect of spreading orders over 

zones: large zone may reduce the picking time, but may increase the consolidation time. This effect 

seems to be clear for large order sizes.  

 
For the current situation, a pick-list of 40 items per route is not optimal. A pick-list size of 20 appears 

to be optimal in most of the cases. When the pick-list size changes from 10 to 40, the throughput time 

decreases and then goes up. We can explain this behavior as follows. If we increase the pick-list size, 

the overall travel time to complete a batch (and also the total set-up time) will decrease. Therefore, 

the overall picking time of a batch will be reduced. However, the accumulative number of complete 

orders which have to be packed in the last period, when the picking is completed, will grow 

(potentially). That increases the overall packing time, thus the system throughput time. Clearly, there 

exists a trade-off between picking time and packing time when increasing the pick-list size.  
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5.  Concluding remarks 

In this paper, we have elaborated the problem of choosing the right number of zones at a manual 

pick-and-pack OP system. At the first phase, we formulated the problem of assigning items to pick 

routes in each zone such that the throughput time is minimized as a mixed integer-linear program. At 

the second phase, we used this problem as a tool for evaluating different zone-size options to find the 

optimal one. We also illustrated the method with a pick-and-pack OP system which is used in a 

distribution center of the one of the largest online retailers in the Netherlands.  

 
In the case we considered above, random storage assignment and the S-shape routing method are 

used. However, our model can be applied for other operational policies (like the return routing, class-

based or COI-based assignments), as long as we can estimate the travel time of a pick route.  

 
There are still several limitations to this study. First, we do not take into account the congestion in the 

aisles that may result from having more than one order picker per zone. Second, though we found the 

optimal solutions for most scenarios investigated, it does not guarantee that we can find a ‘good’ 

solution for the item-to-route assignment problem when the problem size increases (i.e. more aisles, 

periods, items). We propose to use a 2-opt heuristic procedure to cope with large problems, like the 

one given in Appendix C. Indeed, some efforts are needed to testify its efficiency. Certainly, it is our 

future research direction. 
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Appendix A   Picking time estimation 

Travel time consists of three components: travel time in the cross-aisles aisles, travel time within the 

storage aisles, and travel time back to the left-most aisle of the zone (e.g. to start a new pick route). 

As we assume that the order picker always starts a pick route from the left-most aisle of the zone, the 

last component equals to the cross-aisle travel time. With the S-shape routing method and random 

storage, the average travel time within storage aisles can be estimated by 11
q

L a a
a

⎡ ⎤⎛ ⎞− − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

( ),CR q a , where the term in brackets is the expected number of visited aisles. ( ),CR q a  is the 

correction time, its takes into account the fact that from the last pick position (in the last visited aisle) 

the order picker has to return to the drop-off point (the transportation conveyor). Such a turn has to be 

made if and only if the number of visited aisles is odd. ( ),CR q a  can be estimated by: 

( ) ( ):
, 2

1

q

g G odd

q
a g gCR q a X g L Lqg a

g
∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= −⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎜ ⎟⎝ ⎠ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ , 

where ( )X g  is 1 minus the probability that all q items are in less than g  aisles 

( { }|1 , is oddg G g a g∈ ≤ ≤ ), conditional on the fact that all q items in at most g  specific aisles: 

( ) ( )1 1

1
1 1

q
g j

j

g g jX g
g j g

− +

=

⎛ ⎞⎛ ⎞−
= − − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

∑ . 

 
If we number the aisles of a zone from 1 to a (from the left to the right), the cross-aisle travel time 

can be estimated by ( )
1

11
q qa

b
i

i iw i
a a=

⎡ ⎤−⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ . Where 1q qi i
a a

−⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 is the probability that q 

picks fall in aisles 1,..., i  minus the probability that q picks fall in aisles 1,..., 1i − , and bw  is the travel 

time between two consecutive storage aisles (see Figure 1).  
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Finally, ( ),n mℜ  is estimated as: 

( ) ( ) ( )
1

1 1, 1 1 2 1 ,
q q qa

b s
i pi

i i qq a La w i CR q a t
a a a r=

⎡ ⎤ ⎡ ⎤−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ℜ = − − + − − + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑   
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Appendix B   Average route time (in minute) with different zone and pick-list sizes 

Pick-list 
size 1 zone 2 zones 3 zones 6 zones 9 zones 18 zones 

1 7.29 5.79 5.29 4.79 4.63 4.46 
2 9.65 7.63 6.94 6.22 5.94 5.54 
3 11.46 9.13 8.30 7.33 6.88 6.15 
4 13.07 10.53 9.59 8.40 7.76 6.61 
5 14.52 11.78 10.72 9.30 8.53 7.02 
6 15.93 13.00 11.81 10.10 9.18 7.41 
7 17.25 14.14 12.82 10.84 9.74 7.79 
8 18.54 15.23 13.78 11.53 10.24 8.16 
9 19.78 16.28 14.68 12.17 10.70 8.54 

10 20.99 17.29 15.54 12.76 11.13 8.92 
11 22.16 18.25 16.36 13.32 11.54 9.29 
12 23.32 19.19 17.13 13.83 11.94 9.67 
13 24.44 20.09 17.88 14.32 12.33 10.04 
14 25.54 20.96 18.59 14.78 12.72 10.42 
15 26.62 21.80 19.28 15.22 13.10 10.79 
16 27.67 22.61 19.94 15.65 13.49 11.17 
17 28.71 23.40 20.58 16.06 13.86 11.54 
18 29.72 24.17 21.19 16.47 14.24 11.92 
19 30.72 24.92 21.79 16.87 14.62 12.29 
20 31.69 25.64 22.36 17.26 15.00 12.67 
21 32.65 26.35 22.92 17.65 15.37 13.04 
22 33.60 27.03 23.47 18.04 15.75 13.42 
23 34.52 27.70 24.00 18.42 16.12 13.79 
24 35.43 28.35 24.52 18.80 16.50 14.17 
25 36.33 28.99 25.03 19.18 16.87 14.54 
26 37.21 29.62 25.52 19.56 17.25 14.92 
27 38.08 30.22 26.01 19.94 17.62 15.29 
28 38.93 30.82 26.48 20.32 18.00 15.67 
29 39.77 31.41 26.95 20.70 18.37 16.04 
30 40.59 31.98 27.41 21.08 18.75 16.42 
31 41.41 32.54 27.85 21.45 19.12 16.79 
32 42.21 33.09 28.29 21.83 19.50 17.17 
33 43.00 33.63 28.73 22.20 19.87 17.54 
34 43.77 34.17 29.16 22.58 20.25 17.92 
35 44.54 34.69 29.58 22.96 20.62 18.29 
36 45.29 35.21 30.00 23.33 21.00 18.67 
37 46.04 35.71 30.41 23.71 21.37 19.04 
38 46.77 36.22 30.82 24.08 21.75 19.42 
39 47.50 36.71 31.22 24.46 22.12 19.79 
40 48.21 37.20 31.62 24.83 22.50 20.17 
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Appendix C   A heuristic procedure for large-size problems 

We suggest the following heuristic procedure for coping with large problem instances. Our heuristic 

(depicted in Figure 2) starts from a feasible solution (generated by using LINDO, for example). From 

this feasible solution, we use a 2-opt procedure to switch items picked in a periods t to the items 

picked in a period j, given that after the period t, the number of complete orders is greater than the 

packing capacity, and after the period j, the number of complete orders is less than the packing 

capacity. The 2-opt procedure is repeated until no further improvement on the objective function can 

be made.  

 
[Insert Figure 3 here] 

 
The idea behind it is that it may be possible to improve the objective function if we can ‘shift’ some 

unpacked orders of a later shift to an earlier shift, which has excess packing capacity (i.e. there is 

some idle time). Figure 3 shows an example of a feasible solution with 4 periods. If we can increase 

number of complete order in periods 2 and 3 then we can reduce the number of unpack orders in 

period 4, and thus the throughput time. A feasible way of doing this is as follows. We define the 

items arrived in period 4 which are in the same orders with the items left over from period 3. Then we 

consider whether these items can be picked in the earlier periods where excess capacity occurs 

(period 2 or 3) or not (by switching the item pick sequence). If not, we move one step forward until 

no further improvement on the objective function can be achieved. 

 
[Insert Figure 3 here] 
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Figure 1    A pick and pack OP system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2    A 2-opt procedure for large size instances 
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Figure 3    An illustration example of a feasible solution with four pick-shifts 

 

 
Table 1    Operational data  

Operational data  System parameters  
Average number of items per batch  1000 Number of storage aisles  36 
Average number of items per order 1.6   
Max. number of items per route  Aisle length (L) in seconds 60 
(capacity or pick-list size) 40   
Number of order pickers 18 Distance between two  
Set-up time ( st ) in seconds 180 consecutive aisles ( bw ) 5 
Picking time per item (1 pir ) in 
seconds 

5 in seconds  

Packing rate ( par ): 8, 3, 1 and 0.5 order(s) per 60 seconds for 1.6, 5, 10, and 20 
items order size respectively 

 

Table 2    Possible zoning schemes 

Number of 
zones 

Number of storage 
aisles per zone 

Number of order 
pickers per zone 

1 36 18 
2 18 9 
3 12 6 
6 6 3 
9 4 2 

18 2 1 

 

Incomplete orders

Complete orders

Pack capacity (per period)

1 2 3 4

Idle

Surplus
(unpacked orders)
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Table 3    Average throughput time (in minutes) 
Order 
size 

(items) 

Pick-
list 
size 

1  
zone 2 zones 3 zones 6 zones 9 zones 18 

zones Mean 

10 152.72 133.81 124.84 109.48 112.61 98.79 122.04
20 110.25 105.61 104.13 100.71 99.61 97.42 102.96
30 111.34 110.37 108.66 103.89 103.25 101.13 106.44
40 116.53 114.92 115.12 107.66 106.88 104.83 110.99

Small 
(1.6) 

Mean 122.71 116.18 113.19 105.44 105.59 100.54 110.61
10 152.81 133.90 125.47 110.32 102.78 111.66 122.82
20 109.91 97.91 90.34 87.58 86.66 84.67 92.85
30 101.88 96.95 95.07 90.26 89.46 87.58 93.53
40 114.45 101.42 98.70 94.12 93.29 87.96 98.32

Medium 
(5) 

Mean 119.76 107.55 102.40 95.57 93.05 92.97 101.88
10 160.47 143.56 132.47 125.98 123.02 120.41 134.32
20 127.38 127.24 125.01 121.58 122.23 119.67 123.85
30 132.21 131.62 129.41 124.26 124.50 122.25 127.38
40 136.90 135.42 133.03 128.79 127.25 120.08 130.25

Large 
(10) 

Mean 139.24 134.46 129.98 125.15 124.25 120.60 128.95
10 154.32 144.50 133.80 125.63 128.62 134.47 136.89
20 127.38 127.24 127.01 121.85 122.67 125.61 125.29
30 133.21 131.62 129.41 122.84 124.25 126.87 128.03
40 137.09 135.42 133.03 124.79 125.58 128.63 130.76

Very 
large 
(20) 

Mean 138.00 134.70 130.81 123.78 125.28 128.89 130.24
* Bold and italic values mean the truncated solutions 
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