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In this study, we determine the optimal feature-combination for classification of functional

near-infrared spectroscopy (fNIRS) signals with the best accuracies for development

of a two-class brain-computer interface (BCI). Using a multi-channel continuous-wave

imaging system,mental arithmetic signals are acquired from the prefrontal cortex of seven

healthy subjects. After removing physiological noises, six oxygenated and deoxygenated

hemoglobin (HbO and HbR) features—mean, slope, variance, peak, skewness and

kurtosis—are calculated. All possible 2- and 3-feature combinations of the calculated

features are then used to classify mental arithmetic vs. rest using linear discriminant

analysis (LDA). It is found that the combinations containing mean and peak values yielded

significantly higher (p < 0.05) classification accuracies for both HbO and HbR than did

all of the other combinations, across all of the subjects. These results demonstrate the

feasibility of achieving high classification accuracies using mean and peak values of HbO

and HbR as features for classification of mental arithmetic vs. rest for a two-class BCI.

Keywords: functional near-infrared spectroscopy, brain-computer interface, optimal feature selection, linear

discriminant analysis, binary classification, mental arithmetic

INTRODUCTION

Engineering principles and techniques are nowadays becoming crucial aspects of development in
the medical fields. Key examples are the diagnosis and cure of various diseases in the human body.
Over the past few decades, the brain-computer interface (BCI), as utilized with computers and other
external devices, has become an indispensable medium of communication for patients suffering
from amyotrophic lateral sclerosis (ALS), locked-in syndrome (LIS) and other physical disabilities.
Brain-signal acquisition methods for BCI are either invasive or non-invasive. Invasive brain-signal
acquisition methods, albeit allowing for acquisition of fine-quality brain signals, incur the risks of
surgery (Wester et al., 2009; Thongpang et al., 2011; Viventi et al., 2011). Non-invasive methods,
therefore, are preferred. There are several types of non-invasive brain-signal acquisition methods,
including electroencephalography (EEG) (Wolpaw et al., 2002; Salvaris and Sepulveda, 2010; Choi,
2013), functional magnetic resonance imaging (fMRI) (Enzinger et al., 2008; Sorger et al., 2009)
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and functional near infrared spectroscopy (fNIRS) (Ferrari et al.,
1985; Kato et al., 1993; Coyle et al., 2004, 2007; Naito et al.,
2007; Naseer and Hong, 2013; Naseer et al., 2014). fNIRS has
better spatial resolution than most of the EEG systems (Hu et al.,
2012; Hong et al., 2014). Furthermore, fNIRS signals are free of
electrical noises and use of conductive gels. fMRI provides a good
spatial resolution, though the equipment is bulky and, therefore,
not feasible for a portable BCI. For recent BCI applications
rather, fNIRS has been utilized owing to its balanced spatial and
temporal resolutions, low noise, safety and overall ease of use.
Indeed, it has been shown to work well for binary communication
with high classification accuracies (Naseer et al., 2014). fNIRS
has become a neuroimaging technique which is contributing in
making advances toward the understanding of the human brain
functionality (Irani et al., 2007; Ferrari and Quaresima, 2012;
Hong and Nguyen, 2014; Hong and Naseer, 2016; Hong and
Santosa, 2016).

fNIRS consists of near-infrared (NI) emitters that emit light
within the 650∼1000 nm wavelength range in order to measure
changes in the concentrations of oxygenated hemoglobin and
deoxygenated hemoglobin (△cHbO (t) and △cHbR (t)) (Villringer
et al., 1993; Hoshi et al., 1994; Hoshi and Tamura, 1997).
Oxygenated and deoxygenated hemoglobin (HbO and HbR)
have diverse absorption spectra in the NI range; therefore, the
association between the exiting- and incident-photon intensities
can be used to calculate △cHbO (t) and △cHbR (t) on the photon
paths by application of the modified Beer-Lamberts law (Delpy
et al., 1988; Sassaroli and Fantini, 2004). Since Jobsis (1977)
introduced the principle of near-infrared spectroscopy, it has
been effectively employed for functional and structural brain
imaging as well as BCI purposes (Hu et al., 2010, 2011, 2012, 2013;
Cutini et al., 2012; Aqil et al., 2012a,b; Bhutta et al., 2014, 2015;
Hong et al., 2014; Khan et al., 2014).

With fNIRS-BCI systems, the user elicits distinct brain-signal
patterns by performing different mental tasks such as motor
imagery (Coyle et al., 2004, 2007), mental arithmetic (MA)
(Naito et al., 2007; Bauernfeind et al., 2008, 2011; Utsugi et al.,
2008), music imagery (Naito et al., 2007; Power et al., 2010;
Falk et al., 2011) and others. Pattern recognition techniques are
then used to identify and recognize these signals. The related
command signals can then be generated to communicate with
a computer or external device in ways intended by the user.
After the suitable signals are acquired from a specific brain
region, noise removal techniques are used to remove the noises
such as experimental, instrumental and physiological (cardiac
and respiratory activities) (Kirilina et al., 2012; Santosa et al.,
2013; Bajaj et al., 2014). Since these noises are uncorrelated
with the experimental paradigm, the effect of these noises in
fNIRS signals might yield to false or biased conclusions (Cui
et al., 2010b; Santosa et al., 2014; Naseer and Hong, 2015a). The
next step is feature extraction, based on which the signals are
classified. In the relevant previous studies, the different statistical
properties of time-domain signals have been used as features
for classification; those properties include the mean, variance,
slope, kurtosis, peak value and skewness, among others. To
date, however, optimal feature-combination selection for the best
classification accuracies has not been demonstrated.

The objective of the present study was to determine the
optimal 2- and 3-feature combinations (among mean, variance,
slope, kurtosis, peak value, and skewness) that yield the best
“mental arithmetic task vs. rest” classification accuracies for a
two-class fNIRS-BCI using linear discriminant analysis (LDA).
After acquiring fNIRS signals representing mental arithmetic
tasks or rest from the prefrontal cortex, noises were removed
using a notch filter. Then, the six features noted above were
calculated according to the△cHbO (t) and△cHbR (t) signals; all of
the possible 2- and 3-feature combinations of those features were
used to train the LDA (Lotte et al., 2007; Luu and Chau, 2009;
Moghimi et al., 2012; Hong et al., 2014) classifier. For each of
those combinations, the classification performance was evaluated
using 10-fold cross-validation.

MATERIALS AND METHODS

fNIRS Data Acquisition
A multichannel continuous-wave imaging system (DYNOT:
DYnamic Near-infrared Optical Tomography; two wavelengths:
760 and 830 nm; NIRx Medical Technologies, NY) was used
to acquire brain signals at a sampling rate of 1.81Hz. The
continuous-wave fNIRS detects the △cHbO (t) and △cHbR (t) in
the microvessels of the cortex according to the modified Beer-
Lamberts law:

[

△cHbO (t)
△cHbR (t)

]

=
1

l×d

[

αHbO(λ1)
αHbO(λ2)

αHbR(λ1)
αHbR(λ2)

]−1 [

△A(t,λ1)
△A(t,λ2)

]

(1)
where △A(t; ;λj) (j = 1.2) is the unit-less absorbance (optical
density) variation of a light emitter of wavelength λj, aHbX(λj)
is the extinction coefficient of HbX (HbO and HbR) in µM−1

mm−1, d is the unit-less differential path length factor (DPF), and
l is the distance (in millimeters) between emitter and detector.
The placement of the fNIRS optodes plays a crucial role in signal
measurement, since a longer emitter-detector distance makes
for greater imaging depth (McCormick et al., 1992). Usually
an emitter-detector distance of around 2.5∼3.5 cm is applied,
because a distance less than 2 cm might result in only superficial-
layer signal capture, while a distance more than 4 cm usually is
too weak to be usable (Gratton et al., 2006).

We applied a 2.8 cm emitter-detector distance, as shown in
Figure 1, in order to acquire brain signals resulting from mental
arithmetic tasks. To that end, 4 near-infrared light emitters and
10 detectors were positioned over the prefrontal cortex, as it is
known that mental arithmetic activates the prefrontal cortex of
the brain (Ayaz et al., 2013, 2014; Khan et al., 2014; Di Domenico
et al., 2015).

Experimental Procedure
Seven male subjects (mean age 30.5 ± 5 years) participated
in the experiments. The subjects were seated in a comfortable
chair in front of a computer monitor. They were asked to relax
and restrict their head movements as much as possible while
performing a mental arithmetic task. The first 44 s was a rest
period to set up the baseline condition; this was followed by a
44 s mental arithmetic task period, which was followed in turn
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FIGURE 1 | Optode placement and channel location on the prefrontal cortex. Fp1 and Fp2 are the reference points of the International 10–20 system.

by another 44 s rest period to allow the signals to return to
the baseline values before the start of the next trial. The above
sequence was repeated 5 times for a total experimental duration
of 440 s for each subject. During the mental arithmetic task
period, the participants performed a series of mental arithmetic
calculations that appeared on the monitor in a pseudo-random
order. These calculations consisted of subtraction of a two-
digit number (between 10 and 20) from a three-digit number
throughout the task period with successive subtraction of a two-
digit number from the result of the previous subtraction (e.g.,
244−14, 240−11, 229−16, etc.)(Power et al., 2011; Naseer et al.,
2014; Naseer and Hong, 2015b). During the rest period the
subjects were asked to relax and continue looking at the monitor.
The experiments were conducted in accordance with the latest
declaration of Helsinki and a verbal consent was taken from
all the subjects after explaining the experimental paradigm. The
work was approved by the Institutional Review Board of Pusan
National University.

Signal Processing and Classification
The optical-density signals acquired were first converted to
△cHbX (t) signals using Equation (1). Then, they were filtered
using a notch filter with band-reject ranges of 1∼1.2Hz,
0.3∼0.4Hz, and below 0.1Hz (Naseer and Hong, 2015a) in
order to reduce physiological noises due to heartbeat, respiration,
and Mayer waves and low frequency fluctuations (Bajaj et al.,
2013), respectively. The frequency range considered for analysis
was 0.1∼0.3Hz. Detrending of the data was performed using
NIRS-SPM (Ye et al., 2009).

In this study, only the △cHbO (t) and △cHbR (t) signals were
considered as features (Rejer, 2015) for classification. Although,
fNIRS also provides changes in total concentration, △cHbT (t).
However, since △cHbT (t) is just the addition of △cHbO (t) and
△cHbR (t), it does not provide extra discriminative information

and, therefore, has not been used as a feature for classification in
most of the previous fNIRS-BCI studies (Bhutta et al., 2014; Khan
et al., 2014; Santosa et al., 2014; Naseer and Hong, 2015b).

As classification features, all of the possible 2- and 3-feature
combinations of signal slope, signal mean, signal variance, signal
peak, signal kurtosis and signal skewness were considered as in
Khan and Hong (2015). The signal mean of △HbO and △HbR
are calculated as:

M =
1

N

N
∑

i=1

Xi

whereM is the mean value, N is the number of observations and
Xi represents the HbO or HbR data. The variance is calculated as
follows:

var(X) =

∑

(X − µ)2

N

where var is the variance, µ is the mean value of X. The skewness
is computed as follows:

skew (X)= E

[

(

X − µ

σ

)3
]

where skew is the skewness,E is the expected value of X and σ is
the standard deviation of X. The kurtosis is computed as follows:

kurt (X)= E

[

(

X − µ

σ

)4
]

.

The signal peak is estimated using the Matlabmax function. The
signal slope is determined by fitting a line to all the data points
during the mental arithmetic and rest using polyfit function in
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Matlab. These features were calculated for the mental arithmetic
and rest periods across all 16 channels. The aim of classification
was to decode the subject’s state as “mental arithmetic task” or
“rest task” with maximal accuracy. All of the feature values were
scaled between 0 and 1 using the equation:

x′ =
x−min(x)

max (x)−min(x)

wherex ∈ Rn denotes the original feature vales, x′ denotes the
rescaled feature values between 0 and 1, max (x) is the largest
value, and min (x) is the smallest value.

The method utilized in the present study to classify all possible
2- and 3-feature combinations of features extracted from the
△cHbO (t) and △cHbR (t)signals was classified using LDA. LDA,
a linear classifier, uses hyper-planes to separate the diverse classes
of data (Lotte et al., 2007). The dividing hyper-plane is intended
tomaximize the separation between the class mean andminimize
the inter-class variance. Owing to its ease of use and execution
speed, LDA performs well in various BCI problems (Lotte
et al., 2007; Salvaris and Sepulveda, 2010; Power et al., 2012a,b).
Each classification performance was evaluated by 10-fold cross-
validation over the course of 10 runs. Figure 2 shows the 2-
dimensional feature spaces of subject 1 for all combinations.

RESULTS

For each subject, the classification accuracies obtained for all
possible combinations of 2- and 3-features extracted using
△cHbO (t) and △cHbR (t) are shown in Tables 1–4, respectively.
The classification accuracies acquired using the 2-feature
combination of peak and mean values were 93.0 and 89.9% using
△cHbO (t) and △cHbR (t) signals, respectively. The classification
accuracies obtained using the 3-feature combinations were
correspondingly higher in the combinations including mean and
peak values. In fact, these accuracies were higher as compared
with all other possible combinations across all subjects for
both △cHbO (t) and △cHbR (t) signals. To verify that the higher
classification accuracies acquired using peak and mean values
were statistically significant, we applied the permutation test.
The p-values obtained using mean and peak values vs. all
other combinations were less than 0.05 for both △cHbO (t) and
△cHbR (t) signals, which established that the performance of the
mean and peak value combination was statistically significant.

DISCUSSION

Previous fNIRS-based BCI studies have mostly emphasized
advanced signal-processing techniques and improved algorithms
to improve classification accuracy and, thereby, enhance BCI
performance (Sitaram et al., 2007; Power et al., 2010, 2011;
Bauernfeind et al., 2011; Holper and Wolf, 2011; Abibullaev
and An, 2012). These studies used mean (Sitaram et al., 2007;
Power et al., 2010; Holper and Wolf, 2011; Faress and Chau,
2013; Naseer and Hong, 2013, 2015b; Power and Chau, 2013;
Hong et al., 2014), variance (Tai and Chau, 2009; Holper
and Wolf, 2011), slope (Tai and Chau, 2009; Power et al.,

TABLE 1 | The classification accuracies of all 2-feature combinations

obtained from HbO signals for all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean and Slope 53.82 50.81 50.69 59.22 59.84 55.21 59.84

Mean and Peak 94.61 96.48 90.71 91.96 90.96 91.96 94.85

Mean and Variance 86.57 87.21 81.93 82.93 82.81 75.53 83.43

Slope and Peak 87.07 83.31 80.92 85.44 83.81 83.56 81.18

Slope and Variance 86.95 88.71 83.43 82.81 81.81 76.78 80.55

Peak and Variance 89.71 89.96 83.56 87.71 87.21 83.68 81.31

Peak and Skewness 89.08 83.44 80.55 86.71 81.81 83.06 81.05

Mean and Skewness 48.11 49.56 49.81 53.07 52.94 51.94 50.31

Slope and Skewness 47.43 50.31 47.81 53.58 52.57 54.21 50.06

Kurtosis and Skewness 46.17 48.55 51.56 54.21 48.93 53.58 50.56

Variance and Skewness 87.82 88.58 82.31 83.18 81.55 78.29 84.19

Peak and Kurtosis 86.82 82.43 80.93 85.57 83.93 82.06 81.05

Mean and Kurtosis 46.92 46.67 51.44 53.71 49.05 52.07 48.43

Slope and Kurtosis 47.55 45.29 53.45 54.07 52.19 49.18 48.18

Variance and Kurtosis 87.45 88.33 82.18 83.31 82.31 82.18 85.95

TABLE 2 | The classification accuracies of all 2-feature combinations

obtained from HbR signals for all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean and Slope 56.83 54.45 61.61 59.59 55.33 56.71 62.86

Mean and Peak 92.34 92.59 90.84 91.84 88.71 86.07 87.07

Mean and Variance 82.43 86.82 82.93 85.94 82.55 79.92 79.54

Slope and Peak 86.07 86.32 79.67 85.44 85.19 83.06 84.69

Slope and Variance 79.79 87.32 82.31 85.82 80.55 76.41 77.91

Peak and Variance 85.44 86.07 82.93 87.21 86.32 76.91 84.31

Peak and Skewness 88.33 87.21 84.44 85.94 84.94 80.81 85.44

Mean and Skewness 51.69 51.31 53.32 52.82 47.05 54.71 59.47

Slope and Skewness 52.44 52.07 57.34 51.31 51.94 47.55 54.83

Kurtosis and Skewness 52.94 48.81 55.21 49.43 45.42 56.46 52.69

Variance and Skewness 82.55 81.93 83.81 86.71 80.92 77.03 78.16

Peak and Kurtosis 86.95 83.81 81.43 86.07 85.69 78.67 86.44

Mean and Kurtosis 50.06 54.57 55.33 45.42 48.55 60.47 57.59

Slope and Kurtosis 51.81 49.43 54.21 48.55 49.31 56.21 59.09

Variance and Kurtosis 86.32 85.94 85.44 86.71 82.05 78.16 78.41

2011; Naseer and Hong, 2013, 2015b; Hong et al., 2014),
kurtosis (Holper and Wolf, 2011), peak value (Tai and Chau,
2009; Cui et al., 2010a; Bauernfeind et al., 2011; Holper and
Wolf, 2011) and skewness (Tai and Chau, 2009; Holper and
Wolf, 2011) as features for classification (a detailed review of
features used in the previous studies is provided in Naseer and
Hong, 2015a). However, all of these feature might not contain
discriminative information for classification and, therefore, in
order to achieve high performance for fNIRS-based BCI systems
different feature-combinations should be tested. In the current
study, to improve the accuracy of “mental arithmetic vs. rest
task” discrimination, various feature combinations were used to
determine the single best combination for a two-class fNIRS-
based BCI system. To the best of our knowledge, this is
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FIGURE 2 | The 2-dimensional feature spaces of Subject 1 for all combinations of HbO features.

the first study to evaluate classification performance based on
2- and 3-feature combinations to determine those yielding
the highest classification accuracies in discriminating mental
arithmetic from rest tasks. The results demonstrate that the
feature combination of peak and mean is the best among all

possible combinations for both △cHbO (t) and △cHbR (t) signals.
Furthermore, the peak-and-mean feature combination is the
only one for which all subjects showed classification accuracies
over 89%. Figure 3 plots the average classification accuracies
of all 2-features combinations across all subjects for △cHbO (t)
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TABLE 3 | The classification accuracies of all 3-feature combinations obtained from HbO signals for all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean, Peak, and Slope 94.47 96.48 90.46 91.96 90.58 92.34 94.35

Mean, Peak, and Kurtosis 95.15 96.36 90.96 92.09 91.96 93.22 94.98

Mean, Peak, and Skewness 94.98 96.61 90.58 93.09 92.34 92.47 94.85

Mean, Peak, and Variance 94.35 96.98 91.21 92.34 91.84 91.84 94.73

Peak, Slope, and Skewness 89.08 84.19 79.79 86.95 85.44 83.93 81.43

Peak, Kurtosis, and Variance 89.83 89.58 84.06 87.07 87.45 84.06 81.92

Peak, Slope, and Variance 90.08 90.21 84.31 87.72 86.71 83.68 80.92

Variance, Slope, and Kurtosis 87.57 89.08 82.68 82.43 82.68 78.92 81.55

Variance, Slope, and Mean 87.82 87.95 83.06 83.56 83.31 77.66 80.31

Variance, Mean, and Skewness 87.71 87.82 82.81 82.93 83.06 75.15 83.93

Variance, Mean, and Kurtosis 87.32 88.08 81.93 82.81 83.56 82.05 84.94

Kurtosis, Peak, and Slope 83.56 83.43 81.05 85.69 84.69 83.18 81.17

Kurtosis, Skewness, and Mean 43.78 50.43 56.33 53.19 48.68 52.94 48.05

Slope, Mean, and Skewness 49.68 48.68 48.93 53.95 55.58 51.69 49.32

Slope, Skewness, and Kurtosis 44.66 50.56 50.94 57.08 51.31 52.94 46.17

Slope, Mean, and Kurtosis 43.53 44.16 53.32 56.71 55.33 52.07 47.45

Slope, Skewness, and Variance 87.57 89.08 83.31 83.43 81.55 75.03 80.05

Skewness, Variance, and Kurtosis 87.95 88.83 82.55 83.18 82.81 84.19 86.57

Skewness, Peak, and Kurtosis 88.71 82.93 81.93 86.57 85.44 83.43 81.55

Skewness, Variance, and Peak 90.21 89.83 84.44 87.82 86.82 83.43 81.31

TABLE 4 | The classification accuracies of all 3-feature combinations obtained from HbR signals for all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean, Peak, and Slope 93.09 91.59 90.96 92.22 88.2 86.44 87.45

Mean, Peak, and Kurtosis 92.97 93.45 91.46 92.34 89.46 86.19 88.2

Mean, Peak, and Skewness 93.97 94.11 92.09 93.97 91.71 86.57 88.71

Mean, Peak, and Variance 93.47 92.84 90.33 92.09 88.83 88.08 92.09

Peak, Slope, and Skewness 88.95 89.08 84.56 86.07 85.94 83.68 84.18

Peak, Kurtosis, and Variance 87.07 88.08 84.06 88.45 87.07 78.16 84.56

Peak, Slope, and Variance 86.82 88.45 83.6 87.07 85.94 84.06 84.31

Variance, Slope, and Kurtosis 82.31 87.95 85.19 86.32 82.55 76.53 79.29

Variance, Slope, and Mean 79.17 87.45 82.05 85.82 82.81 79.42 79.67

Variance, Mean, and Skewness 82.31 86.82 83.18 86.57 83.18 80.05 78.79

Variance, Mean, and Kurtosis 86.07 87.07 85.19 86.44 83.43 79.92 79.54

Kurtosis, Peak, and Slope 87.57 86.44 81.55 86.32 85.82 83.43 84.94

Kurtosis, Skewness, and Mean 50.69 49.56 54.83 44.54 45.29 59.72 57.71

Slope, Mean, and Skewness 50.81 52.81 56.83 53.19 51.81 51.44 57.21

Slope, Skewness, and Kurtosis 48.18 56.83 52.82 47.81 45.54 56.71 59.84

Slope, Mean, and Kurtosis 49.18 55.45 52.19 45.04 49.05 61.11 58.09

Slope, Skewness, and Variance 80.42 86.71 83.34 86.71 81.31 76.41 77.66

Skewness, Variance, and Kurtosis 86.07 86.19 85.57 87.45 82.18 77.91 78.41

Skewness, Peak, and Kurtosis 89.48 85.14 86.07 84.23 85.08 84.24 85.44

Skewness, Variance, and Peak 88.33 89.58 87.45 89.83 87.95 78.67 82.05

and △cHbR (t) signals, respectively; Figure 4 plots the average
classification accuracies of all 3-features combinations across all
subjects for△cHbO (t) and△cHbR (t) signals, respectively.

Mental arithmetic and rest have been classified using LDA
in previous studies. For example, Naseer et al. (2014) classified

mental arithmetic vs. rest with accuracies of 74.2% using mean
values of △cHbO (t) and △cHbR (t). In the present study, the
optimal combination yielded a higher, 93% accuracy. Khan and
Hong (2015) used 2-feature combinations of 8 features (28
combinations of 7 HbO-based features and 1 HbR-based feature)
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FIGURE 3 | Classification accuracies of all possible 2-feature combinations averaged across all subjects using △cHbO (t) and △cHbR (t)signals.

FIGURE 4 | Classification accuracies of all possible 3-feature combinations averaged across all subjects using △cHbO (t) and △cHbR (t) signals.

to demonstrate the feasibility of using mean and peak values
to achieve high classification accuracies of up to 84.6%. In our
study, we used both 2- and 3-feature combinations of 6 HbO
and 6 HbR features, thus making for a total of 70 (30 2-feature
and 40 3-feature) combinations. With regard to the 3-feature
combinations, those including mean and peak features yielded
higher accuracies ranging from 92 to 94%. Furthermore, Khan
and Hong’s (2015) study was based on a passive driving-task BCI,
whereas ours dealt with an active, arithmetic-task BCI.

This study has some limitations. The first is that only mean,
peak, slope, variance, skewness and kurtosis, 2- and 3- feature
combinations of HbO and HbR were used. The rationale,
however, was that these features are the most commonly

used in fNIRS-based BCI studies (Naseer and Hong, 2015a).
The second limitation of our study is the small sample size
and low number of subjects. Usually in fNIRS based BCI
studies, 7–12 persons are considered enough for data acquisition
(Penny et al., 2000; Hu et al., 2012; Zimmermann et al.,
2013; Hong et al., 2014; Naseer and Hong, 2015b). However,
using more subjects might be desirable to validate the findings.
The third limitation is that only LDA is used to acquire
classification accuracies and generalization to other classifiers
is not done. However, the authors, in their future work, are
working on finding the effects of using these optimal features
on several other classifiers. The fourth limitation is that only
two mental tasks (mental arithmetic and rest) were considered,
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which fact restricts the present study to a two-class BCI
problem. For three-class BCI problems and above, other features
and/or combinations might yield better results. Certainly,
further research entailing multiple-mental-task classification
using multiple-dimension optimal-feature combinations IS
required.

CONCLUSION

In this study we examined the effects of using different
combinations of six commonly used features for classification of
a two-class functional near-infrared spectroscopy (fNIRS)-based
BCI based on mental arithmetic and rest tasks. It was shown that
the combination of the peak and mean values of the changes
in the concentrations of oxygenated hemoglobin (HbO) and
deoxygenated hemoglobin (HbR) yielded the best average LDA-
classification results for 2- as well as 3-feature sets across seven
subjects. These results represent a step forward in the ongoing

efforts to improve the classification accuracies of fNIRS-based
BCI systems.
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