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Abstract
Usually a voting rule or correspondence requires agents to
give their preferences as linear orders. However, in some
cases it is impractical for an agent to give a linear order over
all the alternatives. It has been suggested to let agents sub-
mit partial orders instead. Then, given a profile of partial
orders and a candidate c, two important questions arise: first,
is c guaranteed to win, and second, is it still possible for c
to win? These are the necessary winner and possible winner
problems, respectively.
We consider the setting where the number of alternatives is
unbounded and the votes are unweighted. We prove that for
Copeland, maximin, Bucklin, and ranked pairs, the possible
winner problem is NP-complete; also, we give a sufficient
condition on scoring rules for the possible winner problem
to be NP-complete (Borda satisfies this condition). We also
prove that for Copeland and ranked pairs, the necessary win-
ner problem is coNP-complete. All the hardness results hold
even when the number of undetermined pairs in each vote is
no more than a constant. We also present polynomial-time al-
gorithms for the necessary winner problem for scoring rules,
maximin, and Bucklin.

Introduction
In multiagent systems, often, the agents must make a joint
decision in spite of the fact that they have different pref-
erences over the alternatives. For example, the agents
may have to decide on a joint plan or an allocation of
tasks/resources. A general solution to this problem is to
have the agents vote over the alternatives. That is, each
agent i gives a ranking (linear order) �i of all the alterna-
tives; then a voting rule takes all of the submitted rankings
as input, and based on this produces a chosen alternative
(the winner). The design of good voting rules has been stud-
ied for centuries by the social choice community. More re-
cently, computer scientists have become interested in social
choice—motivated in part by applications in multiagent sys-
tems, but also by other applications. Hence, a community
interested in computational social choice has emerged.

In “traditional” social choice, agents are usually required
to give a linear order over all the alternatives. However, es-
pecially in multiagent systems applications, this is not al-
ways practical. For one, sometimes, the set of alternatives is
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too large. For example, there are generally too many possi-
ble joint plans or allocations of tasks/resources for an agent
to give a linear order over them. In such settings, agents
must use a different voting language to represent their pref-
erences; for example, they can use CP-nets (Boutilier et al.
1999; Lang 2007; Xia, Lang, & Ying 2007a; 2007b). How-
ever, when an agent uses a CP-net (or a similar language)
to represent its preferences, this generally only gives us a
partial order over the alternatives. Another issue is that it
is not always possible for an agent to compare two alterna-
tives (Pini et al. 2007). Such incomparabilities also result in
a partial order.

In this paper, we study the setting where for each agent,
we have a partial order corresponding to that agent’s pref-
erences. We study the following two questions. 1. Is it the
case that, for any extension of the partial orders to linear
orders, alternative c wins? 2. Is it the case that, for some
extension of the partial orders to linear orders, alternative
c wins? These problems are known as the necessary win-
ner and possible winner problems, respectively (Konczak &
Lang 2005). It should be noted that the answer depends on
the voting rule used. Previous research has also investigated
the setting where there is uncertainty about the voting rule;
here, a necessary (possible) winner is an alternative that wins
for any (some) realization of the rule (Lang et al. 2007). In
this paper, we will not study this setting; that is, the rule is
always fixed.

While these problems are motivated by the above obser-
vations on the impracticality of submitting linear orders,
they also relate to preference elicitation and manipulation.
In preference elicitation, the idea is that, instead of having
each agent report its preferences all at once, we ask them
simple queries about their preferences (e.g. “Do you pre-
fer a to b?”), until we have enough information to deter-
mine the winner. Preference elicitation has found many ap-
plications in multiagent systems, especially in combinato-
rial auctions (for overviews, see (Parkes 2006; Sandholm &
Boutilier 2006)) and in voting settings as well (Conitzer &
Sandholm 2002; 2005; Conitzer 2007). The problem of de-
ciding whether we can terminate preference elicitation and
declare a winner is exactly the necessary winner problem.
Manipulation is said to occur when an agent casts a vote
that does not correspond to its true preferences, in order to
obtain a result that it prefers. By the Gibbard-Satterthwaite
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Theorem (Gibbard 1973; Satterthwaite 1975), for any rea-
sonable voting rule, there are situations where an agent can
successfully manipulate the rule. To prevent manipulation,
one approach that has been taken in the computational so-
cial choice community is to study whether manipulation is
(or can be made) computationally hard (Bartholdi, Tovey,
& Trick 1989a; Bartholdi & Orlin 1991; Elkind & Lipmaa
2005; Conitzer, Sandholm, & Lang 2007; Zuckerman, Pro-
caccia, & Rosenschein 2008). The fundamental questions
that have been studied here are “Given the other votes, can
this coalition of agents cast their votes so that alternative
c wins?” (so-called constructive manipulation) and “Given
the other votes, can this coalition of agents cast their votes
so that alternative c does not win?” (so-called destructive
manipulation). These problems correspond to the possible
winner problem and (the complement of) the necessary win-
ner problem, respectively. To be precise, they only corre-
spond to restricted versions of the possible winner problem
and (the complement of) the necessary winner problem in
which some of the partial orders are linear orders (the non-
manipulators’ votes) and the other partial orders are empty
(the manipulators’ votes). However, if there is uncertainty
about parts of the nonmanipulators’ votes, or if parts of the
manipulators’ votes are already fixed (for example due to
preference elicitation), then they can correspond to the gen-
eral versions of the possible winner problem and (the com-
plement of) the necessary winner problem.

Because of the variety of different interpretations of the
possible and necessary winner problems, it is not surpris-
ing that there have already been significant studies of these
problems. Two main settings have been studied (see (Walsh
2007) for a good survey). In the first setting, the num-
ber of alternatives is bounded, and the votes are weighted.
Here, for the Borda, veto, Copeland, maximin, STV, and
plurality-with-runoff rules, the possible winner problem is
NP-complete; for the STV and plurality-with-runoff rules,
the necessary winner problem is coNP-complete (Conitzer,
Sandholm, & Lang 2007; Pini et al. 2007; Walsh 2007).
However, in many elections, votes are unweighted (that is,
each agent’s vote counts the same). If the votes are un-
weighted, and the number of alternatives is bounded, then
the possible and necessary winner problems can always be
solved in polynomial time (assuming the voting rule can
be executed in polynomial time) (Conitzer, Sandholm, &
Lang 2007; Walsh 2007). Hence, the other setting that has
been studied is that where the votes are unweighted and
the number of alternatives is not bounded; this is the set-
ting that we will study in this paper. In this setting, the
possible and necessary winner problems are known to be
hard for STV (Bartholdi & Orlin 1991; Pini et al. 2007;
Walsh 2007). Computing whether an alternative is a possi-
ble or necessary Condorcet winner can be done in polyno-
mial time (Konczak & Lang 2005). However, for most of the
other common rules, there are no prior results (except for the
fact that the problems are easy for many of these rules when
each partial order is either a linear order or empty, that is,
the standard manipulation problem).1

1An earlier paper (Konczak & Lang 2005) studied these prob-

In this paper, we characterize the complexity of the pos-
sible and necessary winner problems for some of the most
important other rules—specifically, positional scoring rules,
Copeland, maximin, Bucklin, and ranked pairs. We show
that the possible winner problem is NP-complete for all
these rules. We show that the necessary winner problem is
coNP-complete for the Copeland and ranked pairs rules; for
the remaining rules, we give polynomial-time algorithms for
this problem.

Preliminaries
Let C = {c1, . . . , cm} be the set of alternatives (or candi-
dates). A linear order on C is a transitive, antisymmetric,
and total relation on C. The set of all linear orders on C is
denoted by L(C). An n-voter profile P on C consists of n
linear orders on C. That is, P = (V1, . . . , Vn), where for
every i ≤ n, Vi ∈ L(C). The set of all profiles on C is de-
noted by P (C). In the remainder of the paper, m denotes the
number of alternatives and n denotes the number of voters.

A voting rule r is a function from the set of all profiles
on C to C, that is, r : P (C) → C. The following are some
common voting rules.

1. (Positional) scoring rules: Given a scoring vector ~v =
(v(1), . . . , v(m)), for any vote V ∈ L(C) and any c ∈ C,
let s(V, c) = v(j), where j is the rank of c in V . For

any profile P = (V1, . . . , Vn), let s(P, c) =
n∑

i=1

s(Vi, c).

The rule will select c ∈ C so that s(P, c) is maximized.
Two examples of scoring rules are Borda, for which the
scoring vector is (m− 1,m− 2, . . . , 0), and plurality, for
which the scoring vector is (1, 0, . . . , 0).

2. Copeland: For any two alternatives ci and cj , we can sim-
ulate a pairwise election between them, by seeing how
many votes prefer ci to cj , and how many prefer cj to ci.
Then, an alternative receives one point for each win in a
pairwise election. (Typically, an alternative also receives
half a point for each pairwise tie, but this will not matter
for our results.) The winner is the alternative who has the
highest score.

3. Maximin: Let N(ci, cj) denote the number of votes that
rank ci ahead of cj . The winner is the alternative c that
maximizes min{N(c, c′) : c′ ∈ C, c′ 6= c}.

4. Bucklin: An alternative c’s Bucklin score is the smallest
number k such that more than half of the votes rank c
among the top k alternatives. The winner is the alternative
who has the smallest Bucklin score. (Sometimes, ties are
broken by the number of votes that rank an alternative
among the top k, but for simplicity we will not consider
this tiebreaking rule here.)

5. Ranked pairs: This rule first creates an entire ranking of
all the alternatives. N(ci, cj) is defined as for the max-
imin rule. In each step, we will consider a pair of al-
ternatives ci, cj that we have not previously considered;

lems for positional scoring rules, and claimed that the problems
are polynomial-time solvable for these rules; however, there was a
subtle mistake in their proofs. We will show that the possible win-
ner problem is in fact NP-complete for these rules. We will also
give a correct proof that the necessary winner problem is indeed
polynomial-time solvable for these rules.
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specifically, we choose the remaining pair with the high-
est N(ci, cj). We then fix the order ci > cj , unless this
contradicts previous orders that we fixed (that is, it vio-
lates transitivity). We continue until we have considered
all pairs of alternatives (hence we have a full ranking).
The alternative at the top of the ranking wins.

All of these rules allow for the possibility that multiple alter-
natives end up tied for the win. Technically, therefore, they
are really voting correspondences; a correspondence can se-
lect more than one winner. (In the remainder of this paper,
we will sometimes somewhat inaccurately refer to the above
correspondences as rules.) A partial order on C is a reflexive,
transitive, and antisymmetric relation on C. We say a linear
order V extends a partial order O if O ⊆ V .
Definition 1 A linear order V on C extends a partial order
O on C if for any i, j ≤ m, ci �O cj ⇒ ci �V cj .
We are now ready to define possible (necessary) winners.
We will define them for a correspondence r.
Definition 2 Given a profile of partial orders Po =
(O1, . . . , On) on C, we say that an alternative c ∈ C is:
1. a possible winner if there exists P = (V1, . . . , Vn) such
that each Vi extends Oi, and r(P ) = {c}. 2. a neces-
sary winner if for any P = (V1, . . . , Vn) such that each
Vi extends Oi, r(P ) = {c}. 3. a possible co-winner if
there exists P = (V1, . . . , Vn) such that each Vi extends
Oi, and c ∈ r(P ). 4. a necessary co-winner if for any
P = (V1, . . . , Vn) such that each Vi extends Oi, c ∈ r(P ).

Now, we define the computational problems:
Definition 3 Define the problem Possible Winner (PW)
w.r.t. voting correspondence r to be: given a profile Po of
partial orders and an alternative c, we are asked whether or
not c is a possible winner for Po w.r.t. r.

Necessary Winner (NW), Possible co-Winner (PcW), and
Necessary co-Winner (NcW) are defined similarly.
Example 1 Let there be three alternatives {c1, c2, c3}.
Three partial orders are illustrated in Figure 3. Let Po =
(O1, O2, O3). c1 is a possible (co-)winner of Po w.r.t. plu-
rality, because we can complete O1 by adding c2 � c3, com-
plete O2 by adding c1 � c2, and complete O3 by adding
c1 � c2 and c1 � c3; then, c1 is the only winner. However,
c1 is not a necessary (co-)winner, because we can complete
O1 by adding c2 � c3, complete O2 by adding c2 � c1, and
complete O3 by adding c2 � c1 and c1 � c3; then, c2 is the
only winner.

O1

c1

c2

c3

O2
c1

c2

c3

O3
c1

c2 c3

Figure 1: Partial orders.

However, if we let P ′
o = (O1, O1, O2), then c1 is the nec-

essary winner, because c1 will be ranked first for at least two
votes.

Hardness results
In this section, we will prove that PW is NP-complete
w.r.t. scoring rule, Copeland, maximin, Bucklin, and ranked

pairs; NW is coNP-complete w.r.t. Copeland and ranked
pairs. For scoring rules, we will not show that PW is hard for
all scoring rules—in fact, for plurality, PW is easy; rather,
we will give a sufficient condition on a scoring rule such
that PW is hard. Borda satisfies this condition.

For each hardness result, the proof can be easily modified
to show the same result for PcW and NcW (the proofs con-
tain instructions on how they should be modified). All of
these results hold even when the partial orders are “almost”
linear orders. That is, the number of undetermined pairs in
each partial order is bounded above by a constant.

All the hardness results are proved by reductions from the
3-cover problem (where we are given a set and a collection
of subsets of size 3 of this set, and we are asked if we can
cover all of the elements in the set with nonoverlapping sub-
sets). In each proof, the instance that we construct from a 3-
cover instance consists of two parts. The first part is a set of
partial orders that encode the 3-cover instance. The second
part is a set of linear orders (so that there are no uncertain-
ties here) whose purpose is (informally stated) to adjust the
scores of the alternatives. We denote a 3-cover instance by
V = {v1, . . . , vq}, S = {S1, . . . , St}, where |Si| = 3 and
Si ⊆ V for all i ≤ t.

First we introduce some notation to represent the set of all
pairwise orders in a linear order.

Definition 4 For any set C = {c1, . . . , cn}, let
O(c1, . . . , cn) = {(ci, cj) : i < j}.

That is, O(c1, . . . , cn) is the set of all pairs consistent with
the linear order c1 � . . . � cn. For example, O(a, b, c) =
{(a, b), (b, c), (a, c)}.

Usually, a scoring rule is defined for a fixed number of
alternatives, which means that the number of alternatives
is bounded. Then, there exist polynomial-time algorithms
for both PW and NW, (Walsh 2007; Conitzer, Sandholm, &
Lang 2007). However, there are scoring rules that are de-
fined for any number of alternatives—for example, Borda
and plurality. For such scoring rules, the number of alter-
natives is not bounded, and indeed, we will prove that PW
is not always easy w.r.t. such rules. In the remainder of the
paper, a scoring rule r consists of a sequence of scoring vec-
tors {s1, s2, . . .} such that for any i ∈ N, si is a scoring
vector for i alternatives. The next theorem provides a suffi-
cient condition on a scoring rule for PW to be NP-complete.
(Below, we do not prove membership in (co)NP, because
this follows from the fact that, given a extension of the par-
tial orders to linear orders, we can compute the winner(s) in
polynomial-time for the rules in this paper. There do exist
rules for which computing the winner(s) is NP-hard, for ex-
ample the Dodgson rule (Bartholdi, Tovey, & Trick 1989b;
Hemaspaandra, Hemaspaandra, & Rothe 1997) and the
Young rule (Rothe, Spakowski, & Vogel 2003), but we will
not study those here.)

Theorem 1 For any scoring rule r with scoring vectors
{s1, s2, . . .}, if there exists a polynomial f(x) such that for
any x ∈ N, there exist x ≤ l ≤ f(x) and k ≤ l−4 satisfying
the following two conditions:

1. sl(k)− sl(k + 1) = sl(k + 1)− sl(k + 2) = sl(k + 2)−
sl(k + 3) > 0,
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2. sl(k + 3)− sl(k + 4) > 0,
then PW and PcW are both NP-complete w.r.t. r, even when
the number of undetermined pairs in each vote is no more
than 4. (To obtain membership in NP, it is assumed that the
score vectors can be computed in polynomial time.)

Proof of Theorem 1: Given a 3-cover instance, let q + 3 ≤
l ≤ f(q + 3) (where q is the number of elements in the
3-cover instance) satisfy the two conditions in the assump-
tion, and let k ≤ l − 4 satisfy sl(k) − sl(k + 1) =
sl(k + 1) − sl(k + 2) = sl(k + 2) − sl(k + 3) > 0, and
sl(k + 3)− sl(k + 4) > 0. We construct the PW instance as
follows
Alternatives: C = {c, w, d, v1, . . . , vq} ∪ A, where c, w, d
and A = {a1, . . . , al−3−q} are auxiliary alternatives.
First part (P1) of the profile: For any Si, choose any
Bi ⊂ C − (Si ∪ {w, d}) with |Bi| = k − 1. Let
O(Bi, w, Si, d, Others) be some linear order that agrees
with Bi � w � Si � d � Others. Let us define

OSi
= O(Bi, w, Si, d, Others)− {w} × (Si ∪ {d})

That is, OSi is a partial order that agrees with Bi �
w � Si � d � Others, except that the pairwise rela-
tions between (w,Si) and (w, d) are not determined (and
these are the only 4 undetermined relations). Let P1 =
{OS1 , . . . , OSt

}.
Second part (P2) of the profile: We give the properties
that we need P2 to satisfy; we omit the details of how to
construct P2 (in polynomial time) due to space constraints.
We recall that all votes in P2 are linear orders. Let P ′

1 =
{O(Bi, w, Si, d, Others) : i ≤ t}. That is, P ′

1 (|P ′
1| = t)

is an extension of P1 (in fact, these are the linear orders that
we started with before removing some of the comparisons).
P2 is a set of linear orders such that the following holds for
Q = P ′

1 ∪ P2:
1. For any i ≤ q, sl(Q, c)−sl(Q, vi) = 2(sl(k)−sl(k+1)),

sl(Q,w)− sl(Q, c) = q
3 × (sl(k)− sl(k + 4))− sl(k +

3) + sl(k + 4).
2. For any i ≤ q, the scores of vi and w, c are higher than

those of the other alternatives in any extension of P1∪P2.
3. P2’s size is polynomial in t + q.
Given such a P2, c is a possible winner if and only if there
exists an extension P ∗

1 of P1 such that w is ranked lower
than c at least q

3 times, in order for the total score of w to be
lower than the total score of c. Meanwhile, for any j ≤ q, vj

should not be ranked higher than w more than once in P ∗
1 ,

because otherwise the total score of vj will be higher than
or equal to the total score of c. Given a solution to this, let I
be the set of subscripts of votes in P ∗

1 for which w is ranked
lower than c; then, SI = {Si : i ∈ I} is a solution to the
3-cover instance. Conversely, given a solution to the 3-cover
instance, let I be the set of indices of Si that are included in
the 3-cover. Then, a solution to the possible winner instance
can be obtained by ranking c ahead of w exactly in the votes
with subscripts in I . That is, c is a possible winner if and
only if there exists a solution to the 3-cover problem.

For possible co-winner, we replace 1. by
1’. For any i ≤ q, s(Q, c) − s(Q, vi) = sl(k) − sl(k + 1),
s(Q,w)− s(Q, c) = q

3 × (sl(k)− sl(k + 4)). �

Theorem 1 provides a sufficient condition on scoring rules
for PW and PcW to be NP-complete. It can be applied to
show NP-completeness for Borda:

Corollary 1 PW and PcW are NP-complete w.r.t. Borda,
even when the number of undetermined pairs in each vote
is no more than 4.

Proof. For any l ∈ N, the scoring vector sl for Borda is
(l−1, l−2, . . . , 0). If we let f(x) = x, l = x, and k = l−4,
then the conditions in Theorem 1 are all satisfied, and the
claim follows. �

The remaining proofs are omitted due to space con-
straints.

Theorem 2 PW and PcW are NP-complete and NW and
NcW are coNP-complete w.r.t. Copeland, even when the
number of undetermined pairs in each vote is at most 8.

Theorem 3 PW and PcW are NP-complete w.r.t. Bucklin,
even when the number of undetermined pairs in each vote is
at most 16.

Theorem 4 PW and PcW are NP-complete w.r.t. maximin,
even when the number of undetermined pairs in each vote is
at most 4.

Theorem 5 PW and PcW are NP-complete and NW and
NcW are coNP-complete w.r.t. ranked pairs, even when the
number of undetermined pairs in each vote is at most 8.

Algorithms for NW and NcW
In this section we present polynomial-time algorithms to
compute whether an alternative is a necessary (co-)winner
for scoring rules, maximin, and Bucklin. The time complex-
ities are O(nm2), O(nm3), O(nm2) respectively, where m
is the number of alternatives and n is the number of votes.
We note that these rules are all based on some type of scores,
so if we can find an extension of the partial orders to linear
orders so that the score of c, denoted by S(c), is at most the
score of another alternative w, then c is not the (unique) win-
ner in this profile, and hence c is not a necessary winner. So,
in the following algorithms, we check all alternatives w 6= c,
and try to make S(c) − S(w) as low as possible on a vote-
by-vote basis. For each vote O (partial order), there can be
two cases. In the first case, c 6�O w. In this case, we just
consider c and w separately, raising w as high as possible
and lower c as low as possible. (This part of the algorithm
has already been considered in (Konczak & Lang 2005).)
We will illustrate this method in Example 2. In the second
case, c �O w. This case is more complicated, and below
we show how to minimize S(c) − S(w) for scoring rules,
maximin, and Bucklin. In this section, the input consists of
C = {c1, . . . , cm}, c (the alternative for which we wish to
decide whether or not it is a necessary (co-)winner), a profile
Po of n partial orders, and the voting rule r.

Example 2 A partial order O is illustrated in Figure 2.
Since c2 6�O c5, we can raise c5 as high as possible while
lowering c2 as low as possible, as shown in Figure 3.

We first define some notations that will be used in the algo-
rithms.
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c1

c2 c3 c4

c5 c6

Figure 2: A partial order O.

c1 c2 c3 c4c5 c6c5 c2 c4

Figure 3: An extension V1 of O.

Definition 5 Given a partial order O and an alternative c,
let UpO(c) = {c′ ∈ C : c′ �O c} and DownO(c) =
{c′ ∈ C : c �O c′}. Given another alternative w such
that c �O w, let O’s c � w block be defined as follows:
BlockO(c, w) = {c′ ∈ C : c �O c′ �O w}.

That is, UpO(c) is the set of alternatives that are weakly pre-
ferred to c in O (including c itself), and DownO(c) is the set
of alternatives that c is weakly preferred to in O (including
c itself). If c �O w, then BlockO(c, w) is the set of all the
alternatives, including c and w, that are ranked between c
and w.

The notion of a block is useful for the following reason.
In the algorithm, we want to think about an extension of the
partial orders in which w does as well as possible, and c does
as poorly as possible. When c �O w in some partial order
O, we cannot rank c below w; but at least it makes sense
to have as few alternatives between them as possible. The
alternatives in the block are exactly the ones that need to be
between them; we will rank the others outside of the block.
Then, the question is where to position the block, and we
will “slide” the block through the ranking.

Now we are ready to present the algorithms.

Algorithm 1 (Computing NW w.r.t. a scoring rule)
1. Compute the Up and Down sets for each partial order O.
2. Repeat Steps 3a-c for all w 6= c:

3a. Let S(w) = S(c) = 0.
3b. For each partial order O in P ,

– if c 6�O w, then (following Example 2) the lowest possible
position for c is the m + 1 − |DownO(c)|th position, and the
highest possible position for w is the |UpO(w)|th position, so
we add the scores r(|UpO(w)|) and r(m + 1 − |DownO(c)|)
to S(w) and S(c), respectively;
– if c �O w, then the highest that we can slide O’s c � w block
(as measured by c’s position, which is at the top of the block) is
position |UpO(w)\DownO(c)|+1 (if an alternative a is ranked
above w in the partial order, then we will place it above c, unless
the partial order ranks c above a), and the lowest (as measured
by w’s position, which is at the bottom of the block) is position
m − |DownO(c) \ UpO(w)| (if an alternative a is ranked be-
low c in the partial order, then we will place it below w, unless
the partial order ranks a above w). Any position between these
extremes is also possible. We find the position that minimizes
the score of c minus the score of w, then add the scores c and w
get for these positions to S(c) and S(w), respectively.

3c. If the result is that S(w) ≥ S(c), then output that c is not a
necessary winner (terminating the algorithm).

4. Output that c is a necessary winner (if we reach this point).

The algorithm for computing NcW is obtained simply by
checking whether S(w) > S(c) in Step 4.

Proposition 1 Algorithm 1 checks whether or not c is a nec-
essary winner for Po w.r.t. a given positional scoring rule. It
runs in time O(nm2).

We now move on to the maximin rule. We note that c is
not a necessary winner for Po w.r.t. maximin if and only if
there exists a profile of linear orders P extending Po, and
two alternatives w and w′, such that N(w, d) ≥ N(c, w′)
for all alternatives d. Therefore, our algorithm considers all
pairs (w,w′), and then checks whether the inequality holds
for all alternatives d. (Due to space constraints, we just
present the algorithms for maximin and Bucklin, without too
much detail about the intuitions for the algorithms.)
Algorithm 2 (Computing NW w.r.t. maximin)
1. Compute the Up and Down sets for each partial order O.
2. Repeat 3a-c for all tuples c, w, w′, in which c, w, w′ are different

from each other.
3a. Let S(c, w′) = 0, and for any alternative d 6= w, let S(w, d) =

0.
3b. For each partial order O,

– if c 6�O w, then raise w as high as possible and lower c as
low as possible; if, in the resulting vote, c is ahead of w′, add
1 to S(c, w′); and for any d 6= w, if w is ahead of d, add 1 to
S(w, d).
– if c �O w, and c 6�O w′, then add 0 to S(c, w′) and add 1 to
S(w, d) for all d ∈ C \ (UpO(w′) ∪ UpO(w));
– if c �O w, and c �O w′, then add 1 to S(c, w′) and add 1 to
S(w, d) for all d ∈ C \ UpO(w).

3c. Check if for all d 6= w, S(w, d) ≥ S(c, w′); if the answer is
yes, then output that c is not a necessary winner (terminating the
algorithm).

4. Output that c is a necessary winner.

The algorithm for computing NcW for maximin is similar:
the only modification is that in Step 3, we check if for all
alternatives d 6= w, S(w, d) > S(c, w′).

Proposition 2 Algorithm 2 checks whether or not c is a nec-
essary winner for Po w.r.t. maximin. It runs in time O(nm3).

Now we move on to the Bucklin rule. We note that c
is not a necessary winner of Po w.r.t. Bucklin, if and only
if there exists an an extension P of Po and an alternative
w, such that either w’s Bucklin score is 1, or there exists
2 ≤ k ≤ m, such that w is among the top k for more than
n
2 votes, and c is among the top k − 1 for less than or equal
to n

2 votes. Therefore, like Algorithm 1, the algorithm for
Bucklin considers each alternative w, computes the possible
positions for the blocks BlockO(c, w), and then checks for
all k from 1 to m whether the above condition can be made
to hold. (The algorithm below is a little more complicated
to be more efficient.)
Algorithm 3 (Computing NW w.r.t. Bucklin)
1. Compute the Up and Down sets for each partial order O.
2. Repeat Steps 3a-d for all w 6= c:

3a. For any j ≤ n, let High(j) = Low(j) = Length(j) = 0. For
any i ≤ m, let S(i, c) = s(i, w) = U(i) = 0.

3b. For each partial order Oj ,
– if c 6�Oj w, then let Length(j) = 0, and let High(j) =
|UpOj (w)|, Low(j) = m + 1− |DownOj (c)|;
– if c �Oj w, then let Length(j) = |BlockOj (c, w)|,
High(j) = |UpOj (w) \ DownOj (c)| + 1, Low(j) = m +
1− |DownOj (c)|.
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3c. For each k ≤ m, each j ≤ n,
– if Length(j) = 0, then add 1 to S(k, w) if High(j) ≤ k,
and add 1 to S(k − 1, c) if Low(j) ≤ k − 1.
– If Length(j) > 0, then: add 1 to S(k, w) if either Low(j) +
Length(j)− 1 ≤ k, or the following two conditions both hold:
Low(j) ≤ k − 1 and High(j) + Length(j) − 1 ≤ k. Also,
add 1 to S(k − 1, c) if Low(j) ≤ k − 1, and add 1 to U(k) if
Low(j) > k − 1 and High(j) + Length(j)− 1 ≤ k.

3d. If S(1, w) + U(1) > n
2

, or there exists 2 ≤ k ≤ m such that
S(k, w) ≥ S(k−1, c), S(k−1, c) ≤ n

2
, and S(k, w)+U(k) >

n
2

, then output that c is not a necessary winner (terminating the
algorithm).

4. Output that c is a necessary winner.

The algorithm for computing NcW is obtained by a slight
change of Steps 3 and 4. Due to space constraints, we omit
the details of this change.

Proposition 3 Algorithm 3 checks whether or not c is a nec-
essary winner for Po w.r.t. Bucklin. It runs in time O(nm2).

Conclusion
We considered the following problem: given a set of alter-
natives, a voting rule, and a set of partial orders, which al-
ternatives are possible/necessary winners? That is, which
alternatives would win for some/any extension of the par-
tial orders? We considered the case where the votes are not
weighted and the number of alternatives is not bounded. The
following table summarizes our results. These results hold
whether or not the alternative must be the unique winner, or
merely a co-winner.

Possible Winner Necessary Winner
scoring NP-complete O(nm2)

Copeland NP-complete coNP-complete
maximin NP-complete O(nm3)
Bucklin NP-complete O(nm2)

ranked pairs NP-complete coNP-complete
In this paper, there was no restriction on the partial orders.
However, if the reason that we have partial orders is that
preferences are submitted as CP-nets, this introduces addi-
tional structure on the partial orders; that is, not all partial
orders correspond to a CP-net. Hence, while our positive
results would still apply, it is not immediately obvious that
our negative results would still apply. In the full version of
this paper, we prove that the possible and necessary win-
ner problems are NP-complete and coNP-complete for STV
even when the partial orders must correspond to CP-nets.
Moreover, we also give a way of embedding any partial or-
der into a CP-net of polynomial size (by introducing expo-
nentially many new alternatives), and use this to show that
all of the hardness results in this paper extend to the setting
where preferences can be represented either as a CP-net or
as a special kind of linear order.

Another approach is to approximate the sets of possi-
ble/necessary winners; this has been studied previously for
STV (Pini et al. 2007). Some of the results in this paper can
be extended to show hardness of approximation.
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