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§ School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 

Bremen, Germany, E-mail: w.nau@jacobs-university.de 

† Department of Chemistry, Trinity University, San Antonio, Texas 78218, U.S.A.,  

E-mail: aurbach@trinity.edu 

 

Abstract: An analytical method has been developed for the continuous monitoring of 

protease activity on unlabelled peptides in real time by fluorescence spectroscopy. The assay 

is enabled by a reporter pair comprising the macrocycle cucurbit[7]uril (CB7) and the 

fluorescent dye acridine orange (AO). CB7 functions by selectively recognizing N-terminal 

phenylalanine residues as they are produced during the enzymatic cleavage of enkephalin-

type peptides by the metalloendopeptidase thermolysin. The substrate peptides (e.g., Thr-

Gly-Ala-Phe-Met-NH2) bind to CB7 with moderately high affinity (K ca. 104 M–1), while 

their cleavage products (e.g., Phe-Met-NH2) bind very tightly (K > 106 M–1). AO signals the 

reaction upon its selective displacement from the macrocycle by the high affinity product of 

proteolysis. The resulting supramolecular tandem enzyme assay effectively measures the 

kinetics of thermolysin, including the accurate determination of sequence specificity (Ser and 

Gly instead of Ala), stereospecificity (DAla instead of LAla), endo- versus exopeptidase 

activity (indicated by differences in absolute fluorescence response), and sensitivity to 

terminal charges (-CONH2 versus -COOH). The capability of the tandem assay to measure 

protease inhibition constants was demonstrated on phosphoramidon as a known inhibitor to 

afford an inhibition constant of (17.8 ± 0.4) nM. This robust and label-free approach to the 

study of protease activity and inhibition should be transferable to other endo- and 

exopeptidases that afford products with N-terminal aromatic amino acids. 

mailto:w.nau@jacobs-university.de
mailto:aurbach@trinity.edu
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Introduction 

As the enzymes that catalyze the hydrolytic degradation of proteins, proteases are ubiquitous 

in living systems and regulate a multitude of cellular processes including the cell cycle, 

hormone activation, angiogenesis, and apoptosis.1-5 Aberrations in protease expression or 

function are therefore implicated in many pathological conditions such as cancer,6 arthritis,7 

and Alzheimer’s disease.8 In addition, proteases play an essential role in viral replication and 

in the toxicity of bacteria.9 Indeed, the potential of proteases as targets for drug development 

is enormous, as evidenced by the successful development of numerous therapeutics based on 

protease inhibition.5 

The characterization of protease activity for the purpose of determining substrate activity 

and inhibitor potency is unfortunately slow and expensive. The vast majority of assays 

require labeled substrates,10-17 which are costly and may not behave the same as their natural 

counterparts.18 Label-free protease assays, on the other hand, rely on analytical instruments 

such as mass spectrometry,18 or employ synthetic/semi-synthetic multifunctional pores,19,20 

which are difficult to scale up for high-throughput screening. Hence, the development of 

rapid and robust assays for protease activity greatly accelerates the characterization of 

protease targets and the discovery of drug candidates.17,21 

This paper describes a robust and convenient approach for measuring protease kinetics 

using optical spectroscopy on label-free substrates and products. Our approach is based on a 

supramolecular tandem assay,22-25 which incorporates an essential component of indicator–

displacement assays.26-28 Supramolecular tandem assay is a recently developed technique that 

provides real-time continuous monitoring of enzymatic activity by following a change in the 

concentration of substrate or product as it competitively displaces a fluorescent reporter dye 

from the cavity of a macrocyclic host. These assays therefore rely on the differential binding 

of the macrocycle with the fluorescent dye, the enzymatic substrate, and the corresponding 

product. 

Supramolecular tandem assays have been implemented successfully for monitoring 

enzymatic transformations involving amino acids, biogenic amines, amino aldehydes, and 

nucleotide phosphates.22-25 Until now, the technique was limited to substrates and products 

which, owing to their low molecular weight, could essentially be fully immersed in the 

macrocyclic host cavity, such that the entire analyte, e.g. arginine or cadaverine, served as 
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recognition motif. Here, the utility of the tandem assay principle is transferred to peptides, 

which themselves are far too large to be fully included in the macrocyclic cavity. Rather, it is 

a residue of the peptide chain, namely an aryl ring, which complexes with differential affinity 

to the macrocycle in the substrate and the product. For the first time, we demonstrate the 

quantitative determination of absolute kinetic parameters (kcat/KM) for protease activity, the 

application of this analysis to the profiling of enzyme substrates for sequence-selectivity, 

stereospecificity, and endo- vs exopeptidase activity, as well as the quantitative determination 

of inhibitory constants for protease inhibitors. 

 

 

 

Figure 1. Amino acid sequences of the peptides used in this study; the N termini are 

unprotected primary amines, the C termini are designated as -NH2 for a primary amide and -

OH for a carboxylic acid. The arrow indicates the cleavage site for thermolysin. Also shown 

are the chemical structures of the macrocycle and fluorescent dye constituting the employed 

reporter pair. 
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Results and Discussion 

Experimental Design. Cucurbit[7]uril (CB7, Figure 1) is a water-soluble macrocycle that 

has been investigated extensively in biological applications including drug delivery,29-33 

interactions with enzymes,34,35 plasma membrane protein fishing,36 and label-free enzyme 

assays.22-25 The repeating glycoluril units produce a barrel-shaped container that has a 

hydrophobic cavity and negatively charged portals.37
 The latter are capable, not only for CB7 

but also for its homologues, of binding inorganic cations as well as the cationic sites of 

organic guests, mostly ammonium groups; nonpolar groups are preferentially immersed in 

the inner cavity.38-42 CB7 and its larger homologue CB8 have been shown to bind aromatic 

amino acids and sequence-specifically to peptides and proteins containing phenylalanine 

(Phe), tryptophan (Trp), or tyrosine (Tyr) at the N-terminal positions.43-47 Recognition at the 

N terminus is achieved via the cooperation of hydrophobic inclusion of the aromatic side 

chain and electrostatic stabilization of the proximal N-terminal ammonium group. 

The differential binding of CB7 to an aromatic residue located at the N terminus versus 

other positions is exploited here in the design of an enzyme assay by choosing a protease 

(thermolysin) that efficiently hydrolyzes the peptide bond on the amino side of phenylalanine 

residues and thus generates an N-terminal phenylalanine as its product. The product binds to 

CB7 more tightly than the starting material, and will, therefore, selectively displace a 

fluorescent indicator from CB7. This allows real-time monitoring of the thermolysin-

mediated reaction by the pronounced change in fluorescence intensity. Thermolysin is a 

thermally resistant (thermophilic) enzyme produced by Bacillus thermoproteolyticus. It is 

selective for bulky, hydrophobic amino acids such as Phe and Leu,48
 and represents the 

family of thermolysin metalloendopeptidases as relevant therapeutic targets due to their high 

substrate specificity, their functional role in extracellular transformations of neuroendocrine 

as well as cardiovascular peptides, and in processes ranging from reproduction to 

cardiovascular homeostasis.9,49,50 

Enkephalin-based peptides were chosen as substrates to establish proof-of-principle for 

the protease assay. These neurological pentapeptides of sequence Tyr-Gly-Gly-Phe-Met-OH 

(natural amino and carboxy termini) or Tyr-Gly-Gly-Phe-Leu-OH are part of the endogenous 

opioid system involved in pain perception and emotional behavior, and they are implicated in 

the pathogenesis of Alzheimer's dementia.51 Thermolysin hydrolyzes these peptides at the 
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Gly-Phe peptide bond, producing Phe-Met-OH and Phe-Leu-OH products that contain an N-

terminal Phe and, thus, should bind to CB7 selectively versus the substrates as well as the 

other peptide product fragments (Scheme 1).52-54 

 

Scheme 1. CB7 binds selectively to N-terminal Phe residues due to cooperative hydrophobic 

and ion-dipole interactions 

 

 

The choice of the fluorescent dye is critical to the design of a supramolecular tandem 

assay. Acridine orange (AO, Figure 1) and CB7 were selected as the “reporter pair” (i.e., the 

macrocycle and dye pair). AO is a weakly fluorescent dye in aqueous solution, which 

becomes strongly fluorescent upon encapsulation by CB7.55 Upon the addition (or enzymatic 

formation) of a strongly binding analyte to the preformed CB7•AO complex, the fluorescence 

intensity drops again, leading to a “switch-off” fluorescence response. Important to note, the 

binding constant of CB7 with AO (2.9 × 105 M–1)24,55 lies in between the binding strength of 

CB7 with the substrate and product of interest. This was demonstrated by simple titration 

experiments (Figure 2 and Supporting Information), from which the binding constants of 

peptides 1-9 were determined (Table 1). Peptides 1-6, the candidates to potentially act as 

substrates for thermolysin, have invariably a low binding affinity to CB7, accounted by the 

presence of only hydrophobic interaction between the amino acid Phe and the host cavity. 

However, the corresponding proteolytic products (dipeptides 7-9) have 3 orders of magnitude 

higher affinity for CB7 due to the additional electrostatic interaction between the N-terminal 

ammonium group of Phe with the CB7 carbonyls. This high affinity disappears again for the 

simple amino acid Phe (10), for which the adjacent C-terminal carboxylate group entirely 

offsets the stabilizing interaction by the ammonium group. Note that the binding affinity of 

CB7 between the peptides 1 and 2 is slightly different. Nevertheless, it is not surprising due 

to the diastereomeric differentiation between L and D Ala by an achiral host CB7.56 
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Figure 2. Fluorescence titrations (exc = 485 nm, obs = 510 nm) of substrates 1 and 6 and 

their proteolysis products (dipeptides 7 and 9) by using competitive displacement of AO (0.5 

μM) from CB7 (5 μM) in 10 mM ammonium phosphate buffer at pH 7.2, 37 C. The 

titrations for the substrates are cut-off for clarity, see Supporting Information for more data. 

I0 and I are the fluorescence intensities in the absence and presence of competitor, 

respectively. 

 

When compared to highly selective antibodies, the molecular recognition of peptides by 

CB7 must be considered as rather unspecific. The synthetic macrocyclic host binds to all 

pentapeptides 1-6 with very similar affinity, and even the binding constant of the amino acid 

Phe (10) falls in the same range (Table 1). CB7 shows also little selectivity towards the 

dipeptides 7-9. However, it differentiates the dipeptides 7-9 reliably from the pentapeptides 

1-6, and this substrate/product differentiation is sufficient to set-up robust enzyme assays. 

When thermolysin is added to the peptide solution containing an enkephalin-based substrate 
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and the CB7/AO reporter pair (Scheme 2), the enzymatic product, containing an N-terminal 

phenylalanine residue, should rapidly (relative to the enzymatic transformation itself) and 

competitively displace the AO dye from the CB7 cavity, thus yielding a decrease in 

fluorescence intensity that reports the protease activity continuously and in real time. The 

immediate response is due to the fast rates for the formation and dissociation of the 

supramolecular assemblies, which, as previously discussed, constitutes an advantage of using 

macrocycles instead of antibodies.24 As can be further seen from the actual titration plots 

(Figure 2), even working at relatively low substrate concentrations of 5–20 M should 

produce a readily detectable change in fluorescence response upon conversion of a substrate 

to a product. This working concentration range is exactly desirable in protease assays, 

including those employed in high-throughput screening for pharmaceutical investigations.14-17  

 

Table 1: Binding constants (K) of peptides 1-9, phenylalanine 10, and phosphoramidon 11 

with CB7 and proteolytic constants (kcat/KM) for their reaction with thermolysin. 

Entry Peptide sequence K/(104 M–1)a kcat/KM(10–4 s–1 M–1)b 

1 Thr-Gly-Ala-Phe-Met-NH2 1.3 14 

2 Thr-Gly-DAla-Phe-Met-NH2 2.6 0.005c 

3 Thr-Gly-Ala-Phe-Leu-NH2 0.35 3.2 [7.0]d 

4 Thr-Gly-Ser-Phe-Met-NH2 1.9 6.9 

5 Thr-Gly-Gly-Phe-Met-NH2 1.4 1.2 

6 Thr-Gly-Ala-Phe-Leu-OH 0.18 2.3 

7 Phe-Met-NH2 1500±500  e 

8 Phe-Leu-NH2 2700±1500  e 

9 Phe-Leu-OH 210  e 

10 Phe-OH 2.0 [2.5] f  e 

11 Phosphoramidon 0.12 g 

a Determined by competitive fluorescence titrations, cf. Figure 2 and Supporting Information; 

15% error unless explicitly stated. b Determined by supramolecular tandem assay at varying 

peptide concentrations (5-55 M, n = 5-6), cf. Figure 3; kinetic parameters were determined 

by nonlinear regression (see Supporting Information); 20% estimated error. c Insignificant 

hydrolysis due to the presence of DAla. d Value in square brackets refers to exopeptidase 
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activity, see text and Supporting Information.e No conversion detected due to Phe N terminus. 

f In 0.1 M NaCl solution.56 g Phosphoramidon was employed as inhibitor, cf. Figure 5. 
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Scheme 2. Product-selective fluorescence switch-off tandem assay using CB7 and AO as 

reporter paira  

 

 

 
a It should be noted that the dye, substrate, and product are in rapid dynamic competitive 

equilibrium for encapsulation within the CB7 macrocycle.  
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Enzyme Assays. To establish proof of principle for the use of a supramolecular tandem assay to 

monitor protease activity on unlabelled peptides, we first investigated a series of enkephalin–

based peptides (Figure 1) with the sequence Thr-Gly-Ala-Phe-Met-NH2 (1), Thr-Gly-DAla-Phe-

Leu-NH2 (2), Thr-Gly-Ala-Phe-Leu-NH2 (3), as well as the dipeptide product from proteolysis of 

enkephalin 1, Phe-Met-NH2 (7). 

 

 

Figure 3: (a) Continuous fluorescence assays (exc = 485 nm, obs = 510 nm) with the CB7/AO 

reporter pair (8 M/ 0.5 M) upon addition of thermolysin (t = 0 min, 15 nM) to peptides 1-3 

and 7 (30 M), at 37 °C. (b) Determination of enzyme kinetic parameters by monitoring of 

thermolysin (15 nM) activity with varying concentration of enkephalin 1 (5–25 M) in 10 mM 

ammonium phosphate buffer, pH 7.2, at 37 °C with the CB7/AO reporter pair (2.5 M/ 0.5 M). 

I0 and I are the fluorescence intensities at t = 0 and t, respectively. 
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As depicted in Figure 3a, peptides 1 and 3 were hydrolyzed rapidly, but peptide 2 showed 

insignificant hydrolysis. The stark contrast in the rate of cleavage at the Ala-Phe bond for 

peptides 1 and 2 was due to the substitution of LAla by its enantiomer. The tandem assay thus 

reflects the previously established substrate selectivity of thermolysin, including the remarkable 

stereospecificity of the P1 position.48,57-60 As can be also seen from Figure 3a, the dipeptide 7 

shows no fluorescence response. This signifies that the peptide bond between Phe and Met in this 

peptide is not cleaved by thermolysin (exopeptidase activity, see below). If it were cleaved, an 

increase in fluorescence would have been observed, because the product (free Phe, 10) would 

again constitute a weak competitor (see binding constants in Table 1). Again, it was known that 

substrates lacking a peptide bond N-terminal to Phe (such as 7) are not digested by 

thermolysin,53 such that our result established a negative control experiment. 

 

Substrate Selectivity. Given the high sensitivity of the tandem assay observed in the initial 

experiments, we decided to measure the kinetic behavior of thermolysin for substrates with 

varying amino acids at the P1 position. With peptides 1 and 3 as parent compounds, the P1 

mutations of Ala to Ser (peptide 4) and Ala to Gly (peptide 5) examined the effects of adding a 

hydroxyl group to the  carbon, or removing the  carbon, respectively. Peptide 6 is an analogue 

of 3 with a carboxylate at the C terminus, which was designed to test the effect of C-terminal 

charge. 

The enzyme-kinetic analysis required the determination of initial rates of reaction. For this 

purpose, the observed fluorescence decay needed to be related to changes in absolute 

concentration.25 This relationship was achieved by recording the fluorescence response obtained 

by addition of a known quantity of an authentic sample of reaction product (see Supporting 

Information). Analysis of the initial reaction rates at varying substrate concentrations (Figure 3b) 

yielded the characteristic proteolytic constants (kcat/KM) for the different peptide sequences (inset 

of Figure 3b and Table 1).61 

Note that our tandem assays allow kinetic measurements for unlabeled peptides, while 

previous assays were carried out with peptides carrying fluorescent labels such as 2-

naphthylamide (2NA)62 or dansyl.63 The structural differences prevent a direct comparison of the 
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absolute proteolytic constants. Nevertheless, peptides 1 (kcat/KM = 14  104 M–1s–1) and 5 (1.5  

104 M–1s–1) showed the same order of magnitude as well as the same trends of substrate 

selectivity as the labeled derivatives Glt-Gly-Ala-Phe-2NA (5.2  104 M–1s–1) and Glt-Gly-Gly-

Phe-2NA (0.15  104 M–1s–1),62 which was gratifying to observe. 

The data in Table 1 show that the identity of the amino acid residue at the P1 position 

significantly affects the proteolytic coefficients of thermolysin activity. The values are 

moderately reduced for the peptides containing glycine and serine at P1 compared to their parent 

compound 1 with alanine at P1 position. The binding of the substrate at P1 is governed by 

hydrophobic interactions, which accounts for the fact that at P1, Gly and Ser are cleaved more 

slowly than Ala.62,64,65 The use of a carboxyl group leads to a slight reduction in enzymatic 

activity, as indicated by the kcat/KM value, presumably due to the known sensitivity of 

thermolysin towards adjacent charges (see following section, note that most model substrates 

were amidated at the C terminus for the convenience of peptide synthesis). 

 

Exo- and Endopeptidase Behavior. During the determination of the kcat/KM values for the 

peptides described above, we stumbled on the unexpected exopeptidase behavior of thermolysin 

that was specific to the substrate Thr-Gly-Ala-Phe-Leu-NH2 (3). The expected endopeptidase 

products of the cleavage of substrates Thr-Gly-Ala-Phe-Met-NH2 (1) and Thr-Gly-Ala-Phe-Leu-

NH2 (3) are Phe-Met-NH2 (7) and Phe-Leu-NH2 (8), respectively. These products bind tightly to 

CB7 and are therefore responsible for the change in fluorescence intensity during the tandem 

assay. Therefore, the final steady-state fluorescence response (i.e., after quantitative enzymatic 

digestion of substrates 1 and 3) was expected to be similar to the fluorescence response brought 

about by the same concentrations of their endopeptidase products 7 and 8. This similarity was 

observed for substrate 1 but not for substrate 3. 

In detail, the enzymatic hydrolysis of 5 M of the substrate Thr-Gly-Ala-Phe-Met-NH2 (1) 

resulted in complete displacement of the dye from CB7, as observed by the similarity of the 

steady-state fluorescence response after complete enzymatic conversion and the response of the 

same concentration of Phe-Met-NH2 (Figures 4a and 4c). In the case of the substrate Thr-Gly-

Ala-Phe-Leu-NH2 (3), however, the final steady-state fluorescence response upon enzymatic 
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hydrolysis of 5 M substrate was less than that of its endopeptidase product Phe-Leu-NH2 (8) at 

the same concentration (see Figure 4b & 4d). In fact, even a concentration of 10 M of substrate 

3 was insufficient to produce the same fluorescence response as that produced by 5 M of 8. We 

concluded that the expected product was not quantitatively formed. To account for this result, 

and inspired by previous experimental observations,48,66,67 we suspected the possibility of 

exopeptidase activity, i.e., enzymatic cleavage of the Phe-Leu peptide bond. We were exactly 

able to corroborate this unusual pathway for peptide 3 by mass spectrometry (see Supporting 

Information). 

The observed exopeptidase cleavage leads to the formation of Thr-Gly-Ala-Phe-OH as 

(another) product, one that is not further converted by thermolysin. Therefore, the yield of the 

expected endopeptidase product (8), and the corresponding change in fluorescence response 

upon the displacement of AO by 8, fall below expectation. In fact, the incomplete conversion, 

signaled by the plateau being reached at higher fluorescence intensities, can be used to assess the 

ratio of exo- versus endopeptidase cleavage (2.2:1), which, with the endopeptidase kinetics being 

directly accessible (Figure 4 and Supporting Information), allows the projection of both rates. 

This analysis affords a kcat/KM value of 3.2  104 M–1s–1 for the endopeptidase activity and a 

value of 7.0  104 M–1s–1 for the exopeptidase activity. The higher proteolytic constant for the 

hydrolysis of the Phe-Leu exo bond (i.e., Leu at P1' position) compared to the hydrolysis of the 

Ala-Phe endo bond (i.e., Phe at P1') is consistent with the enzyme’s preference for hydrophobic 

P1' residues, whereby increasing the hydrophobic residue from Leu to Phe increases the 

interaction of the substrate with the active site of the enzyme, whilst decreasing the catalytic 

efficiency,60,68,69 thereby accounting for the observed lower kcat/KM value for the endo cleavage. 
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Figure 4: Fluorescence measurements using CB7/AO (2.5 M CB7 and 0.5 M AO, exc = 485 

nm, obs = 510 nm) as a reporter pair in 10 mM ammonium phosphate buffer, pH 7.2, at 37 °C. 

Competitive fluorescence titration plots of a) Phe-Met-NH2 (8) and b) Phe-Leu-NH2 (9). Tandem 

protease assays for thermolysin (15 nM) with substrates c) Thr-Gly-Ala-Phe-Met-NH2 (1) and d) 

Thr-Gly-Ala-Phe-Leu-NH2 (3). 

 

It is interesting that we observed no exopeptidase activity for the non-amidated peptide Thr-

Gly-Ala-Phe-Leu-OH (6), as confirmed by the plateau region of the fluorescence trace as well as 

by mass spectrometry (see Supporting Information). This result reveals that the C-terminal 

charge of the peptide directs endo- versus exopeptidase activity, at least for substrates containing 

bulky hydrophobic residues (Phe and Leu) at the P1' position. Conversely, a comparison of 

substrate 3 (exopeptidase cleavage observed) with its product 8, for which no conversion by 

themolysin is observed (Figure 3a and Supporting Information), further exposes that an N-
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terminal charge directly at phenylalanine suppresses the exopeptidase activity of thermolysin. 

This observed sensitivity of thermolysin toward adjacent charges supports prior claims based on 

studies performed by alternative assays with labeled substrates.48,66,67 

As can be seen from these studies, our label-free protease tandem assay provides information 

not only on the enzymatic activity, kinetics, and substrate selectivity, but also on the 

chemoselectivity of the proteolytic cleavage, because the plateau region after quantitative 

conversion is a signature for the identity of the expected product and thus enables direct 

quantification of the extent of the expected reaction. 

 

Protease Inhibition. Having established the capability of the assay to effectively measure the 

kinetics of thermolysin activity, we sought to apply the assay to the determination of enzyme 

inhibition, which is critical to the evaluation of drug candidates. Using Thr-Gly-Ala-Phe-Met-

NH2 (1) as the model substrate, inhibition studies for thermolysin were carried out using the 

product-selective tandem assay principle and the inhibitor phosphoramidon (11), a naturally 

occurring, potent inhibitor of thermolysin.70-73 Inhibitors can hypothetically interfere with the 

assay principle by binding to the macrocycle.24 Fortunately, this can be readily tested by 

competitive titrations, which afforded a low binding constant for 11 (1200 M–1, Table 1). In the 

concentration range relevant for studies with potent inhibitors (up to 100 nM), binding of 11 to 

CB7 (< 0.3%) can therefore be safely neglected. 

As is typical for competitive inhibitors, we observed that increasing the concentration of 11 

decreases the rate of thermolysin hydrolysis via dynamic competition with the substrate for 

binding to the enzyme, and yet allows the irreversible peptidase reaction on the enzyme•substrate 

complex to proceed to completion, as observed by similar steady-state fluorescence intensities at 

all concentrations of inhibitor (Figure 5). The change in initial rates of decrease in fluorescence 

intensity was used to calculate a Ki value of (17.8 ± 0.4) nM,74 which falls right into the reported 

range (3.5 – 60 nM), all determined under slightly varying experimental conditions and with 

different assay methods employing fluorescently labeled substrates.70,71,75 
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Figure 5: Determination of thermolysin (15 nM) inhibition by phosphoramidon (11, 0–100 nM) 

in the presence of 10 M Thr-Gly-Ala-Phe-Met-NH2 (1) by using the CB7/AO (0.5 M/ 2.5 M) 

reporter pair in 10 mM ammonium phosphate, pH 7.2, at 37 C. a) Continuous fluorescence 

traces (exc = 485 nm, obs = 510 nm) upon addition of 10 M Thr-Gly-Ala-Phe-Met-NH2 (1) for 

the determination of the initial rates. b) Corresponding dose-response curve for inhibition of 

thermolysin by phosphoramidon (11). 

 

Conclusions 

The addition of macrocyclic host molecules in combination with fluorescent dyes establishes a 

label-free method for the real-time, continuous monitoring of protease activity by fluorescence 

spectroscopy. Protease assays using unmodified substrates are important because they enable the 

detailed characterization of the natural substrate selectivity of a target protease as well as its 

activity in the presence of inhibitors. We have successfully applied the tandem assay principle to 

the continuous monitoring of the hydrolysis of enkephalin-based peptides by thermolysin. In 

doing so, we have established proof-of-principle for the use of cucurbituril-based fluorescent 

reporter pairs for proteases. The general selectivity of macrocycles (even if moderate in 
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comparison to specific receptors) renders potentially broad transferability of this assay to other 

exo– and endo–peptidases. Furthermore, for the first time, we have extended the applicability of 

tandem assays towards an in–depth profiling of enzyme activity for a wide range of substrates, 

towards sensing enzyme substrate stereospecificity, and have demonstrated the potential of this 

assay for the screening of inhibitors. These applications of tandem assays to monitor proteolytic 

activity have significant implications for drug design as well as medical diagnostics, where 

proteases are important disease markers.  

 

Experimental Section 

Materials. Peptides 1-8 were synthesized by standard Fmoc solid-phase synthesis protocols on 

Rink amide MBHA resin (for C-terminal amides) or Wang acid resin (for peptide 6 containing a 

C-terminal carboxylic acid) and purified by reversed phase HPLC. Purity was verified by 

reversed phase analytical HPLC and 1H NMR spectroscopy. Identity was verified by 

electrospray mass spectrometry. 

Peptide Phe-Leu-OH (9) and amino acid Phe-OH (10) were used as received from Bachem 

and Applichem respectively. Cucurbit[7]uril (CB7) was synthesized according to the literature.76-

78 Acridine orange (AO), thermolysin (lyophilized powder, 36.5 U/mg) and phosphoramidon 

were used as received from Sigma-Aldrich. 

 

Methods. Absorbance measurements were performed with a Varian Cary 4000 

spectrophotometer. The concentrations of peptides 1-10 were determined assuming the 

extinction coefficient of free phenylalanine at 257 nm, 257 = 195 M–1cm–1.79 For thermolysin and 

phosphoramidon, 280 = 61100 M–1cm–1 and 280 = 5500 M–1cm–1, respectively, were used.63,71 A 

Varian Eclipse spectrofluorimeter was used for steady-state fluorescence measurements and for 

the enzyme assays. 

Continuous assays were performed with 0-55 M peptide, 2.5 M CB7 and 0.5 M AO (exc 

= 485 nm, obs = 510 nm) in 10 mM ammonium buffer, pH 7.2, in a variable-temperature cell 

holder at 37.0 ± 0.1 °C, and the reaction was initiated by addition of thermolysin (15 nM). For 

the inhibition studies, the mixture of thermolysin (10 nM) and phosphoramidon (0-100 nM) was 
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pre-incubated for 15 minutes at 37.0 ± 0.1 °C in the presence of the reporter pair and the reaction 

was initiated by addition of 10 M Thr-Gly-Ala-Phe-Met-NH2 (1). 
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